Biotechnology and bioengineering: research results from the Faculty of Health Sciences
The book titled “Biotechnology and Bioengineering: Research Results from the Faculty of Health Sciences” brings together a collection of research studies that highlight the advancement of these disciplines in the health field. Each chapter addresses fundamental and applied topics aimed at solving co...
- Autores:
-
Galvis Marín, Juan Camilo
Celis Ramírez, Adriana Marcela
Sepúlveda-Arias, Juan Carlos
García Castro, Giovanni
González Colonia, Luz Victoria
Giraldo Montoya, Ángela María
Gómez González, José Fernando
Cabrales Vega, Rodolfo Adrián
Chica Builes, Juan Fernando
Melchor-Moncada, Jhon Jairo
Vasquez, Santiago
Orozco, Lina M
Veloza, Luz Angela
Aguilar, Enrique
Sepúlveda-Arias, Juan C
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2024
- Institución:
- Universidad Tecnológica de Pereira
- Repositorio:
- Repositorio Institucional UTP
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utp.edu.co:11059/15301
- Acceso en línea:
- https://hdl.handle.net/11059/15301
https://doi.org/10.22517/9789587229035
https://repositorio.utp.edu.co/home
- Palabra clave:
- Biotecnología - Investigaciones
Biotecnología agrícola
Ingeniería agrícola
Biotecnología aplicada
Bioingeniería
Microbiología
Inmunología
Farmacología
Salud pública
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
id |
UTP2_8da1df73aff62033bed47bfc99bc5f9c |
---|---|
oai_identifier_str |
oai:repositorio.utp.edu.co:11059/15301 |
network_acronym_str |
UTP2 |
network_name_str |
Repositorio Institucional UTP |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Biotechnology and bioengineering: research results from the Faculty of Health Sciences |
title |
Biotechnology and bioengineering: research results from the Faculty of Health Sciences |
spellingShingle |
Biotechnology and bioengineering: research results from the Faculty of Health Sciences Biotecnología - Investigaciones Biotecnología agrícola Ingeniería agrícola Biotecnología aplicada Bioingeniería Microbiología Inmunología Farmacología Salud pública |
title_short |
Biotechnology and bioengineering: research results from the Faculty of Health Sciences |
title_full |
Biotechnology and bioengineering: research results from the Faculty of Health Sciences |
title_fullStr |
Biotechnology and bioengineering: research results from the Faculty of Health Sciences |
title_full_unstemmed |
Biotechnology and bioengineering: research results from the Faculty of Health Sciences |
title_sort |
Biotechnology and bioengineering: research results from the Faculty of Health Sciences |
dc.creator.fl_str_mv |
Galvis Marín, Juan Camilo Celis Ramírez, Adriana Marcela Sepúlveda-Arias, Juan Carlos García Castro, Giovanni González Colonia, Luz Victoria Giraldo Montoya, Ángela María Gómez González, José Fernando Cabrales Vega, Rodolfo Adrián Chica Builes, Juan Fernando Melchor-Moncada, Jhon Jairo Vasquez, Santiago Orozco, Lina M Veloza, Luz Angela Aguilar, Enrique Sepúlveda-Arias, Juan C |
dc.contributor.author.none.fl_str_mv |
Galvis Marín, Juan Camilo Celis Ramírez, Adriana Marcela Sepúlveda-Arias, Juan Carlos García Castro, Giovanni González Colonia, Luz Victoria Giraldo Montoya, Ángela María Gómez González, José Fernando Cabrales Vega, Rodolfo Adrián Chica Builes, Juan Fernando Melchor-Moncada, Jhon Jairo Vasquez, Santiago Orozco, Lina M Veloza, Luz Angela Aguilar, Enrique Sepúlveda-Arias, Juan C |
dc.subject.armarc.none.fl_str_mv |
Biotecnología - Investigaciones Biotecnología agrícola Ingeniería agrícola |
topic |
Biotecnología - Investigaciones Biotecnología agrícola Ingeniería agrícola Biotecnología aplicada Bioingeniería Microbiología Inmunología Farmacología Salud pública |
dc.subject.proposal.none.fl_str_mv |
Biotecnología aplicada Bioingeniería Microbiología Inmunología Farmacología Salud pública |
description |
The book titled “Biotechnology and Bioengineering: Research Results from the Faculty of Health Sciences” brings together a collection of research studies that highlight the advancement of these disciplines in the health field. Each chapter addresses fundamental and applied topics aimed at solving contemporary problems through science and innovation. The first topic, “Characterization of Antifungal Resistance in Colombian Isolates of Malassezia spp.”, explores the resistance mechanisms of these microorganisms, which are common pathogens in various dermatological conditions. This study has a direct impact on improving therapeutic treatments for fungal infections, particularly in the Colombian context. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-09-20T14:12:23Z |
dc.date.available.none.fl_str_mv |
2024-09-20T14:12:23Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.none.fl_str_mv |
Libro |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2f33 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/book |
format |
http://purl.org/coar/resource_type/c_2f33 |
status_str |
acceptedVersion |
dc.identifier.isbn.none.fl_str_mv |
978-958-722-903-5 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11059/15301 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.22517/9789587229035 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Pereira |
dc.identifier.reponame.none.fl_str_mv |
Repositorio Universidad Tecnológica de Pereira |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.utp.edu.co/home |
identifier_str_mv |
978-958-722-903-5 Universidad Tecnológica de Pereira Repositorio Universidad Tecnológica de Pereira |
url |
https://hdl.handle.net/11059/15301 https://doi.org/10.22517/9789587229035 https://repositorio.utp.edu.co/home |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
Bach, E., Sant’Anna, V., Daroit, D. J., Corrêa, A. P. F., Segalin, J., & Brandelli, A. (2012). Production, one-step purification, and characterization of a keratinolytic protease from Serratia marcescens P3. Process Biochemistry, 47(12), 2455–2462. https://doi.org/10.1016/j. procbio.2012.10.007 Badhe, R. V, Nanda, R. K., Kulkarni, M. B., Bhujbal, M. N., Patil, P. S., & Badhe, S. R. (2009). Media optimization studies for Serratiopeptidase production from Serratia marcescens ATCC 13880. Hindustan Antibiotics Bulletin, 51(1–4), 17–23. Baig, M. I., Ingole, P. G., Choi, W. K., Park, S. R., Kang, E. C., & Lee, H. K. (2016). Development of carboxylated TiO2 incorporated thin film nanocomposite hollow fiber membranes for flue gas dehydration. Journal of Membrane Science, 514, 622–635. https://doi.org/10.1016/j. memsci.2016.05.017 Bhargavi, P. L., & Prakasham, R. S. (2017). Agro-industrial wastes utilization for the generation of fibrinolytic metalloprotease by Serratia marcescens RSPB11. Biocatalysis and Agricultural Biotechnology, 9(October 2016), 201–208. https://doi.org/10.1016/j.bcab.2016.11.008 Bié, J., Sepodes, B., Fernandes, P. C. B., & Ribeiro, M. H. L. (2022). Enzyme Immobilization and Co-Immobilization: Main Framework, Advances and Some Applications. Processes, 10(3), 494. https://doi. org/10.3390/pr10030494 Bond, J. S. (2019). Proteases: History, discovery, and roles in health and disease. Journal of Biological Chemistry, 294(5), 1643–1651. https:// doi.org/10.1074/jbc.TM118.004156 Coêlho, D. F., Saturnino, T. P., Fernandes, F. F., Mazzola, P. G., Silveira, E., & Tambourgi, E. B. (2016). Azocasein substrate for determination of proteolytic activity: Reexamining a traditional method using bromelain samples. BioMed Research International, 2016(10.1155/2016/8409183), Culp, E., & Wright, G. D. (2017). Bacterial proteases, untapped antimicrobial drug targets. The Journal of Antibiotics, 70(4), 366–377. https://doi.org/10.1038/ja.2016.138 Datta, S., & Christena, L. R. (2013). Enzyme immobilization : an overview on techniques and support materials. Biotech, 3, 1–9. https://doi. org/10.1007/s13205-012-0071-7 Dhivya Pushpa, M., Sanclemente Crespo, M., Cristopher, M. M., Karthick, P., Sridharan, M., Sanjeeviraja, C., & Jeyadheepan, K. (2019). Influence of pyrolytic temperature on optoelectronic properties and the energy harvesting applications of high pressure TiO2 thin films. Vacuum, 161, 81–91. https://doi.org/10.1016/j.vacuum.2018.12.023 Guisan, J. M., Fernandez-Lorente, G., Rocha-Martin, J., & Moreno-Gamero, D. (2022). Enzyme immobilization strategies for the design of robust and efficient biocatalysts. Current Opinion in Green and Sustainable Chemistry, 35, 100593. https://doi.org/10.1016/j.cogsc.2022.100593 Guo, H., Lei, B., Yu, J., Chen, Y., & Qian, J. (2021). Immobilization of lipase by dialdehyde cellulose crosslinked magnetic nanoparticles. International Journal of Biological Macromolecules, 185(April), 287– 296. https://doi.org/10.1016/j.ijbiomac.2021.06.073 Hasanzadeh Kafshgari, M., & Goldmann, W. H. (2020). Insights into Theranostic Properties of Titanium Dioxide for Nanomedicine. NanoMicro Letters, 12(1), 22. https://doi.org/10.1007/s40820-019-0362-1 Hosseinzadeh, S. A., Valizadeh, V., Rouhani, M., Mirkazemi, S., Azizi, M., Norouzian, D., & Ahangari Cohan, R. (2022). Novel serratiopeptidase exhibits different affinities to the substrates and inhibitors. Chemical Biology & Drug Design, 100(4), 553–563. https://doi.org/10.1111/ cbdd.14105 Huang, B., Wang, X., Fang, H., Jiang, S., & Hou, H. (2019). Mechanically strong sulfonated polybenzimidazole PEMs with enhanced proton conductivity. Materials Letters, 234, 354–356. https://doi. org/10.1016/j.matlet.2018.09.131 Jadhav, S. B., Shah, N., Rathi, A., Rathi, V., & Rathi, A. (2020). Serratiopeptidase: Insights into the therapeutic applications. Biotechnology Reports, 28, e00544. https://doi.org/10.1016/j. btre.2020.e00544 Jiang, T., Liu, C., Xu, X., He, B., & Mo, R. (2021). Formation Mechanism and Biomedical Applications of Protease-Manipulated Peptide Assemblies. Frontiers in Bioengineering and Biotechnology, 9. https:// doi.org/10.3389/fbioe.2021.598050 Kazenwadel, F., Wagner, H., Rapp, B. E., & Franzreb, M. (2015). Optimization of enzyme immobilization on magnetic microparticles using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) as a crosslinking agent. Analytical Methods, 7(24), 10291–10298. https:// doi.org/10.1039/c5ay02670a Khan, M. F., Kundu, D., Hazra, C., & Patra, S. (2019). A strategic approach of enzyme engineering by attribute ranking and enzyme immobilization on zinc oxide nanoparticles to attain thermostability in mesophilic Bacillus subtilis lipase for detergent formulation. International Journal of Biological Macromolecules, 136, 66–82. https://doi.org/10.1016/j. ijbiomac.2019.06.042 Kim, H. S., Golyshin, P. N., & Timmis, K. N. (2007). Characterization and role of a metalloprotease induced by chitin in Serratia sp. KCK. Journal of Industrial Microbiology & Biotechnology, 34(11), 715–721. https://doi.org/10.1007/s10295-007-0245-1 Kolaei, M., Tayebi, M., Masoumi, Z., Tayyebi, A., & Lee, B. K. (2022). Optimal growth of sodium titanate nanoflower on TiO2 thin film for the fabrication of a novel Ti/TiO2/Na2Ti3O7 photoanode with excellent stability. Journal of Alloys and Compounds, 913, 165337. https://doi.org/10.1016/j.jallcom.2022.165337 Koul, D., Chander, D., Manhas, R. S., & Chaubey, A. (2021). Isolation and Characterization of Serratiopeptidase Producing Bacteria from Mulberry Phyllosphere. Current Microbiology, 78(1), 351–357. https:// doi.org/10.1007/s00284-020-02280-0 Kumar, S., Jana, A. K., Dhamija, I., Singla, Y., & Maiti, M. (2013). Preparation, characterization and targeted delivery of serratiopeptidase immobilized on amino-functionalized magnetic nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 85(3 PART A), 413–426. https://doi.org/10.1016/j.ejpb.2013.06.019 Li, Q., Yi, L., & Marek, P. (2013). Commercial proteases: present and future. FEBS Lett, 587(8), 1155–1163. https://doi.org/10.1016/j. febslet.2012.12.019 Mobeen Amanulla, A., & Sundaram, R. (2019). Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications. Materials Today: Proceedings, 8, 323–331. https://doi.org/https://doi.org/10.1016/j.matpr.2019.02.118 Moore, P. A., & Kery, V. (2009). High-Throughput Protein Concentration and Buffer Exchange: Comparison of Ultrafiltration and Ammonium Sulfate Precipitation. In High Throughput Protein Expression and Purification (pp. 309–322). Humana Press. https://doi.org/10.1007/978- 1-59745-196-3 Nair, S. R., & C, S. Devi. (2022). Serratiopeptidase: An integrated View of Multifaceted Therapeutic Enzyme. Biomolecules, 12(10), 1468. https://doi.org/10.3390/biom12101468 Nemiwal, M., Zhang, T. C., & Kumar, D. (2022). Enzyme immobilized nanomaterials as electrochemical biosensors for detection of biomolecules. Enzyme and Microbial Technology, 156(January), 110006. https://doi.org/10.1016/j.enzmictec.2022.110006 Prabhu, R., Jeevananda, T., & Mohan, N. (2019). Spectral and thermal studies on polyaniline-titanium dioxide nanocomposites by inverted emulsion techniques. Materials Today: Proceedings, 27, 2164–2168. https://doi.org/10.1016/j.matpr.2019.09.088 Raghav, R., & Srivastava, S. (2016). Immobilization strategy for enhancing sensitivity of immunosensors: L-Asparagine-AuNPs as a promising alternative of EDC-NHS activated citrate-AuNPs for antibody immobilization. Biosensors and Bioelectronics, 78, 396–403. https:// doi.org/10.1016/j.bios.2015.11.066 Rajaeian, B., Heitz, A., Tade, M. O., & Liu, S. (2015). Improved separation and antifouling performance of PVA thin film nanocomposite membranes incorporated with carboxylated TiO2 nanoparticles. Journal of Membrane Science, 485, 48–59. https://doi.org/10.1016/j. memsci.2015.03.009 Schratter, P. (2004). Purification and Concentration by Ultrafiltration. In Protein Purification Protocols (Vol. 244, pp. 101–116). Humana Press. https://doi.org/10.1385/1-59259-655-X:101 Sharma, C., Jha, N. K., Meeran, M. F. N., Patil, C. R., Goyal, S. N., & Ojha, S. (2021). Serratiopeptidase, A Serine Protease Anti-Inflammatory, Fibrinolytic, and Mucolytic Drug, Can Be a Useful Adjuvant for Management in COVID-19. Frontiers in Pharmacology, 12. https:// doi.org/10.3389/fphar.2021.603997 Tang, Z., He, H., Zhu, L., Liu, Z., Yang, J., Qin, G., Wu, J., Tang, Y., Zhang, D., Chen, Q., & Zheng, J. (2022). A General Protein Unfolding‐Chemical Coupling Strategy for Pure Protein Hydrogels with Mechanically Strong and Multifunctional Properties. Advanced Science, 9(5), 2102557. https://doi.org/10.1002/advs.202102557 Vélez-Gómez, J. M., Melchor-Moncada, J. J., Veloza, L. A., & Sepúlveda-Arias, J. C. (2019). Purification and characterization of a metalloprotease produced by the C8 isolate of Serratia marcescens using silkworm pupae or casein as a protein source. International Journal of Biological Macromolecules, 135, 97–105. https://doi. org/10.1016/j.ijbiomac.2019.05.122 Wickramathilaka, M. P., & Tao, B. Y. (2019). Characterization of covalent crosslinking strategies for synthesizing DNA-based bioconjugates. Journal of Biological Engineering, 13(1), 63. https://doi.org/10.1186/ s13036-019-0191-2 Xia, N., Xing, Y., Wang, G., Feng, Q., Chen, Q., Feng, H., Sun, X., & Liu, L. (2013). Probing of EDC/NHSS-Mediated Covalent Coupling Reaction by the Immobilization of Electrochemically Active Biomolecules. In Int. J. Electrochem. Sci (Vol. 8). www.electrochemsci.org Yaashikaa, P. R., Devi, M. K., & Kumar, P. S. (2022). Advances in the application of immobilized enzyme for the remediation of hazardous pollutant: A review. Chemosphere, 299(March), 134390. https://doi. org/10.1016/j.chemosphere.2022.134390 Ziental, D., Czarczynska-Goslinska, B., Mlynarczyk, D. T., GlowackaSobotta, A., Stanisz, B., Goslinski, T., & Sobotta, L. (2020). Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials, 10(2), 387. https://doi.org/10.3390/nano10020387 Zucca, P., & Sanjust, E. (2014). Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms. Molecules, 19(9), 14139–14194. https://doi.org/10.3390/molecules190914139 al-Sweih, N., Ahmad, S., Joseph, L., Khan, S., and Khan, Z. (2014). Malassezia pachydermatis fungemia in a preterm neonate resistant to fluconazole and flucytosine. Medical Mycology Case Reports, 5, 9-11. doi: 10.1016/j.mmcr.2014.04.004 Bumroongthai, K., Chetanachan, P., Niyomtham, W., Yurayart, C., and Prapasarakul, N. (2016). Biofilm production and antifungal susceptibility of co-cultured Malassezia pachydermatis and Candida parapsilosis isolated from canine seborrheic dermatitis. Medical Mycology, 54(5), 544-549. doi: 10.1093/mmy/myw002 Cafarchia, C., Figueredo, L. A., Iatta, R., Colao, V., Montagna, M. T., and Otranto, D. (2012). In vitro evaluation of Malassezia pachydermatis susceptibility to azole compounds using E-test and CLSI microdilution methods. Medical Mycology, 50(8), 795-801. doi: 10.3109/13693786.2012.674219 Celis, A. M., Vos, A. M., Triana, S., Medina, C. A., Escobar, N., Restrepo, S., et al. (2017). Highly efficient transformation system for Malassezia furfur and Malassezia pachydermatis using Agrobacterium tumefaciens-mediated transformation. Journal of Microbiological Methods, 134, 1-6. doi: 10.1016/j.mimet.2017.01.001 Chen, I. L., Chiu, N. C., Chi, H., Hsu, C. H., Chang, J. H., Huang, D. T., and Huang, F. Y. (2017). Changing of bloodstream infections in a medical center neonatal intensive care unit. Journal of Microbiology, Immunology and Infection, 50(4), 514-520. doi: 10.1016/j. jmii.2015.08.023 Chen, S. C., Perfect, J., Colombo, A. L., Cornely, O. A., Groll, A. H., Seidel, D., et al. (2021). Global guideline for the diagnosis and management of rare yeast infections: an initiative of the ECMM in cooperation with ISHAM and ASM. The Lancet Infectious Diseases, 21(12), 375-386. doi: 10.1016/S1473-3099(21)00203-6 CLSI. (2008). Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved standard-third edition. CLSI document M27-A3. Clinical and Laboratory Standards Institute, 1-25. Dönmez, Y., Akhmetova, L., İşeri, Ö. D., Kars, M. D., and Gündüz, U. (2011). Effect of MDR modulators verapamil and promethazine on gene expression levels of MDR1 and MRP1 in doxorubicin-resistant MCF-7 cells. Cancer chemotherapy and pharmacology, 67(4), 823- 828. doi: 10.1007/s00280-010-1385-y Ehemann, K., Mantilla, M. J., Mora, F., Rios, A., Torres, M., and Celis, A. M. (2022). Many ways, one microorganism: several approaches to study Malassezia in interactions with model hosts. PLoS Pathogens, 18(9), e1010784. doi: 10.1371/journal.ppat.1010784 Figueredo, L. A., Cafarchia, C., and Otranto, D. (2013). Antifungal susceptibility of Malassezia pachydermatis biofilm. Medical Mycology, 51(8), 863-867. doi: 10.3109/13693786.2013.805440 Gaitanis, G., Velegraki, A., Frangoulis, E., Mitroussia, A., Tsigonia, A., Tzimogianni, A., et al. (2002). Identification of Malassezia species from patient skin scales by PCR-RFLP. Clinical Microbiology and Infection, 8(3), 162-173. doi: 10.1046/j.1469-0691.2002.00383.x Galvis, J. C., and Borda, F. (2016). Infecciones zoonóticas por levaduras del género Malassezia: una revisión. Revista U.D.C.A Actualidad & Divulgación Científica, 19(2), 381-393. Recuperado de http://www. scielo.org.co/pdf/rudca/v19n2/v19n2a15.pdf Galvis, J. C., Rodríguez, M. X., Pulido, A., Castañeda, R., Celis A. M., and Linares, M. Y. (2017). Actividad antifúngica in vitro de azoles y anfotericina B frente a Malassezia furfur por el método de microdilución M27-A3 del CLSI y Etest®. Revista Iberoamericana de Micología, 34(2), 89-93. doi: 10.1016/j.riam.2016.05.004 Galvis, J. C., Borda, F., and Gutiérrez, A. J. (2018). Physiological and molecular characterization of Malassezia pachydermatis reveals no differences between canines and their owners. Open Journal of Veterinary Medicine, 8, 87-105. doi: 10.4236/ojvm.2018.87010 Galvis, J., Giraldo, B., Martínez, J., and Echeverri, S. (2021). Fungemia por Malassezia sympodialis en una Unidad de Cuidados Intensivos Neonatal de Colombia. Infectio, 25(2): 130-134. doi: 10.22354/ in.v25i2.931 Hernández, J. J. (2005). Caracterización molecular de especies del género Malassezia (Tesis doctoral). Universidad Autónoma de Barcelona, España Iatta, R., Puttilli, M. R., Immediato, D., Otranto, D., and Cafarchia, C. (2017). The role of drug efflux pumps in Malassezia pachydermatis and Malassezia furfur defence against azoles. Mycoses, 60(3), 178- 182. doi: 10.1111/myc.12577 Iwaki, K., Sakaeda, T., Kakumoto, M., Nakamura, T., Komoto, C., Okamura, N., Nishiguchi, K., Shiraki, T., Horinouchi, M., and Okumura, K. (2006). Haloperidol is an inhibitor but not substrate for MDR1/Pglycoprotein. The Journal of pharmacy and pharmacology, 58(12), 1617-1622. doi: 10.1211/jpp.58.12.0008 Kano, R., Yokoi, S., Kariya, N., Oshimo, K., and Kamata, H. (2019). Multiazole-resistant strain of Malassezia pachydermatis isolated from a canine Malassezia dermatitis. Medical Mycology, 57(3), 346-350. doi: 10.1093/mmy/myy035 Mirhendi, H., Makimura, K., Zomorodian, K., Yamada, T., Sugita, T., and Yamaguchi, H. (2005). A simple PCR-RFLP method for identification and differentiation of 11 Malassezia species. Journal of Microbiological Methods, 61(2), 281-284. doi: 10.1016/j.mimet.2004.11.016 Peano, A., Johnson, E., Chiavassa, E., Tizzani, P., Guillot, J., and Pasquetti, M. (2020). Antifungal resistance regarding Malassezia pachydermatis: where are we now? Journal of Fungi, 6(2), 1-26. doi: 10.3390/ jof6020093 Pierce, C. G., Uppuluri, P., Tristan, A. R., Wormley, F. L., Mowat, E., Ramage, G., and Lopez, J. L. (2008). A simple and reproducible 96 well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nature Protocols, 3(9): 1494-1500. doi: 10.1038/nport.2008.141 Rincón, S., Celis, A., Sopó, L., Motta, A., and Cepero, M. C. (2005). Malassezia yeast species isolated from patients with dermatologic lesions. Biomedica, 25(2), 189-195. Recuperado de http://www.scielo. org.co/pdf/bio/v25n2/v25n2a05.pdf Schlemmer, K. B., Jesus, F. P., Zanette, R. A., Zimmermann, C. E., Lautert, C., Alves, S. H., and Santurio, J. M. (2014). Sequential exposure of Malassezia pachydermatis to azoles: enhanced or decreased activity? Veterinary Microbiology, 171(1-2), 255-256. doi: 10.1016/j. vetmic.2014.03.034 Tamura, K., Stecher, G., and Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution, 38:3022-3027. doi: 10.1093/molbev/msab120 Theleen, B., Cafarchia, C., Gaitanis, G., Bassukas, I. D., Boekhout, T., and Dawson, T. L. (2018). Malassezia ecology, pathophysiology and treatment. Medical Mycology, 56(1), 10-25. doi: 10.1093/mmy/myx134 Velegraki, A., Cafarchia, C., Gaitanis, G., Iatta, R., and Boekhout, T. (2015). Malassezia infections in humans and animals: pathophysiology, detection and treatment. PLoS Pathogens, 11(1), 1-6. doi: 10.1371/ journal.ppat.1004523 Wu, G., Zhao, H., Li, C., Rajapakse, M. P., Wong, W. C., Xu, J., et al. (2015). Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology and niche adaptation on human skin. PLoS Genetics, 11(11), 1-26. doi: 10.1371/journal.pgen.100561 adelman D. Thousands Of Lives Could Be Saved In The US During The COVID-19 Pandemic If States Exchanged Ventilators [published online ahead of print, 2020 Apr 30] Health Aff (Millwood). 2020 DOI: 10.1377/hlthaff.2020.00505. Agencia Española de Medicamentos y Productos Sanitarios Ministerio de Sanidad. Información sobre prototipos de respiradores. Pruebas de seguridad y requisitos de investigación clínica. 2020. Borges AM, Ferrari RS, Thomaz LDGR, Ulbrich JM, Félix EA, Silvello D, Silvello, D, Andrade, CF. Challenges and perspectives in porcine model of acute lung injury using oleic acid. Pulm Pharmacol Ther 2019;59. DOI: 10.1016/j.pupt.2019.101837 Cinesi Gómez C., Peñuelas Rodríguez Ó., Luján Torné M., Egea Santaolalla C., Masa Jiménez J.F., García Fernández J. Clinical Consensus recommendations Regarding Non-Invasive Respiratory Support in the Adult Patient with Acute Bronconeumol. Respiratory Failure Secondary to SARS-CoV-2 infection. Arch 2020; S0300–2896:30083– 30091. DOI: 10.1016/j.arbres.2020.03.005. Gómez FA, Ballesteros LE. Morphologic expression of the left coronary artery in pigs. An approach in relation to human heart. 2014 AprJun;29(2):214-20. DOI: 10.5935/1678-9741.201400270 Instituto nacional de salud COVID-19 Colombia - casos en línea, 2020. Tomado de: https://www.ins.gov.co/Noticias/Paginas/Coronavirus.aspx Lazo Perez J. Comparación del efecto de profol o sevoflurano sobre la lesión histológica, respuesta inflamatoria y hemodinámica hepática en un modelo porcino de “Small for flow Sydrome. Universidad Complutense de Madrid. 2020. Liang W.H., Guan W.J., Li C.C., Li Y.M., Liang H.R., Zhao Y. Clinical characteristics and outcomes of hospitalised patients with COVID-19 treated in Hubei (epicenter) and outside Hubei (non-epicenter): A Nationwide Analysis of China. Eur Respir J. 2020:2000562. DOI: 10.1183/13993003.00562-2020. Lyu H, John M, Burkland D, Greet B, Post A, Babakhani A, Razavi, M. Synchronized Biventricular Heart Pacing in a Closed-chest Porcine Model based on Wirelessly Powered Leadless Pacemakers. Sci Rep 2020;10(1). DOI: 10.1038/s41598-020-59017-z Marchesi S, Hedenstierna G, Hata A, Feinstein R, Larsson A, Larsson AO, Lipcsey, M. Effect of mechanical ventilation versus spontaneous breathing on abdominal edema and inflammation in ARDS: An experimental porcine model. BMC Pulm Med 2020;20(1). DOI: 10.1186/s12890-020-1138-6 Martišienė I, Karčiauskas D, Navalinskas A, Mačianskienė R, Kučinskas A, Treinys R, Grigalevičiūtė, R, Zigmantaitė, V, Ralienė, L, Benetis R, Jurevičius J. Optical mapping of the pig heart in situ under artificial blood circulation. Sci Rep 2020;10(1). DOI: 10.1038/s41598-020- 65464-5 Peñaloza-Ramírez A, Suárez-Correa J, Báez-Blanco J, Sabogal-Gómez C, Kuan-Casas H, Sánchez-Pignalosa C, Aponte-Ordóñez P. In vivo experience with peroral endoscopic myotomy: An essential activity for developing the technique in humans. Revista de Gastroenterología de México Volume 83, Issue 2, April–June 2018, Pages 86-90 DOI: 10.1016/j.rgmx.2017.04.0033 Quijano Blanco Y. Caracterización de las arterias coronarias en corazón de porcino como modelo anatómico didáctico en estudiantes del área de la salud. Morfolia, Volume 12, Issue 1, p. 56 - 74, ene. 2020. Ramon Farré, Manel Puig-Domingo, Pilar Ricart, Josep M. Nicolás, Ventiladores mecánicos de emergencia para la COVID-19, Archivos de Bronconeumología, Volume 56, Supplement 2, 2020, Pages 7-8, DOI: 10.1016/j.arbres.2020.05.012. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS.A. cute Respiratory Distress Syndrome. The Berlin Definition., JAMA 2012; 307 (23): 2526-2533. Rodrigues M, Silva A.C, Águas A.P. Grande N.R. The coronary circulation of the pig heart: comparison with the human heart. Eur J Anat, 9 (2): 67-87 (2005). Sáenz Medina J, Asuero de Lis M. S., Galindo Alvarez J., Villafruela Sanz J., Correa C, Cuevas Sánchez B., Linares Quevedo A. I., Páez Borda A., Pascual Santos J. Modificaciones de los parámetros hemodinámicos y de los distintos flujos vasculares periféricos en modelo experimental porcino de nefrectomía laparoscópica. Arch. Esp. Urol., 60, 5 (501-518), 2007 Truog R.D., Mitchell C., Daley G.Q. The Toughest Triage - Allocating Ventilators in a Pandemic. N Engl J Med. 2020;382: 1973–1975. DOI:10.1056/NEJMp2005689. Wax R.S. Directives concrétes à l’intention des equipes de soins intensifs et d’anesthe’siologie prenant soin de patients atteints du coronavirus 2019 - nCoV. 2020. Can J Anesth. Wei-jie Guan, Z y N. Clinical characteristics of coronavirus disease 2019 in China. 2020. The New england journal of medicine. DOI: 10.1056/ NEJMoa2002032 Whittle J.S., Pavlov I., Sacchetti A.D., Atwood C., Rosenberg M.S. Respiratory support for adult patients with COVID-19. J Am Coll Emerg Physicians Open. 2020:10. doi: 10.1002/emp2.12071 World Health Organization. Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel novel coronavirus (2019-nCoV), 2020. Geneva Switzerland - January 30, 2020. Wu Z, McGoogan JM. Características y lecciones importantes sobre el en China: Resumen de un informe de 72.324 casos elaborado por el Centro de Control y Prevención de enfermedades de China. JAMA, 24 de febrero de 2020. DOI: 10.1001/jama.2014.6368. brote de enfermedad por coronavirus 2019 (COVID-19) ocurrido Xu J, Yu X, Zhang L, Fu Y, Jin K, Yin L, Yu S, Liu D. Modified volumetric capnography-derived parameter: A potentially stable indicator in monitoring cardiopulmonary resuscitation efficacy in a porcine model. Resuscitation 2020; 150:94-101. DOI: 10.1016/j. resuscitation.2020.02.039 |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
90 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Tecnológica de Pereira |
dc.publisher.place.none.fl_str_mv |
Pereira |
publisher.none.fl_str_mv |
Universidad Tecnológica de Pereira |
institution |
Universidad Tecnológica de Pereira |
bitstream.url.fl_str_mv |
https://repositorio.utp.edu.co/bitstreams/683f9994-545f-4f2b-8def-9760064e59b6/download https://repositorio.utp.edu.co/bitstreams/ff536960-a953-4d67-acae-a5b3524d1897/download https://repositorio.utp.edu.co/bitstreams/01a25166-25fb-4621-8fef-2d4c59d5b7cf/download https://repositorio.utp.edu.co/bitstreams/c2de27f8-a983-42f5-902a-601f9be251a3/download https://repositorio.utp.edu.co/bitstreams/937903fe-e5c8-40c6-a8e8-a669e314b05d/download |
bitstream.checksum.fl_str_mv |
81bd2bf38beb34a24e53daf40a0c7bd7 2b7c55c2ced28344bfedd67c0dc20519 a9f6b27c2b33f919259eaee2358637bf 39289437b0b647662bad1733089b5265 c877f4c7fb89136c9b88dcd39893def7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica de Pereira |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1815732495668215808 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)Manifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de la Ley 23 de 1982. En concordancia suscribo (suscribimos) este documento en el momento mismo que hago (hacemos) entrega de mi (nuestra) OBRA a la Biblioteca “Jorge Roa Martínez” de la Universidad Tecnológica de Pereira. Manifiesto (manifestamos) que la OBRA objeto de la presente autorizaciónhttps://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessGalvis Marín, Juan Camilo Celis Ramírez, Adriana MarcelaSepúlveda-Arias, Juan CarlosGarcía Castro, GiovanniGonzález Colonia, Luz VictoriaGiraldo Montoya, Ángela MaríaGómez González, José FernandoCabrales Vega, Rodolfo AdriánChica Builes, Juan FernandoMelchor-Moncada, Jhon JairoVasquez, SantiagoOrozco, Lina MVeloza, Luz AngelaAguilar, EnriqueSepúlveda-Arias, Juan C2024-09-20T14:12:23Z2024-09-20T14:12:23Z2024978-958-722-903-5https://hdl.handle.net/11059/15301https://doi.org/10.22517/9789587229035Universidad Tecnológica de PereiraRepositorio Universidad Tecnológica de Pereirahttps://repositorio.utp.edu.co/homeThe book titled “Biotechnology and Bioengineering: Research Results from the Faculty of Health Sciences” brings together a collection of research studies that highlight the advancement of these disciplines in the health field. Each chapter addresses fundamental and applied topics aimed at solving contemporary problems through science and innovation. The first topic, “Characterization of Antifungal Resistance in Colombian Isolates of Malassezia spp.”, explores the resistance mechanisms of these microorganisms, which are common pathogens in various dermatological conditions. This study has a direct impact on improving therapeutic treatments for fungal infections, particularly in the Colombian context.Contents Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 CHAPTER 1 Characterization of antifungal resistance in Colombian isolates of Malassezia spp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2. Materials and methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1. Isolates of Malassezia spp. . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2. Molecular identification. . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3. Susceptibility testing in planktonic cells. . . . . . . . . . . . . . . . 18 2.4. Susceptibility testing in sessile cells. . . . . . . . . . . . . . . . . . . 18 2.5. Susceptibility testing with efflux pump inhibitors. . . . . . . . . 19 2.6. Statistical análisis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3. Results and discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1. Molecular identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4 . Conclusions and perspectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 CHAPTER 2 Prototype mechanical ventilator: validation of a preclinical physiological test in a porcine model. . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2. Materials and methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.1 Porcine model mechanical ventilator test protocol. . . . . . . . 42 3. Results and discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4 . Conclusions and perspectives. . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5. Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 CHAPTER 3 Serratiopeptidase production and immobilization on titanium oxide nanoparticles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2. Materials and methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3. Results and discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4 . Conclusions and perspectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5. Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8090 páginasapplication/pdfPDFengUniversidad Tecnológica de PereiraPereiraBiotechnology and bioengineering: research results from the Faculty of Health SciencesLibroinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_2f33Textinfo:eu-repo/semantics/bookBach, E., Sant’Anna, V., Daroit, D. J., Corrêa, A. P. F., Segalin, J., & Brandelli, A. (2012). Production, one-step purification, and characterization of a keratinolytic protease from Serratia marcescens P3. Process Biochemistry, 47(12), 2455–2462. https://doi.org/10.1016/j. procbio.2012.10.007Badhe, R. V, Nanda, R. K., Kulkarni, M. B., Bhujbal, M. N., Patil, P. S., & Badhe, S. R. (2009). Media optimization studies for Serratiopeptidase production from Serratia marcescens ATCC 13880. Hindustan Antibiotics Bulletin, 51(1–4), 17–23.Baig, M. I., Ingole, P. G., Choi, W. K., Park, S. R., Kang, E. C., & Lee, H. K. (2016). Development of carboxylated TiO2 incorporated thin film nanocomposite hollow fiber membranes for flue gas dehydration. Journal of Membrane Science, 514, 622–635. https://doi.org/10.1016/j. memsci.2016.05.017Bhargavi, P. L., & Prakasham, R. S. (2017). Agro-industrial wastes utilization for the generation of fibrinolytic metalloprotease by Serratia marcescens RSPB11. Biocatalysis and Agricultural Biotechnology, 9(October 2016), 201–208. https://doi.org/10.1016/j.bcab.2016.11.008Bié, J., Sepodes, B., Fernandes, P. C. B., & Ribeiro, M. H. L. (2022). Enzyme Immobilization and Co-Immobilization: Main Framework, Advances and Some Applications. Processes, 10(3), 494. https://doi. org/10.3390/pr10030494Bond, J. S. (2019). Proteases: History, discovery, and roles in health and disease. Journal of Biological Chemistry, 294(5), 1643–1651. https:// doi.org/10.1074/jbc.TM118.004156Coêlho, D. F., Saturnino, T. P., Fernandes, F. F., Mazzola, P. G., Silveira, E., & Tambourgi, E. B. (2016). Azocasein substrate for determination of proteolytic activity: Reexamining a traditional method using bromelain samples. BioMed Research International, 2016(10.1155/2016/8409183),Culp, E., & Wright, G. D. (2017). Bacterial proteases, untapped antimicrobial drug targets. The Journal of Antibiotics, 70(4), 366–377. https://doi.org/10.1038/ja.2016.138Datta, S., & Christena, L. R. (2013). Enzyme immobilization : an overview on techniques and support materials. Biotech, 3, 1–9. https://doi. org/10.1007/s13205-012-0071-7Dhivya Pushpa, M., Sanclemente Crespo, M., Cristopher, M. M., Karthick, P., Sridharan, M., Sanjeeviraja, C., & Jeyadheepan, K. (2019). Influence of pyrolytic temperature on optoelectronic properties and the energy harvesting applications of high pressure TiO2 thin films. Vacuum, 161, 81–91. https://doi.org/10.1016/j.vacuum.2018.12.023Guisan, J. M., Fernandez-Lorente, G., Rocha-Martin, J., & Moreno-Gamero, D. (2022). Enzyme immobilization strategies for the design of robust and efficient biocatalysts. Current Opinion in Green and Sustainable Chemistry, 35, 100593. https://doi.org/10.1016/j.cogsc.2022.100593Guo, H., Lei, B., Yu, J., Chen, Y., & Qian, J. (2021). Immobilization of lipase by dialdehyde cellulose crosslinked magnetic nanoparticles. International Journal of Biological Macromolecules, 185(April), 287– 296. https://doi.org/10.1016/j.ijbiomac.2021.06.073Hasanzadeh Kafshgari, M., & Goldmann, W. H. (2020). Insights into Theranostic Properties of Titanium Dioxide for Nanomedicine. NanoMicro Letters, 12(1), 22. https://doi.org/10.1007/s40820-019-0362-1Hosseinzadeh, S. A., Valizadeh, V., Rouhani, M., Mirkazemi, S., Azizi, M., Norouzian, D., & Ahangari Cohan, R. (2022). Novel serratiopeptidase exhibits different affinities to the substrates and inhibitors. Chemical Biology & Drug Design, 100(4), 553–563. https://doi.org/10.1111/ cbdd.14105Huang, B., Wang, X., Fang, H., Jiang, S., & Hou, H. (2019). Mechanically strong sulfonated polybenzimidazole PEMs with enhanced proton conductivity. Materials Letters, 234, 354–356. https://doi. org/10.1016/j.matlet.2018.09.131Jadhav, S. B., Shah, N., Rathi, A., Rathi, V., & Rathi, A. (2020). Serratiopeptidase: Insights into the therapeutic applications. Biotechnology Reports, 28, e00544. https://doi.org/10.1016/j. btre.2020.e00544Jiang, T., Liu, C., Xu, X., He, B., & Mo, R. (2021). Formation Mechanism and Biomedical Applications of Protease-Manipulated Peptide Assemblies. Frontiers in Bioengineering and Biotechnology, 9. https:// doi.org/10.3389/fbioe.2021.598050Kazenwadel, F., Wagner, H., Rapp, B. E., & Franzreb, M. (2015). Optimization of enzyme immobilization on magnetic microparticles using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) as a crosslinking agent. Analytical Methods, 7(24), 10291–10298. https:// doi.org/10.1039/c5ay02670aKhan, M. F., Kundu, D., Hazra, C., & Patra, S. (2019). A strategic approach of enzyme engineering by attribute ranking and enzyme immobilization on zinc oxide nanoparticles to attain thermostability in mesophilic Bacillus subtilis lipase for detergent formulation. International Journal of Biological Macromolecules, 136, 66–82. https://doi.org/10.1016/j. ijbiomac.2019.06.042Kim, H. S., Golyshin, P. N., & Timmis, K. N. (2007). Characterization and role of a metalloprotease induced by chitin in Serratia sp. KCK. Journal of Industrial Microbiology & Biotechnology, 34(11), 715–721. https://doi.org/10.1007/s10295-007-0245-1Kolaei, M., Tayebi, M., Masoumi, Z., Tayyebi, A., & Lee, B. K. (2022). Optimal growth of sodium titanate nanoflower on TiO2 thin film for the fabrication of a novel Ti/TiO2/Na2Ti3O7 photoanode with excellent stability. Journal of Alloys and Compounds, 913, 165337. https://doi.org/10.1016/j.jallcom.2022.165337Koul, D., Chander, D., Manhas, R. S., & Chaubey, A. (2021). Isolation and Characterization of Serratiopeptidase Producing Bacteria from Mulberry Phyllosphere. Current Microbiology, 78(1), 351–357. https:// doi.org/10.1007/s00284-020-02280-0Kumar, S., Jana, A. K., Dhamija, I., Singla, Y., & Maiti, M. (2013). Preparation, characterization and targeted delivery of serratiopeptidase immobilized on amino-functionalized magnetic nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 85(3 PART A), 413–426. https://doi.org/10.1016/j.ejpb.2013.06.019Li, Q., Yi, L., & Marek, P. (2013). Commercial proteases: present and future. FEBS Lett, 587(8), 1155–1163. https://doi.org/10.1016/j. febslet.2012.12.019Mobeen Amanulla, A., & Sundaram, R. (2019). Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications. Materials Today: Proceedings, 8, 323–331. https://doi.org/https://doi.org/10.1016/j.matpr.2019.02.118Moore, P. A., & Kery, V. (2009). High-Throughput Protein Concentration and Buffer Exchange: Comparison of Ultrafiltration and Ammonium Sulfate Precipitation. In High Throughput Protein Expression and Purification (pp. 309–322). Humana Press. https://doi.org/10.1007/978- 1-59745-196-3Nair, S. R., & C, S. Devi. (2022). Serratiopeptidase: An integrated View of Multifaceted Therapeutic Enzyme. Biomolecules, 12(10), 1468. https://doi.org/10.3390/biom12101468Nemiwal, M., Zhang, T. C., & Kumar, D. (2022). Enzyme immobilized nanomaterials as electrochemical biosensors for detection of biomolecules. Enzyme and Microbial Technology, 156(January), 110006. https://doi.org/10.1016/j.enzmictec.2022.110006Prabhu, R., Jeevananda, T., & Mohan, N. (2019). Spectral and thermal studies on polyaniline-titanium dioxide nanocomposites by inverted emulsion techniques. Materials Today: Proceedings, 27, 2164–2168. https://doi.org/10.1016/j.matpr.2019.09.088Raghav, R., & Srivastava, S. (2016). Immobilization strategy for enhancing sensitivity of immunosensors: L-Asparagine-AuNPs as a promising alternative of EDC-NHS activated citrate-AuNPs for antibody immobilization. Biosensors and Bioelectronics, 78, 396–403. https:// doi.org/10.1016/j.bios.2015.11.066Rajaeian, B., Heitz, A., Tade, M. O., & Liu, S. (2015). Improved separation and antifouling performance of PVA thin film nanocomposite membranes incorporated with carboxylated TiO2 nanoparticles. Journal of Membrane Science, 485, 48–59. https://doi.org/10.1016/j. memsci.2015.03.009Schratter, P. (2004). Purification and Concentration by Ultrafiltration. In Protein Purification Protocols (Vol. 244, pp. 101–116). Humana Press. https://doi.org/10.1385/1-59259-655-X:101Sharma, C., Jha, N. K., Meeran, M. F. N., Patil, C. R., Goyal, S. N., & Ojha, S. (2021). Serratiopeptidase, A Serine Protease Anti-Inflammatory, Fibrinolytic, and Mucolytic Drug, Can Be a Useful Adjuvant for Management in COVID-19. Frontiers in Pharmacology, 12. https:// doi.org/10.3389/fphar.2021.603997Tang, Z., He, H., Zhu, L., Liu, Z., Yang, J., Qin, G., Wu, J., Tang, Y., Zhang, D., Chen, Q., & Zheng, J. (2022). A General Protein Unfolding‐Chemical Coupling Strategy for Pure Protein Hydrogels with Mechanically Strong and Multifunctional Properties. Advanced Science, 9(5), 2102557. https://doi.org/10.1002/advs.202102557Vélez-Gómez, J. M., Melchor-Moncada, J. J., Veloza, L. A., & Sepúlveda-Arias, J. C. (2019). Purification and characterization of a metalloprotease produced by the C8 isolate of Serratia marcescens using silkworm pupae or casein as a protein source. International Journal of Biological Macromolecules, 135, 97–105. https://doi. org/10.1016/j.ijbiomac.2019.05.122Wickramathilaka, M. P., & Tao, B. Y. (2019). Characterization of covalent crosslinking strategies for synthesizing DNA-based bioconjugates. Journal of Biological Engineering, 13(1), 63. https://doi.org/10.1186/ s13036-019-0191-2Xia, N., Xing, Y., Wang, G., Feng, Q., Chen, Q., Feng, H., Sun, X., & Liu, L. (2013). Probing of EDC/NHSS-Mediated Covalent Coupling Reaction by the Immobilization of Electrochemically Active Biomolecules. In Int. J. Electrochem. Sci (Vol. 8). www.electrochemsci.orgYaashikaa, P. R., Devi, M. K., & Kumar, P. S. (2022). Advances in the application of immobilized enzyme for the remediation of hazardous pollutant: A review. Chemosphere, 299(March), 134390. https://doi. org/10.1016/j.chemosphere.2022.134390Ziental, D., Czarczynska-Goslinska, B., Mlynarczyk, D. T., GlowackaSobotta, A., Stanisz, B., Goslinski, T., & Sobotta, L. (2020). Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials, 10(2), 387. https://doi.org/10.3390/nano10020387Zucca, P., & Sanjust, E. (2014). Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms. Molecules, 19(9), 14139–14194. https://doi.org/10.3390/molecules190914139al-Sweih, N., Ahmad, S., Joseph, L., Khan, S., and Khan, Z. (2014). Malassezia pachydermatis fungemia in a preterm neonate resistant to fluconazole and flucytosine. Medical Mycology Case Reports, 5, 9-11. doi: 10.1016/j.mmcr.2014.04.004Bumroongthai, K., Chetanachan, P., Niyomtham, W., Yurayart, C., and Prapasarakul, N. (2016). Biofilm production and antifungal susceptibility of co-cultured Malassezia pachydermatis and Candida parapsilosis isolated from canine seborrheic dermatitis. Medical Mycology, 54(5), 544-549. doi: 10.1093/mmy/myw002Cafarchia, C., Figueredo, L. A., Iatta, R., Colao, V., Montagna, M. T., and Otranto, D. (2012). In vitro evaluation of Malassezia pachydermatis susceptibility to azole compounds using E-test and CLSI microdilution methods. Medical Mycology, 50(8), 795-801. doi: 10.3109/13693786.2012.674219Celis, A. M., Vos, A. M., Triana, S., Medina, C. A., Escobar, N., Restrepo, S., et al. (2017). Highly efficient transformation system for Malassezia furfur and Malassezia pachydermatis using Agrobacterium tumefaciens-mediated transformation. Journal of Microbiological Methods, 134, 1-6. doi: 10.1016/j.mimet.2017.01.001Chen, I. L., Chiu, N. C., Chi, H., Hsu, C. H., Chang, J. H., Huang, D. T., and Huang, F. Y. (2017). Changing of bloodstream infections in a medical center neonatal intensive care unit. Journal of Microbiology, Immunology and Infection, 50(4), 514-520. doi: 10.1016/j. jmii.2015.08.023Chen, S. C., Perfect, J., Colombo, A. L., Cornely, O. A., Groll, A. H., Seidel, D., et al. (2021). Global guideline for the diagnosis and management of rare yeast infections: an initiative of the ECMM in cooperation with ISHAM and ASM. The Lancet Infectious Diseases, 21(12), 375-386. doi: 10.1016/S1473-3099(21)00203-6CLSI. (2008). Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved standard-third edition. CLSI document M27-A3. Clinical and Laboratory Standards Institute, 1-25.Dönmez, Y., Akhmetova, L., İşeri, Ö. D., Kars, M. D., and Gündüz, U. (2011). Effect of MDR modulators verapamil and promethazine on gene expression levels of MDR1 and MRP1 in doxorubicin-resistant MCF-7 cells. Cancer chemotherapy and pharmacology, 67(4), 823- 828. doi: 10.1007/s00280-010-1385-yEhemann, K., Mantilla, M. J., Mora, F., Rios, A., Torres, M., and Celis, A. M. (2022). Many ways, one microorganism: several approaches to study Malassezia in interactions with model hosts. PLoS Pathogens, 18(9), e1010784. doi: 10.1371/journal.ppat.1010784Figueredo, L. A., Cafarchia, C., and Otranto, D. (2013). Antifungal susceptibility of Malassezia pachydermatis biofilm. Medical Mycology, 51(8), 863-867. doi: 10.3109/13693786.2013.805440Gaitanis, G., Velegraki, A., Frangoulis, E., Mitroussia, A., Tsigonia, A., Tzimogianni, A., et al. (2002). Identification of Malassezia species from patient skin scales by PCR-RFLP. Clinical Microbiology and Infection, 8(3), 162-173. doi: 10.1046/j.1469-0691.2002.00383.xGalvis, J. C., and Borda, F. (2016). Infecciones zoonóticas por levaduras del género Malassezia: una revisión. Revista U.D.C.A Actualidad & Divulgación Científica, 19(2), 381-393. Recuperado de http://www. scielo.org.co/pdf/rudca/v19n2/v19n2a15.pdfGalvis, J. C., Rodríguez, M. X., Pulido, A., Castañeda, R., Celis A. M., and Linares, M. Y. (2017). Actividad antifúngica in vitro de azoles y anfotericina B frente a Malassezia furfur por el método de microdilución M27-A3 del CLSI y Etest®. Revista Iberoamericana de Micología, 34(2), 89-93. doi: 10.1016/j.riam.2016.05.004Galvis, J. C., Borda, F., and Gutiérrez, A. J. (2018). Physiological and molecular characterization of Malassezia pachydermatis reveals no differences between canines and their owners. Open Journal of Veterinary Medicine, 8, 87-105. doi: 10.4236/ojvm.2018.87010Galvis, J., Giraldo, B., Martínez, J., and Echeverri, S. (2021). Fungemia por Malassezia sympodialis en una Unidad de Cuidados Intensivos Neonatal de Colombia. Infectio, 25(2): 130-134. doi: 10.22354/ in.v25i2.931Hernández, J. J. (2005). Caracterización molecular de especies del género Malassezia (Tesis doctoral). Universidad Autónoma de Barcelona, EspañaIatta, R., Puttilli, M. R., Immediato, D., Otranto, D., and Cafarchia, C. (2017). The role of drug efflux pumps in Malassezia pachydermatis and Malassezia furfur defence against azoles. Mycoses, 60(3), 178- 182. doi: 10.1111/myc.12577Iwaki, K., Sakaeda, T., Kakumoto, M., Nakamura, T., Komoto, C., Okamura, N., Nishiguchi, K., Shiraki, T., Horinouchi, M., and Okumura, K. (2006). Haloperidol is an inhibitor but not substrate for MDR1/Pglycoprotein. The Journal of pharmacy and pharmacology, 58(12), 1617-1622. doi: 10.1211/jpp.58.12.0008Kano, R., Yokoi, S., Kariya, N., Oshimo, K., and Kamata, H. (2019). Multiazole-resistant strain of Malassezia pachydermatis isolated from a canine Malassezia dermatitis. Medical Mycology, 57(3), 346-350. doi: 10.1093/mmy/myy035Mirhendi, H., Makimura, K., Zomorodian, K., Yamada, T., Sugita, T., and Yamaguchi, H. (2005). A simple PCR-RFLP method for identification and differentiation of 11 Malassezia species. Journal of Microbiological Methods, 61(2), 281-284. doi: 10.1016/j.mimet.2004.11.016Peano, A., Johnson, E., Chiavassa, E., Tizzani, P., Guillot, J., and Pasquetti, M. (2020). Antifungal resistance regarding Malassezia pachydermatis: where are we now? Journal of Fungi, 6(2), 1-26. doi: 10.3390/ jof6020093Pierce, C. G., Uppuluri, P., Tristan, A. R., Wormley, F. L., Mowat, E., Ramage, G., and Lopez, J. L. (2008). A simple and reproducible 96 well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nature Protocols, 3(9): 1494-1500. doi: 10.1038/nport.2008.141Rincón, S., Celis, A., Sopó, L., Motta, A., and Cepero, M. C. (2005). Malassezia yeast species isolated from patients with dermatologic lesions. Biomedica, 25(2), 189-195. Recuperado de http://www.scielo. org.co/pdf/bio/v25n2/v25n2a05.pdfSchlemmer, K. B., Jesus, F. P., Zanette, R. A., Zimmermann, C. E., Lautert, C., Alves, S. H., and Santurio, J. M. (2014). Sequential exposure of Malassezia pachydermatis to azoles: enhanced or decreased activity? Veterinary Microbiology, 171(1-2), 255-256. doi: 10.1016/j. vetmic.2014.03.034Tamura, K., Stecher, G., and Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution, 38:3022-3027. doi: 10.1093/molbev/msab120Theleen, B., Cafarchia, C., Gaitanis, G., Bassukas, I. D., Boekhout, T., and Dawson, T. L. (2018). Malassezia ecology, pathophysiology and treatment. Medical Mycology, 56(1), 10-25. doi: 10.1093/mmy/myx134Velegraki, A., Cafarchia, C., Gaitanis, G., Iatta, R., and Boekhout, T. (2015). Malassezia infections in humans and animals: pathophysiology, detection and treatment. PLoS Pathogens, 11(1), 1-6. doi: 10.1371/ journal.ppat.1004523Wu, G., Zhao, H., Li, C., Rajapakse, M. P., Wong, W. C., Xu, J., et al. (2015). Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology and niche adaptation on human skin. PLoS Genetics, 11(11), 1-26. doi: 10.1371/journal.pgen.100561adelman D. Thousands Of Lives Could Be Saved In The US During The COVID-19 Pandemic If States Exchanged Ventilators [published online ahead of print, 2020 Apr 30] Health Aff (Millwood). 2020 DOI: 10.1377/hlthaff.2020.00505.Agencia Española de Medicamentos y Productos Sanitarios Ministerio de Sanidad. Información sobre prototipos de respiradores. Pruebas de seguridad y requisitos de investigación clínica. 2020.Borges AM, Ferrari RS, Thomaz LDGR, Ulbrich JM, Félix EA, Silvello D, Silvello, D, Andrade, CF. Challenges and perspectives in porcine model of acute lung injury using oleic acid. Pulm Pharmacol Ther 2019;59. DOI: 10.1016/j.pupt.2019.101837Cinesi Gómez C., Peñuelas Rodríguez Ó., Luján Torné M., Egea Santaolalla C., Masa Jiménez J.F., García Fernández J. Clinical Consensus recommendations Regarding Non-Invasive Respiratory Support in the Adult Patient with Acute Bronconeumol. Respiratory Failure Secondary to SARS-CoV-2 infection. Arch 2020; S0300–2896:30083– 30091. DOI: 10.1016/j.arbres.2020.03.005.Gómez FA, Ballesteros LE. Morphologic expression of the left coronary artery in pigs. An approach in relation to human heart. 2014 AprJun;29(2):214-20. DOI: 10.5935/1678-9741.201400270Instituto nacional de salud COVID-19 Colombia - casos en línea, 2020. Tomado de: https://www.ins.gov.co/Noticias/Paginas/Coronavirus.aspxLazo Perez J. Comparación del efecto de profol o sevoflurano sobre la lesión histológica, respuesta inflamatoria y hemodinámica hepática en un modelo porcino de “Small for flow Sydrome. Universidad Complutense de Madrid. 2020.Liang W.H., Guan W.J., Li C.C., Li Y.M., Liang H.R., Zhao Y. Clinical characteristics and outcomes of hospitalised patients with COVID-19 treated in Hubei (epicenter) and outside Hubei (non-epicenter): A Nationwide Analysis of China. Eur Respir J. 2020:2000562. DOI: 10.1183/13993003.00562-2020.Lyu H, John M, Burkland D, Greet B, Post A, Babakhani A, Razavi, M. Synchronized Biventricular Heart Pacing in a Closed-chest Porcine Model based on Wirelessly Powered Leadless Pacemakers. Sci Rep 2020;10(1). DOI: 10.1038/s41598-020-59017-zMarchesi S, Hedenstierna G, Hata A, Feinstein R, Larsson A, Larsson AO, Lipcsey, M. Effect of mechanical ventilation versus spontaneous breathing on abdominal edema and inflammation in ARDS: An experimental porcine model. BMC Pulm Med 2020;20(1). DOI: 10.1186/s12890-020-1138-6Martišienė I, Karčiauskas D, Navalinskas A, Mačianskienė R, Kučinskas A, Treinys R, Grigalevičiūtė, R, Zigmantaitė, V, Ralienė, L, Benetis R, Jurevičius J. Optical mapping of the pig heart in situ under artificial blood circulation. Sci Rep 2020;10(1). DOI: 10.1038/s41598-020- 65464-5Peñaloza-Ramírez A, Suárez-Correa J, Báez-Blanco J, Sabogal-Gómez C, Kuan-Casas H, Sánchez-Pignalosa C, Aponte-Ordóñez P. In vivo experience with peroral endoscopic myotomy: An essential activity for developing the technique in humans. Revista de Gastroenterología de México Volume 83, Issue 2, April–June 2018, Pages 86-90 DOI: 10.1016/j.rgmx.2017.04.0033Quijano Blanco Y. Caracterización de las arterias coronarias en corazón de porcino como modelo anatómico didáctico en estudiantes del área de la salud. Morfolia, Volume 12, Issue 1, p. 56 - 74, ene. 2020.Ramon Farré, Manel Puig-Domingo, Pilar Ricart, Josep M. Nicolás, Ventiladores mecánicos de emergencia para la COVID-19, Archivos de Bronconeumología, Volume 56, Supplement 2, 2020, Pages 7-8, DOI: 10.1016/j.arbres.2020.05.012.Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS.A. cute Respiratory Distress Syndrome. The Berlin Definition., JAMA 2012; 307 (23): 2526-2533.Rodrigues M, Silva A.C, Águas A.P. Grande N.R. The coronary circulation of the pig heart: comparison with the human heart. Eur J Anat, 9 (2): 67-87 (2005).Sáenz Medina J, Asuero de Lis M. S., Galindo Alvarez J., Villafruela Sanz J., Correa C, Cuevas Sánchez B., Linares Quevedo A. I., Páez Borda A., Pascual Santos J. Modificaciones de los parámetros hemodinámicos y de los distintos flujos vasculares periféricos en modelo experimental porcino de nefrectomía laparoscópica. Arch. Esp. Urol., 60, 5 (501-518), 2007Truog R.D., Mitchell C., Daley G.Q. The Toughest Triage - Allocating Ventilators in a Pandemic. N Engl J Med. 2020;382: 1973–1975. DOI:10.1056/NEJMp2005689.Wax R.S. Directives concrétes à l’intention des equipes de soins intensifs et d’anesthe’siologie prenant soin de patients atteints du coronavirus 2019 - nCoV. 2020. Can J Anesth.Wei-jie Guan, Z y N. Clinical characteristics of coronavirus disease 2019 in China. 2020. The New england journal of medicine. DOI: 10.1056/ NEJMoa2002032Whittle J.S., Pavlov I., Sacchetti A.D., Atwood C., Rosenberg M.S. Respiratory support for adult patients with COVID-19. J Am Coll Emerg Physicians Open. 2020:10. doi: 10.1002/emp2.12071World Health Organization. Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel novel coronavirus (2019-nCoV), 2020. Geneva Switzerland - January 30, 2020.Wu Z, McGoogan JM. Características y lecciones importantes sobre el en China: Resumen de un informe de 72.324 casos elaborado por el Centro de Control y Prevención de enfermedades de China. JAMA, 24 de febrero de 2020. DOI: 10.1001/jama.2014.6368. brote de enfermedad por coronavirus 2019 (COVID-19) ocurridoXu J, Yu X, Zhang L, Fu Y, Jin K, Yin L, Yu S, Liu D. Modified volumetric capnography-derived parameter: A potentially stable indicator in monitoring cardiopulmonary resuscitation efficacy in a porcine model. Resuscitation 2020; 150:94-101. DOI: 10.1016/j. resuscitation.2020.02.039Biotecnología - InvestigacionesBiotecnología agrícolaIngeniería agrícolaBiotecnología aplicadaBioingenieríaMicrobiologíaInmunologíaFarmacologíaSalud públicaPublicationORIGINALBiotechnology and Bioengineering- Research results from the Faculty of Health Sciences (1).pdfapplication/pdf3814732https://repositorio.utp.edu.co/bitstreams/683f9994-545f-4f2b-8def-9760064e59b6/download81bd2bf38beb34a24e53daf40a0c7bd7MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-864https://repositorio.utp.edu.co/bitstreams/ff536960-a953-4d67-acae-a5b3524d1897/download2b7c55c2ced28344bfedd67c0dc20519MD52THUMBNAILImagen1.pngimage/png621784https://repositorio.utp.edu.co/bitstreams/01a25166-25fb-4621-8fef-2d4c59d5b7cf/downloada9f6b27c2b33f919259eaee2358637bfMD56Biotechnology and Bioengineering- Research results from the Faculty of Health Sciences (1).pdf.jpgBiotechnology and Bioengineering- Research results from the Faculty of Health Sciences (1).pdf.jpgGenerated Thumbnailimage/jpeg14333https://repositorio.utp.edu.co/bitstreams/c2de27f8-a983-42f5-902a-601f9be251a3/download39289437b0b647662bad1733089b5265MD58TEXTBiotechnology and Bioengineering- Research results from the Faculty of Health Sciences (1).pdf.txtBiotechnology and Bioengineering- Research results from the Faculty of Health Sciences (1).pdf.txtExtracted texttext/plain100796https://repositorio.utp.edu.co/bitstreams/937903fe-e5c8-40c6-a8e8-a669e314b05d/downloadc877f4c7fb89136c9b88dcd39893def7MD5711059/15301oai:repositorio.utp.edu.co:11059/153012024-10-23 10:25:34.388https://creativecommons.org/licenses/by-nc-sa/4.0/Manifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de la Ley 23 de 1982. En concordancia suscribo (suscribimos) este documento en el momento mismo que hago (hacemos) entrega de mi (nuestra) OBRA a la Biblioteca “Jorge Roa Martínez” de la Universidad Tecnológica de Pereira. Manifiesto (manifestamos) que la OBRA objeto de la presente autorizaciónopen.accesshttps://repositorio.utp.edu.coRepositorio de la Universidad Tecnológica de Pereirabdigital@metabiblioteca.comVGV4dG8gcXVlIGFwYXJlY2Vyw6EgY3VhbmRvIHZveSBhIGNhcmdhciBhbGdvIGVuIGVzdGEgY29sZWNjacOzbg== |