Biotechnology and Bioengineering: Research results from the Faculty of Health Sciences

The book titled “Biotechnology and Bioengineering: Research Results from the Faculty of Health Sciences” brings together a collection of research studies that highlight the advancement of these disciplines in the health field. Each chapter addresses fundamental and applied topics aimed at solving co...

Full description

Autores:
Galvis Marín, Juan Camilo
Celis Ramírez, Adriana Marcela
Sepúlveda-Arias, Juan Carlos
García Castro, Giovanni
González Colonia, Luz Victoria
Giraldo Montoya, Ángela María
Gómez González, José Fernando
Cabrales Vega, Rodolfo Adrián
Chica Builes, Juan Fernando
Melchor-Moncada, Jhon Jairo
Vasquez, Santiago
Orozco, Lina M
Veloza, Luz Angela
Aguilar, Enrique
Sepúlveda-Arias, Juan C
Tipo de recurso:
Book
Fecha de publicación:
2024
Institución:
Universidad Tecnológica de Pereira
Repositorio:
Repositorio Institucional UTP
Idioma:
eng
OAI Identifier:
oai:repositorio.utp.edu.co:11059/15301
Acceso en línea:
https://hdl.handle.net/11059/15301
https://repositorio.utp.edu.co/home
Palabra clave:
Biotecnología - Investigaciones
Biotecnología agrícola
Ingeniería agrícola
Biotecnología aplicada
Bioingeniería
Microbiología
Inmunología
Farmacología
Salud pública
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
id UTP2_8da1df73aff62033bed47bfc99bc5f9c
oai_identifier_str oai:repositorio.utp.edu.co:11059/15301
network_acronym_str UTP2
network_name_str Repositorio Institucional UTP
repository_id_str
dc.title.eng.fl_str_mv Biotechnology and Bioengineering: Research results from the Faculty of Health Sciences
title Biotechnology and Bioengineering: Research results from the Faculty of Health Sciences
spellingShingle Biotechnology and Bioengineering: Research results from the Faculty of Health Sciences
Biotecnología - Investigaciones
Biotecnología agrícola
Ingeniería agrícola
Biotecnología aplicada
Bioingeniería
Microbiología
Inmunología
Farmacología
Salud pública
title_short Biotechnology and Bioengineering: Research results from the Faculty of Health Sciences
title_full Biotechnology and Bioengineering: Research results from the Faculty of Health Sciences
title_fullStr Biotechnology and Bioengineering: Research results from the Faculty of Health Sciences
title_full_unstemmed Biotechnology and Bioengineering: Research results from the Faculty of Health Sciences
title_sort Biotechnology and Bioengineering: Research results from the Faculty of Health Sciences
dc.creator.fl_str_mv Galvis Marín, Juan Camilo
Celis Ramírez, Adriana Marcela
Sepúlveda-Arias, Juan Carlos
García Castro, Giovanni
González Colonia, Luz Victoria
Giraldo Montoya, Ángela María
Gómez González, José Fernando
Cabrales Vega, Rodolfo Adrián
Chica Builes, Juan Fernando
Melchor-Moncada, Jhon Jairo
Vasquez, Santiago
Orozco, Lina M
Veloza, Luz Angela
Aguilar, Enrique
Sepúlveda-Arias, Juan C
dc.contributor.author.none.fl_str_mv Galvis Marín, Juan Camilo
Celis Ramírez, Adriana Marcela
Sepúlveda-Arias, Juan Carlos
García Castro, Giovanni
González Colonia, Luz Victoria
Giraldo Montoya, Ángela María
Gómez González, José Fernando
Cabrales Vega, Rodolfo Adrián
Chica Builes, Juan Fernando
Melchor-Moncada, Jhon Jairo
Vasquez, Santiago
Orozco, Lina M
Veloza, Luz Angela
Aguilar, Enrique
Sepúlveda-Arias, Juan C
dc.subject.armarc.none.fl_str_mv Biotecnología - Investigaciones
Biotecnología agrícola
Ingeniería agrícola
topic Biotecnología - Investigaciones
Biotecnología agrícola
Ingeniería agrícola
Biotecnología aplicada
Bioingeniería
Microbiología
Inmunología
Farmacología
Salud pública
dc.subject.proposal.none.fl_str_mv Biotecnología aplicada
Bioingeniería
Microbiología
Inmunología
Farmacología
Salud pública
description The book titled “Biotechnology and Bioengineering: Research Results from the Faculty of Health Sciences” brings together a collection of research studies that highlight the advancement of these disciplines in the health field. Each chapter addresses fundamental and applied topics aimed at solving contemporary problems through science and innovation. The first topic, “Characterization of Antifungal Resistance in Colombian Isolates of Malassezia spp.”, explores the resistance mechanisms of these microorganisms, which are common pathogens in various dermatological conditions. This study has a direct impact on improving therapeutic treatments for fungal infections, particularly in the Colombian context.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-20T14:12:23Z
dc.date.available.none.fl_str_mv 2024-09-20T14:12:23Z
dc.date.issued.none.fl_str_mv 2024
dc.type.none.fl_str_mv Libro
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2f33
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/book
format http://purl.org/coar/resource_type/c_2f33
status_str acceptedVersion
dc.identifier.isbn.none.fl_str_mv 978-958-722-903-5
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11059/15301
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Pereira
dc.identifier.reponame.none.fl_str_mv Repositorio Universidad Tecnológica de Pereira
dc.identifier.repourl.none.fl_str_mv https://repositorio.utp.edu.co/home
identifier_str_mv 978-958-722-903-5
Universidad Tecnológica de Pereira
Repositorio Universidad Tecnológica de Pereira
url https://hdl.handle.net/11059/15301
https://repositorio.utp.edu.co/home
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Bach, E., Sant’Anna, V., Daroit, D. J., Corrêa, A. P. F., Segalin, J., & Brandelli, A. (2012). Production, one-step purification, and characterization of a keratinolytic protease from Serratia marcescens P3. Process Biochemistry, 47(12), 2455–2462. https://doi.org/10.1016/j. procbio.2012.10.007
Badhe, R. V, Nanda, R. K., Kulkarni, M. B., Bhujbal, M. N., Patil, P. S., & Badhe, S. R. (2009). Media optimization studies for Serratiopeptidase production from Serratia marcescens ATCC 13880. Hindustan Antibiotics Bulletin, 51(1–4), 17–23.
Baig, M. I., Ingole, P. G., Choi, W. K., Park, S. R., Kang, E. C., & Lee, H. K. (2016). Development of carboxylated TiO2 incorporated thin film nanocomposite hollow fiber membranes for flue gas dehydration. Journal of Membrane Science, 514, 622–635. https://doi.org/10.1016/j. memsci.2016.05.017
Bhargavi, P. L., & Prakasham, R. S. (2017). Agro-industrial wastes utilization for the generation of fibrinolytic metalloprotease by Serratia marcescens RSPB11. Biocatalysis and Agricultural Biotechnology, 9(October 2016), 201–208. https://doi.org/10.1016/j.bcab.2016.11.008
Bié, J., Sepodes, B., Fernandes, P. C. B., & Ribeiro, M. H. L. (2022). Enzyme Immobilization and Co-Immobilization: Main Framework, Advances and Some Applications. Processes, 10(3), 494. https://doi. org/10.3390/pr10030494
Bond, J. S. (2019). Proteases: History, discovery, and roles in health and disease. Journal of Biological Chemistry, 294(5), 1643–1651. https:// doi.org/10.1074/jbc.TM118.004156
Coêlho, D. F., Saturnino, T. P., Fernandes, F. F., Mazzola, P. G., Silveira, E., & Tambourgi, E. B. (2016). Azocasein substrate for determination of proteolytic activity: Reexamining a traditional method using bromelain samples. BioMed Research International, 2016(10.1155/2016/8409183),
Culp, E., & Wright, G. D. (2017). Bacterial proteases, untapped antimicrobial drug targets. The Journal of Antibiotics, 70(4), 366–377. https://doi.org/10.1038/ja.2016.138
Datta, S., & Christena, L. R. (2013). Enzyme immobilization : an overview on techniques and support materials. Biotech, 3, 1–9. https://doi. org/10.1007/s13205-012-0071-7
Dhivya Pushpa, M., Sanclemente Crespo, M., Cristopher, M. M., Karthick, P., Sridharan, M., Sanjeeviraja, C., & Jeyadheepan, K. (2019). Influence of pyrolytic temperature on optoelectronic properties and the energy harvesting applications of high pressure TiO2 thin films. Vacuum, 161, 81–91. https://doi.org/10.1016/j.vacuum.2018.12.023
Guisan, J. M., Fernandez-Lorente, G., Rocha-Martin, J., & Moreno-Gamero, D. (2022). Enzyme immobilization strategies for the design of robust and efficient biocatalysts. Current Opinion in Green and Sustainable Chemistry, 35, 100593. https://doi.org/10.1016/j.cogsc.2022.100593
Guo, H., Lei, B., Yu, J., Chen, Y., & Qian, J. (2021). Immobilization of lipase by dialdehyde cellulose crosslinked magnetic nanoparticles. International Journal of Biological Macromolecules, 185(April), 287– 296. https://doi.org/10.1016/j.ijbiomac.2021.06.073
Hasanzadeh Kafshgari, M., & Goldmann, W. H. (2020). Insights into Theranostic Properties of Titanium Dioxide for Nanomedicine. NanoMicro Letters, 12(1), 22. https://doi.org/10.1007/s40820-019-0362-1
Hosseinzadeh, S. A., Valizadeh, V., Rouhani, M., Mirkazemi, S., Azizi, M., Norouzian, D., & Ahangari Cohan, R. (2022). Novel serratiopeptidase exhibits different affinities to the substrates and inhibitors. Chemical Biology & Drug Design, 100(4), 553–563. https://doi.org/10.1111/ cbdd.14105
Huang, B., Wang, X., Fang, H., Jiang, S., & Hou, H. (2019). Mechanically strong sulfonated polybenzimidazole PEMs with enhanced proton conductivity. Materials Letters, 234, 354–356. https://doi. org/10.1016/j.matlet.2018.09.131
Jadhav, S. B., Shah, N., Rathi, A., Rathi, V., & Rathi, A. (2020). Serratiopeptidase: Insights into the therapeutic applications. Biotechnology Reports, 28, e00544. https://doi.org/10.1016/j. btre.2020.e00544
Jiang, T., Liu, C., Xu, X., He, B., & Mo, R. (2021). Formation Mechanism and Biomedical Applications of Protease-Manipulated Peptide Assemblies. Frontiers in Bioengineering and Biotechnology, 9. https:// doi.org/10.3389/fbioe.2021.598050
Kazenwadel, F., Wagner, H., Rapp, B. E., & Franzreb, M. (2015). Optimization of enzyme immobilization on magnetic microparticles using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) as a crosslinking agent. Analytical Methods, 7(24), 10291–10298. https:// doi.org/10.1039/c5ay02670a
Khan, M. F., Kundu, D., Hazra, C., & Patra, S. (2019). A strategic approach of enzyme engineering by attribute ranking and enzyme immobilization on zinc oxide nanoparticles to attain thermostability in mesophilic Bacillus subtilis lipase for detergent formulation. International Journal of Biological Macromolecules, 136, 66–82. https://doi.org/10.1016/j. ijbiomac.2019.06.042
Kim, H. S., Golyshin, P. N., & Timmis, K. N. (2007). Characterization and role of a metalloprotease induced by chitin in Serratia sp. KCK. Journal of Industrial Microbiology & Biotechnology, 34(11), 715–721. https://doi.org/10.1007/s10295-007-0245-1
Kolaei, M., Tayebi, M., Masoumi, Z., Tayyebi, A., & Lee, B. K. (2022). Optimal growth of sodium titanate nanoflower on TiO2 thin film for the fabrication of a novel Ti/TiO2/Na2Ti3O7 photoanode with excellent stability. Journal of Alloys and Compounds, 913, 165337. https://doi.org/10.1016/j.jallcom.2022.165337
Koul, D., Chander, D., Manhas, R. S., & Chaubey, A. (2021). Isolation and Characterization of Serratiopeptidase Producing Bacteria from Mulberry Phyllosphere. Current Microbiology, 78(1), 351–357. https:// doi.org/10.1007/s00284-020-02280-0
Kumar, S., Jana, A. K., Dhamija, I., Singla, Y., & Maiti, M. (2013). Preparation, characterization and targeted delivery of serratiopeptidase immobilized on amino-functionalized magnetic nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 85(3 PART A), 413–426. https://doi.org/10.1016/j.ejpb.2013.06.019
Li, Q., Yi, L., & Marek, P. (2013). Commercial proteases: present and future. FEBS Lett, 587(8), 1155–1163. https://doi.org/10.1016/j. febslet.2012.12.019
Mobeen Amanulla, A., & Sundaram, R. (2019). Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications. Materials Today: Proceedings, 8, 323–331. https://doi.org/https://doi.org/10.1016/j.matpr.2019.02.118
Moore, P. A., & Kery, V. (2009). High-Throughput Protein Concentration and Buffer Exchange: Comparison of Ultrafiltration and Ammonium Sulfate Precipitation. In High Throughput Protein Expression and Purification (pp. 309–322). Humana Press. https://doi.org/10.1007/978- 1-59745-196-3
Nair, S. R., & C, S. Devi. (2022). Serratiopeptidase: An integrated View of Multifaceted Therapeutic Enzyme. Biomolecules, 12(10), 1468. https://doi.org/10.3390/biom12101468
Nemiwal, M., Zhang, T. C., & Kumar, D. (2022). Enzyme immobilized nanomaterials as electrochemical biosensors for detection of biomolecules. Enzyme and Microbial Technology, 156(January), 110006. https://doi.org/10.1016/j.enzmictec.2022.110006
Prabhu, R., Jeevananda, T., & Mohan, N. (2019). Spectral and thermal studies on polyaniline-titanium dioxide nanocomposites by inverted emulsion techniques. Materials Today: Proceedings, 27, 2164–2168. https://doi.org/10.1016/j.matpr.2019.09.088
Raghav, R., & Srivastava, S. (2016). Immobilization strategy for enhancing sensitivity of immunosensors: L-Asparagine-AuNPs as a promising alternative of EDC-NHS activated citrate-AuNPs for antibody immobilization. Biosensors and Bioelectronics, 78, 396–403. https:// doi.org/10.1016/j.bios.2015.11.066
Rajaeian, B., Heitz, A., Tade, M. O., & Liu, S. (2015). Improved separation and antifouling performance of PVA thin film nanocomposite membranes incorporated with carboxylated TiO2 nanoparticles. Journal of Membrane Science, 485, 48–59. https://doi.org/10.1016/j. memsci.2015.03.009
Schratter, P. (2004). Purification and Concentration by Ultrafiltration. In Protein Purification Protocols (Vol. 244, pp. 101–116). Humana Press. https://doi.org/10.1385/1-59259-655-X:101
Sharma, C., Jha, N. K., Meeran, M. F. N., Patil, C. R., Goyal, S. N., & Ojha, S. (2021). Serratiopeptidase, A Serine Protease Anti-Inflammatory, Fibrinolytic, and Mucolytic Drug, Can Be a Useful Adjuvant for Management in COVID-19. Frontiers in Pharmacology, 12. https:// doi.org/10.3389/fphar.2021.603997
Tang, Z., He, H., Zhu, L., Liu, Z., Yang, J., Qin, G., Wu, J., Tang, Y., Zhang, D., Chen, Q., & Zheng, J. (2022). A General Protein Unfolding‐Chemical Coupling Strategy for Pure Protein Hydrogels with Mechanically Strong and Multifunctional Properties. Advanced Science, 9(5), 2102557. https://doi.org/10.1002/advs.202102557
Vélez-Gómez, J. M., Melchor-Moncada, J. J., Veloza, L. A., & Sepúlveda-Arias, J. C. (2019). Purification and characterization of a metalloprotease produced by the C8 isolate of Serratia marcescens using silkworm pupae or casein as a protein source. International Journal of Biological Macromolecules, 135, 97–105. https://doi. org/10.1016/j.ijbiomac.2019.05.122
Wickramathilaka, M. P., & Tao, B. Y. (2019). Characterization of covalent crosslinking strategies for synthesizing DNA-based bioconjugates. Journal of Biological Engineering, 13(1), 63. https://doi.org/10.1186/ s13036-019-0191-2
Xia, N., Xing, Y., Wang, G., Feng, Q., Chen, Q., Feng, H., Sun, X., & Liu, L. (2013). Probing of EDC/NHSS-Mediated Covalent Coupling Reaction by the Immobilization of Electrochemically Active Biomolecules. In Int. J. Electrochem. Sci (Vol. 8). www.electrochemsci.org
Yaashikaa, P. R., Devi, M. K., & Kumar, P. S. (2022). Advances in the application of immobilized enzyme for the remediation of hazardous pollutant: A review. Chemosphere, 299(March), 134390. https://doi. org/10.1016/j.chemosphere.2022.134390
Ziental, D., Czarczynska-Goslinska, B., Mlynarczyk, D. T., GlowackaSobotta, A., Stanisz, B., Goslinski, T., & Sobotta, L. (2020). Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials, 10(2), 387. https://doi.org/10.3390/nano10020387
Zucca, P., & Sanjust, E. (2014). Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms. Molecules, 19(9), 14139–14194. https://doi.org/10.3390/molecules190914139
al-Sweih, N., Ahmad, S., Joseph, L., Khan, S., and Khan, Z. (2014). Malassezia pachydermatis fungemia in a preterm neonate resistant to fluconazole and flucytosine. Medical Mycology Case Reports, 5, 9-11. doi: 10.1016/j.mmcr.2014.04.004
Bumroongthai, K., Chetanachan, P., Niyomtham, W., Yurayart, C., and Prapasarakul, N. (2016). Biofilm production and antifungal susceptibility of co-cultured Malassezia pachydermatis and Candida parapsilosis isolated from canine seborrheic dermatitis. Medical Mycology, 54(5), 544-549. doi: 10.1093/mmy/myw002
Cafarchia, C., Figueredo, L. A., Iatta, R., Colao, V., Montagna, M. T., and Otranto, D. (2012). In vitro evaluation of Malassezia pachydermatis susceptibility to azole compounds using E-test and CLSI microdilution methods. Medical Mycology, 50(8), 795-801. doi: 10.3109/13693786.2012.674219
Celis, A. M., Vos, A. M., Triana, S., Medina, C. A., Escobar, N., Restrepo, S., et al. (2017). Highly efficient transformation system for Malassezia furfur and Malassezia pachydermatis using Agrobacterium tumefaciens-mediated transformation. Journal of Microbiological Methods, 134, 1-6. doi: 10.1016/j.mimet.2017.01.001
Chen, I. L., Chiu, N. C., Chi, H., Hsu, C. H., Chang, J. H., Huang, D. T., and Huang, F. Y. (2017). Changing of bloodstream infections in a medical center neonatal intensive care unit. Journal of Microbiology, Immunology and Infection, 50(4), 514-520. doi: 10.1016/j. jmii.2015.08.023
Chen, S. C., Perfect, J., Colombo, A. L., Cornely, O. A., Groll, A. H., Seidel, D., et al. (2021). Global guideline for the diagnosis and management of rare yeast infections: an initiative of the ECMM in cooperation with ISHAM and ASM. The Lancet Infectious Diseases, 21(12), 375-386. doi: 10.1016/S1473-3099(21)00203-6
CLSI. (2008). Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved standard-third edition. CLSI document M27-A3. Clinical and Laboratory Standards Institute, 1-25.
Dönmez, Y., Akhmetova, L., İşeri, Ö. D., Kars, M. D., and Gündüz, U. (2011). Effect of MDR modulators verapamil and promethazine on gene expression levels of MDR1 and MRP1 in doxorubicin-resistant MCF-7 cells. Cancer chemotherapy and pharmacology, 67(4), 823- 828. doi: 10.1007/s00280-010-1385-y
Ehemann, K., Mantilla, M. J., Mora, F., Rios, A., Torres, M., and Celis, A. M. (2022). Many ways, one microorganism: several approaches to study Malassezia in interactions with model hosts. PLoS Pathogens, 18(9), e1010784. doi: 10.1371/journal.ppat.1010784
Figueredo, L. A., Cafarchia, C., and Otranto, D. (2013). Antifungal susceptibility of Malassezia pachydermatis biofilm. Medical Mycology, 51(8), 863-867. doi: 10.3109/13693786.2013.805440
Gaitanis, G., Velegraki, A., Frangoulis, E., Mitroussia, A., Tsigonia, A., Tzimogianni, A., et al. (2002). Identification of Malassezia species from patient skin scales by PCR-RFLP. Clinical Microbiology and Infection, 8(3), 162-173. doi: 10.1046/j.1469-0691.2002.00383.x
Galvis, J. C., and Borda, F. (2016). Infecciones zoonóticas por levaduras del género Malassezia: una revisión. Revista U.D.C.A Actualidad & Divulgación Científica, 19(2), 381-393. Recuperado de http://www. scielo.org.co/pdf/rudca/v19n2/v19n2a15.pdf
Galvis, J. C., Rodríguez, M. X., Pulido, A., Castañeda, R., Celis A. M., and Linares, M. Y. (2017). Actividad antifúngica in vitro de azoles y anfotericina B frente a Malassezia furfur por el método de microdilución M27-A3 del CLSI y Etest®. Revista Iberoamericana de Micología, 34(2), 89-93. doi: 10.1016/j.riam.2016.05.004
Galvis, J. C., Borda, F., and Gutiérrez, A. J. (2018). Physiological and molecular characterization of Malassezia pachydermatis reveals no differences between canines and their owners. Open Journal of Veterinary Medicine, 8, 87-105. doi: 10.4236/ojvm.2018.87010
Galvis, J., Giraldo, B., Martínez, J., and Echeverri, S. (2021). Fungemia por Malassezia sympodialis en una Unidad de Cuidados Intensivos Neonatal de Colombia. Infectio, 25(2): 130-134. doi: 10.22354/ in.v25i2.931
Hernández, J. J. (2005). Caracterización molecular de especies del género Malassezia (Tesis doctoral). Universidad Autónoma de Barcelona, España
Iatta, R., Puttilli, M. R., Immediato, D., Otranto, D., and Cafarchia, C. (2017). The role of drug efflux pumps in Malassezia pachydermatis and Malassezia furfur defence against azoles. Mycoses, 60(3), 178- 182. doi: 10.1111/myc.12577
Iwaki, K., Sakaeda, T., Kakumoto, M., Nakamura, T., Komoto, C., Okamura, N., Nishiguchi, K., Shiraki, T., Horinouchi, M., and Okumura, K. (2006). Haloperidol is an inhibitor but not substrate for MDR1/Pglycoprotein. The Journal of pharmacy and pharmacology, 58(12), 1617-1622. doi: 10.1211/jpp.58.12.0008
Kano, R., Yokoi, S., Kariya, N., Oshimo, K., and Kamata, H. (2019). Multiazole-resistant strain of Malassezia pachydermatis isolated from a canine Malassezia dermatitis. Medical Mycology, 57(3), 346-350. doi: 10.1093/mmy/myy035
Mirhendi, H., Makimura, K., Zomorodian, K., Yamada, T., Sugita, T., and Yamaguchi, H. (2005). A simple PCR-RFLP method for identification and differentiation of 11 Malassezia species. Journal of Microbiological Methods, 61(2), 281-284. doi: 10.1016/j.mimet.2004.11.016
Peano, A., Johnson, E., Chiavassa, E., Tizzani, P., Guillot, J., and Pasquetti, M. (2020). Antifungal resistance regarding Malassezia pachydermatis: where are we now? Journal of Fungi, 6(2), 1-26. doi: 10.3390/ jof6020093
Pierce, C. G., Uppuluri, P., Tristan, A. R., Wormley, F. L., Mowat, E., Ramage, G., and Lopez, J. L. (2008). A simple and reproducible 96 well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nature Protocols, 3(9): 1494-1500. doi: 10.1038/nport.2008.141
Rincón, S., Celis, A., Sopó, L., Motta, A., and Cepero, M. C. (2005). Malassezia yeast species isolated from patients with dermatologic lesions. Biomedica, 25(2), 189-195. Recuperado de http://www.scielo. org.co/pdf/bio/v25n2/v25n2a05.pdf
Schlemmer, K. B., Jesus, F. P., Zanette, R. A., Zimmermann, C. E., Lautert, C., Alves, S. H., and Santurio, J. M. (2014). Sequential exposure of Malassezia pachydermatis to azoles: enhanced or decreased activity? Veterinary Microbiology, 171(1-2), 255-256. doi: 10.1016/j. vetmic.2014.03.034
Tamura, K., Stecher, G., and Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution, 38:3022-3027. doi: 10.1093/molbev/msab120
Theleen, B., Cafarchia, C., Gaitanis, G., Bassukas, I. D., Boekhout, T., and Dawson, T. L. (2018). Malassezia ecology, pathophysiology and treatment. Medical Mycology, 56(1), 10-25. doi: 10.1093/mmy/myx134
Velegraki, A., Cafarchia, C., Gaitanis, G., Iatta, R., and Boekhout, T. (2015). Malassezia infections in humans and animals: pathophysiology, detection and treatment. PLoS Pathogens, 11(1), 1-6. doi: 10.1371/ journal.ppat.1004523
Wu, G., Zhao, H., Li, C., Rajapakse, M. P., Wong, W. C., Xu, J., et al. (2015). Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology and niche adaptation on human skin. PLoS Genetics, 11(11), 1-26. doi: 10.1371/journal.pgen.100561
adelman D. Thousands Of Lives Could Be Saved In The US During The COVID-19 Pandemic If States Exchanged Ventilators [published online ahead of print, 2020 Apr 30] Health Aff (Millwood). 2020 DOI: 10.1377/hlthaff.2020.00505.
Agencia Española de Medicamentos y Productos Sanitarios Ministerio de Sanidad. Información sobre prototipos de respiradores. Pruebas de seguridad y requisitos de investigación clínica. 2020.
Borges AM, Ferrari RS, Thomaz LDGR, Ulbrich JM, Félix EA, Silvello D, Silvello, D, Andrade, CF. Challenges and perspectives in porcine model of acute lung injury using oleic acid. Pulm Pharmacol Ther 2019;59. DOI: 10.1016/j.pupt.2019.101837
Cinesi Gómez C., Peñuelas Rodríguez Ó., Luján Torné M., Egea Santaolalla C., Masa Jiménez J.F., García Fernández J. Clinical Consensus recommendations Regarding Non-Invasive Respiratory Support in the Adult Patient with Acute Bronconeumol. Respiratory Failure Secondary to SARS-CoV-2 infection. Arch 2020; S0300–2896:30083– 30091. DOI: 10.1016/j.arbres.2020.03.005.
Gómez FA, Ballesteros LE. Morphologic expression of the left coronary artery in pigs. An approach in relation to human heart. 2014 AprJun;29(2):214-20. DOI: 10.5935/1678-9741.201400270
Instituto nacional de salud COVID-19 Colombia - casos en línea, 2020. Tomado de: https://www.ins.gov.co/Noticias/Paginas/Coronavirus.aspx
Lazo Perez J. Comparación del efecto de profol o sevoflurano sobre la lesión histológica, respuesta inflamatoria y hemodinámica hepática en un modelo porcino de “Small for flow Sydrome. Universidad Complutense de Madrid. 2020.
Liang W.H., Guan W.J., Li C.C., Li Y.M., Liang H.R., Zhao Y. Clinical characteristics and outcomes of hospitalised patients with COVID-19 treated in Hubei (epicenter) and outside Hubei (non-epicenter): A Nationwide Analysis of China. Eur Respir J. 2020:2000562. DOI: 10.1183/13993003.00562-2020.
Lyu H, John M, Burkland D, Greet B, Post A, Babakhani A, Razavi, M. Synchronized Biventricular Heart Pacing in a Closed-chest Porcine Model based on Wirelessly Powered Leadless Pacemakers. Sci Rep 2020;10(1). DOI: 10.1038/s41598-020-59017-z
Marchesi S, Hedenstierna G, Hata A, Feinstein R, Larsson A, Larsson AO, Lipcsey, M. Effect of mechanical ventilation versus spontaneous breathing on abdominal edema and inflammation in ARDS: An experimental porcine model. BMC Pulm Med 2020;20(1). DOI: 10.1186/s12890-020-1138-6
Martišienė I, Karčiauskas D, Navalinskas A, Mačianskienė R, Kučinskas A, Treinys R, Grigalevičiūtė, R, Zigmantaitė, V, Ralienė, L, Benetis R, Jurevičius J. Optical mapping of the pig heart in situ under artificial blood circulation. Sci Rep 2020;10(1). DOI: 10.1038/s41598-020- 65464-5
Peñaloza-Ramírez A, Suárez-Correa J, Báez-Blanco J, Sabogal-Gómez C, Kuan-Casas H, Sánchez-Pignalosa C, Aponte-Ordóñez P. In vivo experience with peroral endoscopic myotomy: An essential activity for developing the technique in humans. Revista de Gastroenterología de México Volume 83, Issue 2, April–June 2018, Pages 86-90 DOI: 10.1016/j.rgmx.2017.04.0033
Quijano Blanco Y. Caracterización de las arterias coronarias en corazón de porcino como modelo anatómico didáctico en estudiantes del área de la salud. Morfolia, Volume 12, Issue 1, p. 56 - 74, ene. 2020.
Ramon Farré, Manel Puig-Domingo, Pilar Ricart, Josep M. Nicolás, Ventiladores mecánicos de emergencia para la COVID-19, Archivos de Bronconeumología, Volume 56, Supplement 2, 2020, Pages 7-8, DOI: 10.1016/j.arbres.2020.05.012.
Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS.A. cute Respiratory Distress Syndrome. The Berlin Definition., JAMA 2012; 307 (23): 2526-2533.
Rodrigues M, Silva A.C, Águas A.P. Grande N.R. The coronary circulation of the pig heart: comparison with the human heart. Eur J Anat, 9 (2): 67-87 (2005).
Sáenz Medina J, Asuero de Lis M. S., Galindo Alvarez J., Villafruela Sanz J., Correa C, Cuevas Sánchez B., Linares Quevedo A. I., Páez Borda A., Pascual Santos J. Modificaciones de los parámetros hemodinámicos y de los distintos flujos vasculares periféricos en modelo experimental porcino de nefrectomía laparoscópica. Arch. Esp. Urol., 60, 5 (501-518), 2007
Truog R.D., Mitchell C., Daley G.Q. The Toughest Triage - Allocating Ventilators in a Pandemic. N Engl J Med. 2020;382: 1973–1975. DOI:10.1056/NEJMp2005689.
Wax R.S. Directives concrétes à l’intention des equipes de soins intensifs et d’anesthe’siologie prenant soin de patients atteints du coronavirus 2019 - nCoV. 2020. Can J Anesth.
Wei-jie Guan, Z y N. Clinical characteristics of coronavirus disease 2019 in China. 2020. The New england journal of medicine. DOI: 10.1056/ NEJMoa2002032
Whittle J.S., Pavlov I., Sacchetti A.D., Atwood C., Rosenberg M.S. Respiratory support for adult patients with COVID-19. J Am Coll Emerg Physicians Open. 2020:10. doi: 10.1002/emp2.12071
World Health Organization. Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel novel coronavirus (2019-nCoV), 2020. Geneva Switzerland - January 30, 2020.
Wu Z, McGoogan JM. Características y lecciones importantes sobre el en China: Resumen de un informe de 72.324 casos elaborado por el Centro de Control y Prevención de enfermedades de China. JAMA, 24 de febrero de 2020. DOI: 10.1001/jama.2014.6368. brote de enfermedad por coronavirus 2019 (COVID-19) ocurrido
Xu J, Yu X, Zhang L, Fu Y, Jin K, Yin L, Yu S, Liu D. Modified volumetric capnography-derived parameter: A potentially stable indicator in monitoring cardiopulmonary resuscitation efficacy in a porcine model. Resuscitation 2020; 150:94-101. DOI: 10.1016/j. resuscitation.2020.02.039
dc.rights.license.none.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 90 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
PDF
dc.publisher.none.fl_str_mv Universidad Tecnológica de Pereira
dc.publisher.place.none.fl_str_mv Pereira
publisher.none.fl_str_mv Universidad Tecnológica de Pereira
institution Universidad Tecnológica de Pereira
bitstream.url.fl_str_mv https://repositorio.utp.edu.co/bitstreams/683f9994-545f-4f2b-8def-9760064e59b6/download
https://repositorio.utp.edu.co/bitstreams/ff536960-a953-4d67-acae-a5b3524d1897/download
https://repositorio.utp.edu.co/bitstreams/01a25166-25fb-4621-8fef-2d4c59d5b7cf/download
https://repositorio.utp.edu.co/bitstreams/c2de27f8-a983-42f5-902a-601f9be251a3/download
https://repositorio.utp.edu.co/bitstreams/937903fe-e5c8-40c6-a8e8-a669e314b05d/download
bitstream.checksum.fl_str_mv 81bd2bf38beb34a24e53daf40a0c7bd7
2b7c55c2ced28344bfedd67c0dc20519
a9f6b27c2b33f919259eaee2358637bf
39289437b0b647662bad1733089b5265
c877f4c7fb89136c9b88dcd39893def7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica de Pereira
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1812205298345050112
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)Manifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de la Ley 23 de 1982. En concordancia suscribo (suscribimos) este documento en el momento mismo que hago (hacemos) entrega de mi (nuestra) OBRA a la Biblioteca “Jorge Roa Martínez” de la Universidad Tecnológica de Pereira. Manifiesto (manifestamos) que la OBRA objeto de la presente autorizacióhttps://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessGalvis Marín, Juan Camilo Celis Ramírez, Adriana MarcelaSepúlveda-Arias, Juan CarlosGarcía Castro, GiovanniGonzález Colonia, Luz VictoriaGiraldo Montoya, Ángela MaríaGómez González, José FernandoCabrales Vega, Rodolfo AdriánChica Builes, Juan FernandoMelchor-Moncada, Jhon JairoVasquez, SantiagoOrozco, Lina MVeloza, Luz AngelaAguilar, EnriqueSepúlveda-Arias, Juan C2024-09-20T14:12:23Z2024-09-20T14:12:23Z2024978-958-722-903-5https://hdl.handle.net/11059/15301Universidad Tecnológica de PereiraRepositorio Universidad Tecnológica de Pereirahttps://repositorio.utp.edu.co/homeThe book titled “Biotechnology and Bioengineering: Research Results from the Faculty of Health Sciences” brings together a collection of research studies that highlight the advancement of these disciplines in the health field. Each chapter addresses fundamental and applied topics aimed at solving contemporary problems through science and innovation. The first topic, “Characterization of Antifungal Resistance in Colombian Isolates of Malassezia spp.”, explores the resistance mechanisms of these microorganisms, which are common pathogens in various dermatological conditions. This study has a direct impact on improving therapeutic treatments for fungal infections, particularly in the Colombian context.Contents Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 CHAPTER 1 Characterization of antifungal resistance in Colombian isolates of Malassezia spp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2. Materials and methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1. Isolates of Malassezia spp. . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2. Molecular identification. . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3. Susceptibility testing in planktonic cells. . . . . . . . . . . . . . . . 18 2.4. Susceptibility testing in sessile cells. . . . . . . . . . . . . . . . . . . 18 2.5. Susceptibility testing with efflux pump inhibitors. . . . . . . . . 19 2.6. Statistical análisis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3. Results and discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1. Molecular identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4 . Conclusions and perspectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 CHAPTER 2 Prototype mechanical ventilator: validation of a preclinical physiological test in a porcine model. . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2. Materials and methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.1 Porcine model mechanical ventilator test protocol. . . . . . . . 42 3. Results and discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4 . Conclusions and perspectives. . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5. Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 CHAPTER 3 Serratiopeptidase production and immobilization on titanium oxide nanoparticles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2. Materials and methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3. Results and discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4 . Conclusions and perspectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5. Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8090 páginasapplication/pdfPDFengUniversidad Tecnológica de PereiraPereiraBiotechnology and Bioengineering: Research results from the Faculty of Health SciencesLibroinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_2f33Textinfo:eu-repo/semantics/bookBach, E., Sant’Anna, V., Daroit, D. J., Corrêa, A. P. F., Segalin, J., & Brandelli, A. (2012). Production, one-step purification, and characterization of a keratinolytic protease from Serratia marcescens P3. Process Biochemistry, 47(12), 2455–2462. https://doi.org/10.1016/j. procbio.2012.10.007Badhe, R. V, Nanda, R. K., Kulkarni, M. B., Bhujbal, M. N., Patil, P. S., & Badhe, S. R. (2009). Media optimization studies for Serratiopeptidase production from Serratia marcescens ATCC 13880. Hindustan Antibiotics Bulletin, 51(1–4), 17–23.Baig, M. I., Ingole, P. G., Choi, W. K., Park, S. R., Kang, E. C., & Lee, H. K. (2016). Development of carboxylated TiO2 incorporated thin film nanocomposite hollow fiber membranes for flue gas dehydration. Journal of Membrane Science, 514, 622–635. https://doi.org/10.1016/j. memsci.2016.05.017Bhargavi, P. L., & Prakasham, R. S. (2017). Agro-industrial wastes utilization for the generation of fibrinolytic metalloprotease by Serratia marcescens RSPB11. Biocatalysis and Agricultural Biotechnology, 9(October 2016), 201–208. https://doi.org/10.1016/j.bcab.2016.11.008Bié, J., Sepodes, B., Fernandes, P. C. B., & Ribeiro, M. H. L. (2022). Enzyme Immobilization and Co-Immobilization: Main Framework, Advances and Some Applications. Processes, 10(3), 494. https://doi. org/10.3390/pr10030494Bond, J. S. (2019). Proteases: History, discovery, and roles in health and disease. Journal of Biological Chemistry, 294(5), 1643–1651. https:// doi.org/10.1074/jbc.TM118.004156Coêlho, D. F., Saturnino, T. P., Fernandes, F. F., Mazzola, P. G., Silveira, E., & Tambourgi, E. B. (2016). Azocasein substrate for determination of proteolytic activity: Reexamining a traditional method using bromelain samples. BioMed Research International, 2016(10.1155/2016/8409183),Culp, E., & Wright, G. D. (2017). Bacterial proteases, untapped antimicrobial drug targets. The Journal of Antibiotics, 70(4), 366–377. https://doi.org/10.1038/ja.2016.138Datta, S., & Christena, L. R. (2013). Enzyme immobilization : an overview on techniques and support materials. Biotech, 3, 1–9. https://doi. org/10.1007/s13205-012-0071-7Dhivya Pushpa, M., Sanclemente Crespo, M., Cristopher, M. M., Karthick, P., Sridharan, M., Sanjeeviraja, C., & Jeyadheepan, K. (2019). Influence of pyrolytic temperature on optoelectronic properties and the energy harvesting applications of high pressure TiO2 thin films. Vacuum, 161, 81–91. https://doi.org/10.1016/j.vacuum.2018.12.023Guisan, J. M., Fernandez-Lorente, G., Rocha-Martin, J., & Moreno-Gamero, D. (2022). Enzyme immobilization strategies for the design of robust and efficient biocatalysts. Current Opinion in Green and Sustainable Chemistry, 35, 100593. https://doi.org/10.1016/j.cogsc.2022.100593Guo, H., Lei, B., Yu, J., Chen, Y., & Qian, J. (2021). Immobilization of lipase by dialdehyde cellulose crosslinked magnetic nanoparticles. International Journal of Biological Macromolecules, 185(April), 287– 296. https://doi.org/10.1016/j.ijbiomac.2021.06.073Hasanzadeh Kafshgari, M., & Goldmann, W. H. (2020). Insights into Theranostic Properties of Titanium Dioxide for Nanomedicine. NanoMicro Letters, 12(1), 22. https://doi.org/10.1007/s40820-019-0362-1Hosseinzadeh, S. A., Valizadeh, V., Rouhani, M., Mirkazemi, S., Azizi, M., Norouzian, D., & Ahangari Cohan, R. (2022). Novel serratiopeptidase exhibits different affinities to the substrates and inhibitors. Chemical Biology & Drug Design, 100(4), 553–563. https://doi.org/10.1111/ cbdd.14105Huang, B., Wang, X., Fang, H., Jiang, S., & Hou, H. (2019). Mechanically strong sulfonated polybenzimidazole PEMs with enhanced proton conductivity. Materials Letters, 234, 354–356. https://doi. org/10.1016/j.matlet.2018.09.131Jadhav, S. B., Shah, N., Rathi, A., Rathi, V., & Rathi, A. (2020). Serratiopeptidase: Insights into the therapeutic applications. Biotechnology Reports, 28, e00544. https://doi.org/10.1016/j. btre.2020.e00544Jiang, T., Liu, C., Xu, X., He, B., & Mo, R. (2021). Formation Mechanism and Biomedical Applications of Protease-Manipulated Peptide Assemblies. Frontiers in Bioengineering and Biotechnology, 9. https:// doi.org/10.3389/fbioe.2021.598050Kazenwadel, F., Wagner, H., Rapp, B. E., & Franzreb, M. (2015). Optimization of enzyme immobilization on magnetic microparticles using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) as a crosslinking agent. Analytical Methods, 7(24), 10291–10298. https:// doi.org/10.1039/c5ay02670aKhan, M. F., Kundu, D., Hazra, C., & Patra, S. (2019). A strategic approach of enzyme engineering by attribute ranking and enzyme immobilization on zinc oxide nanoparticles to attain thermostability in mesophilic Bacillus subtilis lipase for detergent formulation. International Journal of Biological Macromolecules, 136, 66–82. https://doi.org/10.1016/j. ijbiomac.2019.06.042Kim, H. S., Golyshin, P. N., & Timmis, K. N. (2007). Characterization and role of a metalloprotease induced by chitin in Serratia sp. KCK. Journal of Industrial Microbiology & Biotechnology, 34(11), 715–721. https://doi.org/10.1007/s10295-007-0245-1Kolaei, M., Tayebi, M., Masoumi, Z., Tayyebi, A., & Lee, B. K. (2022). Optimal growth of sodium titanate nanoflower on TiO2 thin film for the fabrication of a novel Ti/TiO2/Na2Ti3O7 photoanode with excellent stability. Journal of Alloys and Compounds, 913, 165337. https://doi.org/10.1016/j.jallcom.2022.165337Koul, D., Chander, D., Manhas, R. S., & Chaubey, A. (2021). Isolation and Characterization of Serratiopeptidase Producing Bacteria from Mulberry Phyllosphere. Current Microbiology, 78(1), 351–357. https:// doi.org/10.1007/s00284-020-02280-0Kumar, S., Jana, A. K., Dhamija, I., Singla, Y., & Maiti, M. (2013). Preparation, characterization and targeted delivery of serratiopeptidase immobilized on amino-functionalized magnetic nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 85(3 PART A), 413–426. https://doi.org/10.1016/j.ejpb.2013.06.019Li, Q., Yi, L., & Marek, P. (2013). Commercial proteases: present and future. FEBS Lett, 587(8), 1155–1163. https://doi.org/10.1016/j. febslet.2012.12.019Mobeen Amanulla, A., & Sundaram, R. (2019). Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications. Materials Today: Proceedings, 8, 323–331. https://doi.org/https://doi.org/10.1016/j.matpr.2019.02.118Moore, P. A., & Kery, V. (2009). High-Throughput Protein Concentration and Buffer Exchange: Comparison of Ultrafiltration and Ammonium Sulfate Precipitation. In High Throughput Protein Expression and Purification (pp. 309–322). Humana Press. https://doi.org/10.1007/978- 1-59745-196-3Nair, S. R., & C, S. Devi. (2022). Serratiopeptidase: An integrated View of Multifaceted Therapeutic Enzyme. Biomolecules, 12(10), 1468. https://doi.org/10.3390/biom12101468Nemiwal, M., Zhang, T. C., & Kumar, D. (2022). Enzyme immobilized nanomaterials as electrochemical biosensors for detection of biomolecules. Enzyme and Microbial Technology, 156(January), 110006. https://doi.org/10.1016/j.enzmictec.2022.110006Prabhu, R., Jeevananda, T., & Mohan, N. (2019). Spectral and thermal studies on polyaniline-titanium dioxide nanocomposites by inverted emulsion techniques. Materials Today: Proceedings, 27, 2164–2168. https://doi.org/10.1016/j.matpr.2019.09.088Raghav, R., & Srivastava, S. (2016). Immobilization strategy for enhancing sensitivity of immunosensors: L-Asparagine-AuNPs as a promising alternative of EDC-NHS activated citrate-AuNPs for antibody immobilization. Biosensors and Bioelectronics, 78, 396–403. https:// doi.org/10.1016/j.bios.2015.11.066Rajaeian, B., Heitz, A., Tade, M. O., & Liu, S. (2015). Improved separation and antifouling performance of PVA thin film nanocomposite membranes incorporated with carboxylated TiO2 nanoparticles. Journal of Membrane Science, 485, 48–59. https://doi.org/10.1016/j. memsci.2015.03.009Schratter, P. (2004). Purification and Concentration by Ultrafiltration. In Protein Purification Protocols (Vol. 244, pp. 101–116). Humana Press. https://doi.org/10.1385/1-59259-655-X:101Sharma, C., Jha, N. K., Meeran, M. F. N., Patil, C. R., Goyal, S. N., & Ojha, S. (2021). Serratiopeptidase, A Serine Protease Anti-Inflammatory, Fibrinolytic, and Mucolytic Drug, Can Be a Useful Adjuvant for Management in COVID-19. Frontiers in Pharmacology, 12. https:// doi.org/10.3389/fphar.2021.603997Tang, Z., He, H., Zhu, L., Liu, Z., Yang, J., Qin, G., Wu, J., Tang, Y., Zhang, D., Chen, Q., & Zheng, J. (2022). A General Protein Unfolding‐Chemical Coupling Strategy for Pure Protein Hydrogels with Mechanically Strong and Multifunctional Properties. Advanced Science, 9(5), 2102557. https://doi.org/10.1002/advs.202102557Vélez-Gómez, J. M., Melchor-Moncada, J. J., Veloza, L. A., & Sepúlveda-Arias, J. C. (2019). Purification and characterization of a metalloprotease produced by the C8 isolate of Serratia marcescens using silkworm pupae or casein as a protein source. International Journal of Biological Macromolecules, 135, 97–105. https://doi. org/10.1016/j.ijbiomac.2019.05.122Wickramathilaka, M. P., & Tao, B. Y. (2019). Characterization of covalent crosslinking strategies for synthesizing DNA-based bioconjugates. Journal of Biological Engineering, 13(1), 63. https://doi.org/10.1186/ s13036-019-0191-2Xia, N., Xing, Y., Wang, G., Feng, Q., Chen, Q., Feng, H., Sun, X., & Liu, L. (2013). Probing of EDC/NHSS-Mediated Covalent Coupling Reaction by the Immobilization of Electrochemically Active Biomolecules. In Int. J. Electrochem. Sci (Vol. 8). www.electrochemsci.orgYaashikaa, P. R., Devi, M. K., & Kumar, P. S. (2022). Advances in the application of immobilized enzyme for the remediation of hazardous pollutant: A review. Chemosphere, 299(March), 134390. https://doi. org/10.1016/j.chemosphere.2022.134390Ziental, D., Czarczynska-Goslinska, B., Mlynarczyk, D. T., GlowackaSobotta, A., Stanisz, B., Goslinski, T., & Sobotta, L. (2020). Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials, 10(2), 387. https://doi.org/10.3390/nano10020387Zucca, P., & Sanjust, E. (2014). Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms. Molecules, 19(9), 14139–14194. https://doi.org/10.3390/molecules190914139al-Sweih, N., Ahmad, S., Joseph, L., Khan, S., and Khan, Z. (2014). Malassezia pachydermatis fungemia in a preterm neonate resistant to fluconazole and flucytosine. Medical Mycology Case Reports, 5, 9-11. doi: 10.1016/j.mmcr.2014.04.004Bumroongthai, K., Chetanachan, P., Niyomtham, W., Yurayart, C., and Prapasarakul, N. (2016). Biofilm production and antifungal susceptibility of co-cultured Malassezia pachydermatis and Candida parapsilosis isolated from canine seborrheic dermatitis. Medical Mycology, 54(5), 544-549. doi: 10.1093/mmy/myw002Cafarchia, C., Figueredo, L. A., Iatta, R., Colao, V., Montagna, M. T., and Otranto, D. (2012). In vitro evaluation of Malassezia pachydermatis susceptibility to azole compounds using E-test and CLSI microdilution methods. Medical Mycology, 50(8), 795-801. doi: 10.3109/13693786.2012.674219Celis, A. M., Vos, A. M., Triana, S., Medina, C. A., Escobar, N., Restrepo, S., et al. (2017). Highly efficient transformation system for Malassezia furfur and Malassezia pachydermatis using Agrobacterium tumefaciens-mediated transformation. Journal of Microbiological Methods, 134, 1-6. doi: 10.1016/j.mimet.2017.01.001Chen, I. L., Chiu, N. C., Chi, H., Hsu, C. H., Chang, J. H., Huang, D. T., and Huang, F. Y. (2017). Changing of bloodstream infections in a medical center neonatal intensive care unit. Journal of Microbiology, Immunology and Infection, 50(4), 514-520. doi: 10.1016/j. jmii.2015.08.023Chen, S. C., Perfect, J., Colombo, A. L., Cornely, O. A., Groll, A. H., Seidel, D., et al. (2021). Global guideline for the diagnosis and management of rare yeast infections: an initiative of the ECMM in cooperation with ISHAM and ASM. The Lancet Infectious Diseases, 21(12), 375-386. doi: 10.1016/S1473-3099(21)00203-6CLSI. (2008). Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved standard-third edition. CLSI document M27-A3. Clinical and Laboratory Standards Institute, 1-25.Dönmez, Y., Akhmetova, L., İşeri, Ö. D., Kars, M. D., and Gündüz, U. (2011). Effect of MDR modulators verapamil and promethazine on gene expression levels of MDR1 and MRP1 in doxorubicin-resistant MCF-7 cells. Cancer chemotherapy and pharmacology, 67(4), 823- 828. doi: 10.1007/s00280-010-1385-yEhemann, K., Mantilla, M. J., Mora, F., Rios, A., Torres, M., and Celis, A. M. (2022). Many ways, one microorganism: several approaches to study Malassezia in interactions with model hosts. PLoS Pathogens, 18(9), e1010784. doi: 10.1371/journal.ppat.1010784Figueredo, L. A., Cafarchia, C., and Otranto, D. (2013). Antifungal susceptibility of Malassezia pachydermatis biofilm. Medical Mycology, 51(8), 863-867. doi: 10.3109/13693786.2013.805440Gaitanis, G., Velegraki, A., Frangoulis, E., Mitroussia, A., Tsigonia, A., Tzimogianni, A., et al. (2002). Identification of Malassezia species from patient skin scales by PCR-RFLP. Clinical Microbiology and Infection, 8(3), 162-173. doi: 10.1046/j.1469-0691.2002.00383.xGalvis, J. C., and Borda, F. (2016). Infecciones zoonóticas por levaduras del género Malassezia: una revisión. Revista U.D.C.A Actualidad & Divulgación Científica, 19(2), 381-393. Recuperado de http://www. scielo.org.co/pdf/rudca/v19n2/v19n2a15.pdfGalvis, J. C., Rodríguez, M. X., Pulido, A., Castañeda, R., Celis A. M., and Linares, M. Y. (2017). Actividad antifúngica in vitro de azoles y anfotericina B frente a Malassezia furfur por el método de microdilución M27-A3 del CLSI y Etest®. Revista Iberoamericana de Micología, 34(2), 89-93. doi: 10.1016/j.riam.2016.05.004Galvis, J. C., Borda, F., and Gutiérrez, A. J. (2018). Physiological and molecular characterization of Malassezia pachydermatis reveals no differences between canines and their owners. Open Journal of Veterinary Medicine, 8, 87-105. doi: 10.4236/ojvm.2018.87010Galvis, J., Giraldo, B., Martínez, J., and Echeverri, S. (2021). Fungemia por Malassezia sympodialis en una Unidad de Cuidados Intensivos Neonatal de Colombia. Infectio, 25(2): 130-134. doi: 10.22354/ in.v25i2.931Hernández, J. J. (2005). Caracterización molecular de especies del género Malassezia (Tesis doctoral). Universidad Autónoma de Barcelona, EspañaIatta, R., Puttilli, M. R., Immediato, D., Otranto, D., and Cafarchia, C. (2017). The role of drug efflux pumps in Malassezia pachydermatis and Malassezia furfur defence against azoles. Mycoses, 60(3), 178- 182. doi: 10.1111/myc.12577Iwaki, K., Sakaeda, T., Kakumoto, M., Nakamura, T., Komoto, C., Okamura, N., Nishiguchi, K., Shiraki, T., Horinouchi, M., and Okumura, K. (2006). Haloperidol is an inhibitor but not substrate for MDR1/Pglycoprotein. The Journal of pharmacy and pharmacology, 58(12), 1617-1622. doi: 10.1211/jpp.58.12.0008Kano, R., Yokoi, S., Kariya, N., Oshimo, K., and Kamata, H. (2019). Multiazole-resistant strain of Malassezia pachydermatis isolated from a canine Malassezia dermatitis. Medical Mycology, 57(3), 346-350. doi: 10.1093/mmy/myy035Mirhendi, H., Makimura, K., Zomorodian, K., Yamada, T., Sugita, T., and Yamaguchi, H. (2005). A simple PCR-RFLP method for identification and differentiation of 11 Malassezia species. Journal of Microbiological Methods, 61(2), 281-284. doi: 10.1016/j.mimet.2004.11.016Peano, A., Johnson, E., Chiavassa, E., Tizzani, P., Guillot, J., and Pasquetti, M. (2020). Antifungal resistance regarding Malassezia pachydermatis: where are we now? Journal of Fungi, 6(2), 1-26. doi: 10.3390/ jof6020093Pierce, C. G., Uppuluri, P., Tristan, A. R., Wormley, F. L., Mowat, E., Ramage, G., and Lopez, J. L. (2008). A simple and reproducible 96 well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nature Protocols, 3(9): 1494-1500. doi: 10.1038/nport.2008.141Rincón, S., Celis, A., Sopó, L., Motta, A., and Cepero, M. C. (2005). Malassezia yeast species isolated from patients with dermatologic lesions. Biomedica, 25(2), 189-195. Recuperado de http://www.scielo. org.co/pdf/bio/v25n2/v25n2a05.pdfSchlemmer, K. B., Jesus, F. P., Zanette, R. A., Zimmermann, C. E., Lautert, C., Alves, S. H., and Santurio, J. M. (2014). Sequential exposure of Malassezia pachydermatis to azoles: enhanced or decreased activity? Veterinary Microbiology, 171(1-2), 255-256. doi: 10.1016/j. vetmic.2014.03.034Tamura, K., Stecher, G., and Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution, 38:3022-3027. doi: 10.1093/molbev/msab120Theleen, B., Cafarchia, C., Gaitanis, G., Bassukas, I. D., Boekhout, T., and Dawson, T. L. (2018). Malassezia ecology, pathophysiology and treatment. Medical Mycology, 56(1), 10-25. doi: 10.1093/mmy/myx134Velegraki, A., Cafarchia, C., Gaitanis, G., Iatta, R., and Boekhout, T. (2015). Malassezia infections in humans and animals: pathophysiology, detection and treatment. PLoS Pathogens, 11(1), 1-6. doi: 10.1371/ journal.ppat.1004523Wu, G., Zhao, H., Li, C., Rajapakse, M. P., Wong, W. C., Xu, J., et al. (2015). Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology and niche adaptation on human skin. PLoS Genetics, 11(11), 1-26. doi: 10.1371/journal.pgen.100561adelman D. Thousands Of Lives Could Be Saved In The US During The COVID-19 Pandemic If States Exchanged Ventilators [published online ahead of print, 2020 Apr 30] Health Aff (Millwood). 2020 DOI: 10.1377/hlthaff.2020.00505.Agencia Española de Medicamentos y Productos Sanitarios Ministerio de Sanidad. Información sobre prototipos de respiradores. Pruebas de seguridad y requisitos de investigación clínica. 2020.Borges AM, Ferrari RS, Thomaz LDGR, Ulbrich JM, Félix EA, Silvello D, Silvello, D, Andrade, CF. Challenges and perspectives in porcine model of acute lung injury using oleic acid. Pulm Pharmacol Ther 2019;59. DOI: 10.1016/j.pupt.2019.101837Cinesi Gómez C., Peñuelas Rodríguez Ó., Luján Torné M., Egea Santaolalla C., Masa Jiménez J.F., García Fernández J. Clinical Consensus recommendations Regarding Non-Invasive Respiratory Support in the Adult Patient with Acute Bronconeumol. Respiratory Failure Secondary to SARS-CoV-2 infection. Arch 2020; S0300–2896:30083– 30091. DOI: 10.1016/j.arbres.2020.03.005.Gómez FA, Ballesteros LE. Morphologic expression of the left coronary artery in pigs. An approach in relation to human heart. 2014 AprJun;29(2):214-20. DOI: 10.5935/1678-9741.201400270Instituto nacional de salud COVID-19 Colombia - casos en línea, 2020. Tomado de: https://www.ins.gov.co/Noticias/Paginas/Coronavirus.aspxLazo Perez J. Comparación del efecto de profol o sevoflurano sobre la lesión histológica, respuesta inflamatoria y hemodinámica hepática en un modelo porcino de “Small for flow Sydrome. Universidad Complutense de Madrid. 2020.Liang W.H., Guan W.J., Li C.C., Li Y.M., Liang H.R., Zhao Y. Clinical characteristics and outcomes of hospitalised patients with COVID-19 treated in Hubei (epicenter) and outside Hubei (non-epicenter): A Nationwide Analysis of China. Eur Respir J. 2020:2000562. DOI: 10.1183/13993003.00562-2020.Lyu H, John M, Burkland D, Greet B, Post A, Babakhani A, Razavi, M. Synchronized Biventricular Heart Pacing in a Closed-chest Porcine Model based on Wirelessly Powered Leadless Pacemakers. Sci Rep 2020;10(1). DOI: 10.1038/s41598-020-59017-zMarchesi S, Hedenstierna G, Hata A, Feinstein R, Larsson A, Larsson AO, Lipcsey, M. Effect of mechanical ventilation versus spontaneous breathing on abdominal edema and inflammation in ARDS: An experimental porcine model. BMC Pulm Med 2020;20(1). DOI: 10.1186/s12890-020-1138-6Martišienė I, Karčiauskas D, Navalinskas A, Mačianskienė R, Kučinskas A, Treinys R, Grigalevičiūtė, R, Zigmantaitė, V, Ralienė, L, Benetis R, Jurevičius J. Optical mapping of the pig heart in situ under artificial blood circulation. Sci Rep 2020;10(1). DOI: 10.1038/s41598-020- 65464-5Peñaloza-Ramírez A, Suárez-Correa J, Báez-Blanco J, Sabogal-Gómez C, Kuan-Casas H, Sánchez-Pignalosa C, Aponte-Ordóñez P. In vivo experience with peroral endoscopic myotomy: An essential activity for developing the technique in humans. Revista de Gastroenterología de México Volume 83, Issue 2, April–June 2018, Pages 86-90 DOI: 10.1016/j.rgmx.2017.04.0033Quijano Blanco Y. Caracterización de las arterias coronarias en corazón de porcino como modelo anatómico didáctico en estudiantes del área de la salud. Morfolia, Volume 12, Issue 1, p. 56 - 74, ene. 2020.Ramon Farré, Manel Puig-Domingo, Pilar Ricart, Josep M. Nicolás, Ventiladores mecánicos de emergencia para la COVID-19, Archivos de Bronconeumología, Volume 56, Supplement 2, 2020, Pages 7-8, DOI: 10.1016/j.arbres.2020.05.012.Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS.A. cute Respiratory Distress Syndrome. The Berlin Definition., JAMA 2012; 307 (23): 2526-2533.Rodrigues M, Silva A.C, Águas A.P. Grande N.R. The coronary circulation of the pig heart: comparison with the human heart. Eur J Anat, 9 (2): 67-87 (2005).Sáenz Medina J, Asuero de Lis M. S., Galindo Alvarez J., Villafruela Sanz J., Correa C, Cuevas Sánchez B., Linares Quevedo A. I., Páez Borda A., Pascual Santos J. Modificaciones de los parámetros hemodinámicos y de los distintos flujos vasculares periféricos en modelo experimental porcino de nefrectomía laparoscópica. Arch. Esp. Urol., 60, 5 (501-518), 2007Truog R.D., Mitchell C., Daley G.Q. The Toughest Triage - Allocating Ventilators in a Pandemic. N Engl J Med. 2020;382: 1973–1975. DOI:10.1056/NEJMp2005689.Wax R.S. Directives concrétes à l’intention des equipes de soins intensifs et d’anesthe’siologie prenant soin de patients atteints du coronavirus 2019 - nCoV. 2020. Can J Anesth.Wei-jie Guan, Z y N. Clinical characteristics of coronavirus disease 2019 in China. 2020. The New england journal of medicine. DOI: 10.1056/ NEJMoa2002032Whittle J.S., Pavlov I., Sacchetti A.D., Atwood C., Rosenberg M.S. Respiratory support for adult patients with COVID-19. J Am Coll Emerg Physicians Open. 2020:10. doi: 10.1002/emp2.12071World Health Organization. Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel novel coronavirus (2019-nCoV), 2020. Geneva Switzerland - January 30, 2020.Wu Z, McGoogan JM. Características y lecciones importantes sobre el en China: Resumen de un informe de 72.324 casos elaborado por el Centro de Control y Prevención de enfermedades de China. JAMA, 24 de febrero de 2020. DOI: 10.1001/jama.2014.6368. brote de enfermedad por coronavirus 2019 (COVID-19) ocurridoXu J, Yu X, Zhang L, Fu Y, Jin K, Yin L, Yu S, Liu D. Modified volumetric capnography-derived parameter: A potentially stable indicator in monitoring cardiopulmonary resuscitation efficacy in a porcine model. Resuscitation 2020; 150:94-101. DOI: 10.1016/j. resuscitation.2020.02.039Biotecnología - InvestigacionesBiotecnología agrícolaIngeniería agrícolaBiotecnología aplicadaBioingenieríaMicrobiologíaInmunologíaFarmacologíaSalud públicaPublicationORIGINALBiotechnology and Bioengineering- Research results from the Faculty of Health Sciences (1).pdfapplication/pdf3814732https://repositorio.utp.edu.co/bitstreams/683f9994-545f-4f2b-8def-9760064e59b6/download81bd2bf38beb34a24e53daf40a0c7bd7MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-864https://repositorio.utp.edu.co/bitstreams/ff536960-a953-4d67-acae-a5b3524d1897/download2b7c55c2ced28344bfedd67c0dc20519MD52THUMBNAILImagen1.pngimage/png621784https://repositorio.utp.edu.co/bitstreams/01a25166-25fb-4621-8fef-2d4c59d5b7cf/downloada9f6b27c2b33f919259eaee2358637bfMD56Biotechnology and Bioengineering- Research results from the Faculty of Health Sciences (1).pdf.jpgBiotechnology and Bioengineering- Research results from the Faculty of Health Sciences (1).pdf.jpgGenerated Thumbnailimage/jpeg14333https://repositorio.utp.edu.co/bitstreams/c2de27f8-a983-42f5-902a-601f9be251a3/download39289437b0b647662bad1733089b5265MD58TEXTBiotechnology and Bioengineering- Research results from the Faculty of Health Sciences (1).pdf.txtBiotechnology and Bioengineering- Research results from the Faculty of Health Sciences (1).pdf.txtExtracted texttext/plain100796https://repositorio.utp.edu.co/bitstreams/937903fe-e5c8-40c6-a8e8-a669e314b05d/downloadc877f4c7fb89136c9b88dcd39893def7MD5711059/15301oai:repositorio.utp.edu.co:11059/153012024-10-02 04:00:58.534https://creativecommons.org/licenses/by-nc-sa/4.0/Manifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de la Ley 23 de 1982. En concordancia suscribo (suscribimos) este documento en el momento mismo que hago (hacemos) entrega de mi (nuestra) OBRA a la Biblioteca “Jorge Roa Martínez” de la Universidad Tecnológica de Pereira. Manifiesto (manifestamos) que la OBRA objeto de la presente autorizacióopen.accesshttps://repositorio.utp.edu.coRepositorio de la Universidad Tecnológica de Pereirabdigital@metabiblioteca.comVGV4dG8gcXVlIGFwYXJlY2Vyw6EgY3VhbmRvIHZveSBhIGNhcmdhciBhbGdvIGVuIGVzdGEgY29sZWNjacOzbg==