A supervised learning framework in the context of multiple annotators

The increasing popularity of crowdsourcing platforms, i.e., Amazon Mechanical Turk, is changing how datasets for supervised learning are built. In these cases, instead of having datasets labeled by one source (which is supposed to be an expert who provided the absolute gold standard), we have datase...

Full description

Autores:
Gil González, Julián
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Pereira
Repositorio:
Repositorio Institucional UTP
Idioma:
eng
OAI Identifier:
oai:repositorio.utp.edu.co:11059/13832
Acceso en línea:
https://hdl.handle.net/11059/13832
Palabra clave:
Redes neuronales
Aprendizaje de máquina
Procesos Gaussianos
005 - Datos en sistemas informaticos
620 - Ingeniería y operaciones afines
Modeling languages (Computer science)
Enterprise application integration (Computer systems)
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UTP2_bde00c1cd560693652f8458749cd2105
oai_identifier_str oai:repositorio.utp.edu.co:11059/13832
network_acronym_str UTP2
network_name_str Repositorio Institucional UTP
repository_id_str
spelling Álvarez Meza, Andrés MarinoGil González, JuliánDoctor en Ingeniería2021-10-28T01:57:39Z2021-11-02T19:43:42Z2021-10-28T01:57:39Z2021-11-02T19:43:42Z2021https://hdl.handle.net/11059/13832T005.30688 G463 F8566The increasing popularity of crowdsourcing platforms, i.e., Amazon Mechanical Turk, is changing how datasets for supervised learning are built. In these cases, instead of having datasets labeled by one source (which is supposed to be an expert who provided the absolute gold standard), we have datasets labeled by multiple annotators with different and unknown expertise. Hence, we face a multi-labeler scenario, which typical supervised learning models cannot tackle. For such a reason, much attention has recently been given to the approaches that capture multiple annotators’ wisdom. However, such methods residing on two key assumptions: the labeler’s performance does not depend on the input space and independence among the annotators, which are hardly feasible in real-world settings...application/pdfengPereira: Universidad Tecnológica de PereiraFacultad de IngenieríaDoctorado en IngenieríaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Redes neuronalesAprendizaje de máquinaProcesos Gaussianos005 - Datos en sistemas informaticos620 - Ingeniería y operaciones afinesModeling languages (Computer science)Enterprise application integration (Computer systems)A supervised learning framework in the context of multiple annotatorsdoctoralThesisacceptedVersionhttp://purl.org/coar/resource_type/c_db06PublicationORIGINALT005.30688 G463.pdfDocumento principalapplication/pdf3215105https://dspace7-utp.metabuscador.org/bitstreams/ff1e4937-9cff-4c44-9525-e75d569b213c/download24a0055f64e93b0f3e8c4819b282ffa9MD51CC-LICENSElicense_rdfapplication/octet-stream1223https://dspace7-utp.metabuscador.org/bitstreams/356c2d32-3853-4c4d-8fbe-b44379d59640/download7c9ab7f006165862d8ce9ac5eac01552MD52LICENSElicense.txttext/plain849https://dspace7-utp.metabuscador.org/bitstreams/e3bae1cb-3446-4a9a-bd12-77ddaa506527/downloade2e549e0a1eff8f2de922c8fd2184f09MD53TEXTT005.30688 G463.pdf.txtT005.30688 G463.pdf.txtExtracted texttext/plain353391https://dspace7-utp.metabuscador.org/bitstreams/5313b12d-d922-42b5-81ae-1c7945373387/downloadbea40cd4509e497f6567bd60da87b2aaMD56THUMBNAILT005.30688 G463.pdf.jpgT005.30688 G463.pdf.jpgGenerated Thumbnailimage/jpeg7243https://dspace7-utp.metabuscador.org/bitstreams/2326936d-af3b-48ab-a822-8c91b5fdfb8c/download777ca542505eb03013bd551a710e1ac9MD5711059/13832oai:dspace7-utp.metabuscador.org:11059/138322024-09-05 16:59:19.168http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://dspace7-utp.metabuscador.orgRepositorio de la Universidad Tecnológica de Pereirabdigital@metabiblioteca.comRUwgQVVUT1IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuIFBBUsOBR1JBRk86IEVuIGNhc28gZGUgcHJlc2VudGFyc2UgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBvIGFjY2nDs24gcG9yIHBhcnRlIGRlIHVuIHRlcmNlcm8gZW4gY3VhbnRvIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgZW4gY3Vlc3Rpw7NuLCBFTCBBVVRPUiwgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSB1bml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiBFTCBBVVRPUiwgYXV0b3JpemEgYSBMQSBVTklWRVJTSURBRCBURUNOT0xPR0lDQSBERSBQRVJFSVJBLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIHkgdXNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24u
dc.title.spa.fl_str_mv A supervised learning framework in the context of multiple annotators
title A supervised learning framework in the context of multiple annotators
spellingShingle A supervised learning framework in the context of multiple annotators
Redes neuronales
Aprendizaje de máquina
Procesos Gaussianos
005 - Datos en sistemas informaticos
620 - Ingeniería y operaciones afines
Modeling languages (Computer science)
Enterprise application integration (Computer systems)
title_short A supervised learning framework in the context of multiple annotators
title_full A supervised learning framework in the context of multiple annotators
title_fullStr A supervised learning framework in the context of multiple annotators
title_full_unstemmed A supervised learning framework in the context of multiple annotators
title_sort A supervised learning framework in the context of multiple annotators
dc.creator.fl_str_mv Gil González, Julián
dc.contributor.advisor.none.fl_str_mv Álvarez Meza, Andrés Marino
dc.contributor.author.none.fl_str_mv Gil González, Julián
dc.subject.spa.fl_str_mv Redes neuronales
Aprendizaje de máquina
Procesos Gaussianos
topic Redes neuronales
Aprendizaje de máquina
Procesos Gaussianos
005 - Datos en sistemas informaticos
620 - Ingeniería y operaciones afines
Modeling languages (Computer science)
Enterprise application integration (Computer systems)
dc.subject.ddc.spa.fl_str_mv 005 - Datos en sistemas informaticos
620 - Ingeniería y operaciones afines
dc.subject.lemb.eng.fl_str_mv Modeling languages (Computer science)
Enterprise application integration (Computer systems)
description The increasing popularity of crowdsourcing platforms, i.e., Amazon Mechanical Turk, is changing how datasets for supervised learning are built. In these cases, instead of having datasets labeled by one source (which is supposed to be an expert who provided the absolute gold standard), we have datasets labeled by multiple annotators with different and unknown expertise. Hence, we face a multi-labeler scenario, which typical supervised learning models cannot tackle. For such a reason, much attention has recently been given to the approaches that capture multiple annotators’ wisdom. However, such methods residing on two key assumptions: the labeler’s performance does not depend on the input space and independence among the annotators, which are hardly feasible in real-world settings...
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-28T01:57:39Z
2021-11-02T19:43:42Z
dc.date.available.none.fl_str_mv 2021-10-28T01:57:39Z
2021-11-02T19:43:42Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv doctoralThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.hasVersion.spa.fl_str_mv acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11059/13832
dc.identifier.local.spa.fl_str_mv T005.30688 G463 F8566
url https://hdl.handle.net/11059/13832
identifier_str_mv T005.30688 G463 F8566
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Pereira: Universidad Tecnológica de Pereira
dc.publisher.department.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.program.spa.fl_str_mv Doctorado en Ingeniería
institution Universidad Tecnológica de Pereira
bitstream.url.fl_str_mv https://dspace7-utp.metabuscador.org/bitstreams/ff1e4937-9cff-4c44-9525-e75d569b213c/download
https://dspace7-utp.metabuscador.org/bitstreams/356c2d32-3853-4c4d-8fbe-b44379d59640/download
https://dspace7-utp.metabuscador.org/bitstreams/e3bae1cb-3446-4a9a-bd12-77ddaa506527/download
https://dspace7-utp.metabuscador.org/bitstreams/5313b12d-d922-42b5-81ae-1c7945373387/download
https://dspace7-utp.metabuscador.org/bitstreams/2326936d-af3b-48ab-a822-8c91b5fdfb8c/download
bitstream.checksum.fl_str_mv 24a0055f64e93b0f3e8c4819b282ffa9
7c9ab7f006165862d8ce9ac5eac01552
e2e549e0a1eff8f2de922c8fd2184f09
bea40cd4509e497f6567bd60da87b2aa
777ca542505eb03013bd551a710e1ac9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica de Pereira
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1828202034256412672