Análisis de datos de generación eléctrica con Python y la interfaz de programación de aplicaciones XM

: figuras, tablas

Autores:
Rivera Heredia, Elkin Aldanir
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad Tecnológica de Pereira
Repositorio:
Repositorio Institucional UTP
Idioma:
spa
OAI Identifier:
oai:repositorio.utp.edu.co:11059/15711
Acceso en línea:
https://hdl.handle.net/11059/15711
https://repositorio.utp.edu.co/home
Palabra clave:
530 - Física::537 - Electricidad y electrónica
Almacenamiento de datos
Análisis de la información
Python (Lenguaje de programación de computadores)
2. Ingeniería y Tecnología::2B. Ingenierías Eléctrica, Electrónica e Informática
Análisis de datos
Clustering
Python
Programación
ODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id UTP2_86708ebb7c6029c7fba359bcbeab9f95
oai_identifier_str oai:repositorio.utp.edu.co:11059/15711
network_acronym_str UTP2
network_name_str Repositorio Institucional UTP
repository_id_str
dc.title.spa.fl_str_mv Análisis de datos de generación eléctrica con Python y la interfaz de programación de aplicaciones XM
title Análisis de datos de generación eléctrica con Python y la interfaz de programación de aplicaciones XM
spellingShingle Análisis de datos de generación eléctrica con Python y la interfaz de programación de aplicaciones XM
530 - Física::537 - Electricidad y electrónica
Almacenamiento de datos
Análisis de la información
Python (Lenguaje de programación de computadores)
2. Ingeniería y Tecnología::2B. Ingenierías Eléctrica, Electrónica e Informática
Análisis de datos
Clustering
Python
Programación
ODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos
title_short Análisis de datos de generación eléctrica con Python y la interfaz de programación de aplicaciones XM
title_full Análisis de datos de generación eléctrica con Python y la interfaz de programación de aplicaciones XM
title_fullStr Análisis de datos de generación eléctrica con Python y la interfaz de programación de aplicaciones XM
title_full_unstemmed Análisis de datos de generación eléctrica con Python y la interfaz de programación de aplicaciones XM
title_sort Análisis de datos de generación eléctrica con Python y la interfaz de programación de aplicaciones XM
dc.creator.fl_str_mv Rivera Heredia, Elkin Aldanir
dc.contributor.advisor.none.fl_str_mv Escobar Vargas, Laura Mónica
dc.contributor.author.none.fl_str_mv Rivera Heredia, Elkin Aldanir
dc.subject.ddc.none.fl_str_mv 530 - Física::537 - Electricidad y electrónica
topic 530 - Física::537 - Electricidad y electrónica
Almacenamiento de datos
Análisis de la información
Python (Lenguaje de programación de computadores)
2. Ingeniería y Tecnología::2B. Ingenierías Eléctrica, Electrónica e Informática
Análisis de datos
Clustering
Python
Programación
ODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos
dc.subject.armarc.none.fl_str_mv Almacenamiento de datos
Análisis de la información
Python (Lenguaje de programación de computadores)
dc.subject.ocde.none.fl_str_mv 2. Ingeniería y Tecnología::2B. Ingenierías Eléctrica, Electrónica e Informática
dc.subject.proposal.spa.fl_str_mv Análisis de datos
Clustering
Python
Programación
dc.subject.ods.none.fl_str_mv ODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos
description : figuras, tablas
publishDate 2024
dc.date.issued.none.fl_str_mv 2024
dc.date.accessioned.none.fl_str_mv 2025-04-11T18:10:44Z
dc.date.available.none.fl_str_mv 2025-04-11T18:10:44Z
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11059/15711
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Pereira
dc.identifier.reponame.none.fl_str_mv Repositorio Universidad Tecnológica de Pereira
dc.identifier.repourl.none.fl_str_mv https://repositorio.utp.edu.co/home
url https://hdl.handle.net/11059/15711
https://repositorio.utp.edu.co/home
identifier_str_mv Universidad Tecnológica de Pereira
Repositorio Universidad Tecnológica de Pereira
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv [Adhau et al., 2014] Adhau, S., Moharil, R., and Adhau, P. (2014). K-means clustering technique applied to availability of micro hydro power. Sustainable Energy Technologies and Assessments, 8:191–201.
[Akanksha Shukla, 2016] Akanksha Shukla, Kusum Verma, R. K. (2016). Consumer perspective based placement of electric vehicle charging stations by clustering techniques. 978-1-4799-5141- 3/14/31,00.
[An et al., 2008] An, X. et al. (2008). Vibration fault diagnosis for hydraulic generator units with pattern recognition and cluster analysis. In Wireless Communications, Networking and Mobile Computing, 2008. WiCOM’08. 4th International Conference on. IEEE. Conference Paper.
[Arslan et al., 2018] Arslan, Y., Küçük, D., Eren, S., and Birturk, A. (2018). Clustering river basins using time-series data mining on hydroelectric energy generation. pages 103–115.
[Atiqur Rehman et al., 2024] Atiqur Rehman, Muhammad Akhtar Ali, Aurangzeb Khan, Muham- mad Umair Khan, Shafqat Ullah Khan, and Liaqat Ali (2024). Machine learning para la predicción de energía eléctrica: una revisión sistemática de literatura. In Ingeniería Y Competitividad, volume 26, pages 1–14.
[Atiqur Rehman, 2020] Atiqur Rehman, Muhammad Akhtar Ali, A. K. M. U. K. S. U. K. L. A. (2020). Performance analysis of pca, sparse pca, kernel pca and incremental pca algorithms for heart failure prediction.
[Bishop, 2006] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
[Burgas et al., 2014] Burgas, L., Melendez, J., and Colomer, J. (2014). Principal component analysis for monitoring electrical consumption of academic buildings. Energy Procedia, 62:555–564. 6th International Conference on Sustainability in Energy and Buildings, SEB-14.
[College, ] College, J. Dbscan and misc. clustering topics. Accedido el 26 Octubre 2024.
[CRETULESCU, 2019] CRETULESCU, R. G. (2019). Dbscan algorithm for document clustering. Sciendo.
[Duchesne et al., 2018] Duchesne, L., Karangelos, E., and Wehenkel, L. (2018). Using machine learning to enable probabilistic reliability assessment in operation planning. In 2018 Power Systems Computation Conference (PSCC), pages 1–8.
[Duchesne et al., 2021] Duchesne, L., Karangelos, E., and Wehenkel, L. (2021). Machine learning in photovoltaic systems. In Universidad de los Andes, pages 1–18.
[Ekanayake et al., 2021] Ekanayake, P., Wickramasinghe, L., Jayasinghe, J., and Rathnayake, U. (2021). Regression-based prediction of power generation at samanalawewa hydropower plant in sri lanka using machine learning. Mathematical Problems in Engineering, 2021:1–12.
[gate, ] gate, R. Superpixel-based segmentation of glottal area from videolaryngoscopy images. Accedido el 26 Octubre 2024.
[Gauci et al., 2020] Gauci, J., Camilleri, K. P., and Falzon, O. (2020). Principal component analysis for dynamic thermal video analysis. Infrared Physics Technology, 109:103359.
[Herve Abdi, 2010] Herve Abdi, L. J. W. (2010). Principal component analysis. Wiley Interdiscipli- nary Reviews: Computational Statistics.
[Hoyos, 2024] Hoyos, S. G. (2024). Ubicacion y dimensionamiento optimo de d-statcoms y gd renovalbes en redes de distribucion usando un enfoque estocastico.
[Hui Chen, 2022] Hui Chen, Lixue Wang, Y. G. H. H. H. H. J. Z. (2022). Distributed photovoltaic power cluster partition based on dpc clustering algorithm.
[Iswan, 2017] Iswan, I. G. (2017). Principal component analysis and cluster analysis for development of electrical system. 2017 15th Intl. Conf. QiR: Intl. Symp. Elec. and Com. Eng.
[Jaime D. Pinzón, 2023] Jaime D. Pinzón, Francisco Santamaria, A. E. (2023). Parallel computing- based pmu measurements big data query tool to analyze the colombian power system dynamic performance.
[Jianliang Meng, 2012] Jianliang Meng, Y. Y. (2012). The application of improved decision tree algorithm in the electric power marketing. orld Automation Congress 2012.
[Joseline Sánchez Solís, 2022] Joseline Sánchez Solís, M. C. J. (2022). Estado del arte de la predicción de variables en sistemas de ingeniería eléctrica basada en inteligencia artificial. e-Ciencias de la Información, 12(1):59–78.
[Kamoona et al., 2023] Kamoona, A., Song, H., Keshavarzian, K., Levy, K., Jalili, M., Wilkinson, R., Yu, X., McGrath, B., and Meegahapola, L. (2023). Machine learning based energy demand prediction. Energy Reports, 9:171–176. The 8th International Conference on Sustainable and Renewable Energy Engineering.
[Masooma Nazari and Musilek, 2023] Masooma Nazari, A. H. and Musilek, P. (2023). Aplicaciones de los métodos de agrupamiento para diferentes aspectos de los vehículos eléctricos. electronics, 12(4).
[M.E. and M., 2024] M.E., S. and M., O. K. (2024). Smart hydropower management: utilizing machine learning and deep learning method to enhance dam’s energy generation efficiency. Neural Comput & Applic, 36:11195–11211.
[Mund, 2017] Mund, S. K. (2017). How does dbscan clustering algorithm work? Accedido el 25 Octubre 2024.
[Ordoñez et al., 2020] Ordoñez, L. E., León, D. A., Bucheli, V., and Ordoñez, H. (2020). Predicción de radiación solar en sistemas fotovoltaicos utilizando técnicas de aprendizaje automático. Revista Facultad de Ingenieria, 29.
[Oviedo, 2024] Oviedo, U. (2024). k-means algorithm applied to image classification and processing.
[Pang-Ning Tan, 2014] Pang-Ning Tan, Michael Steinbach, V. K. (2014). Introduction to Data Mining. Pearson.
[Plazas Niño, 2021] Plazas Niño, F. (2021). IntroducciÓn al anÁlisis clÚster: Una aplicaciÓn en la clasificaciÓn de campos petroleros.
[Portafolio, 2020] Portafolio (2020). El impacto del covid en el mercado eléctrico colombiano. Portafolio.
[Redondo, 2021] Redondo, E. C. M. (2021). Caracterización estadística de la matriz óptima de generación eléctrica colombiana.
[Resende et al., 2022] Resende, N., Santos, J., Josué, I., Barros, N., and Cardoso, S. (2022). Compa- ring spatio-temporal dynamics of functional and taxonomic diversity of phytoplankton community in tropical cascading reservoirs. Frontiers in Environmental Science, 10:903180.
[Ribeiro et al., 2023] Ribeiro, J., dos Santos Dias, C., de Stefano Piedade, S., Vale, G., and de Jesus Silva Oliveira, V. (2023). Application of cluster analysis to electricity generation data from the santo antônio hydroelectric plant in the state of rondônia, brazil. In Proceedings of the 8th Brazilian Technology Symposium (BTSym’22), volume 353 of Smart Innovation, Systems and Technologies. Springer, Cham.
[Sessa et al., 2021] Sessa, V., Assoumou, E., Bossy, M., and Simões, S. G. (2021). Analyzing the applicability of random forest-based models for the forecast of run-of-river hydropower generation. Clean Technologies, 3(4):858–880.
[Shahriari, 2013] Shahriari, H., R. H. . H. M. (2013). Image segmentation for hydrothermal alteration mapping using pca and concentration–area fractal model. Nat Resour Res, 22:191–206.
[Springer, ] Springer. Accedido el 26 Octubre 2024.
[Tong Jiahong, 2021] Tong Jiahong, Wu Zhigang, L. X. (2021). Load curve clustering based on feature engineering and uniform manifold approximation.
[UPME, 2024] UPME (2024). Proyecciones de demanda. Accedido el 24 Julio 2024.
[Veeramsetty et al., 2022] Veeramsetty, V., Rakesh Chandra, D., Grimaccia, F., and Mussetta, M. (2022). Short term electric power load forecasting using principal component analysis and recurrent neural networks. Forecasting, 4(1):149–164.
[Xm, a] Xm. Equipoanaliticaxm. Accedido el 24 Julio 2024.
[Xm, b] Xm. Xm. Accedido el 24 Julio 2024.
[Xm, c] Xm. Xm sinergox. Accedido el 24 Julio 2024.
[Xm, d] Xm. ¿que hacemos? Accedido el 24 Julio 2024.
[Xm, e] Xm. ¿quienes somos? Accedido el 24 Julio 2024.
[Zhu et al., 2014] Zhu, W., Zhou, J., Xia, X., Li, C., Xiao, J., Xiao, H., and Zhang, X. (2014). A novel kica–pca fault detection model for condition process of hydroelectric generating unit. Measurement, 58:197–206.
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 58 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.region.none.fl_str_mv Pereira, Risaralda, Colombia
dc.publisher.none.fl_str_mv Universidad Tecnológica de Pereira
dc.publisher.program.none.fl_str_mv Ingeniería Eléctrica
dc.publisher.faculty.none.fl_str_mv Facultad de Ingenierías
dc.publisher.place.none.fl_str_mv Pereira
publisher.none.fl_str_mv Universidad Tecnológica de Pereira
institution Universidad Tecnológica de Pereira
bitstream.url.fl_str_mv https://repositorio.utp.edu.co/bitstreams/8e4db4a9-474d-4ac5-b6ca-27232d2d82e5/download
https://repositorio.utp.edu.co/bitstreams/2c83b01e-9358-493c-a988-bfca717e8dbd/download
https://repositorio.utp.edu.co/bitstreams/abe1c3e8-69a5-49a1-b9e9-3c5bc2257a3e/download
https://repositorio.utp.edu.co/bitstreams/dddc8ff7-d371-49b3-9d18-c1a361fae184/download
https://repositorio.utp.edu.co/bitstreams/9194cd19-d89e-4d04-bdb6-e087ce05974d/download
bitstream.checksum.fl_str_mv 1027e3ebdf133568f99b9236fc57beaf
73a5432e0b76442b22b026844140d683
9d65ed3d12a7ecd612784e2e6d0bc63d
82c34d09a29d30fe9249cbe94881d082
21ad6e65950685cf46607c05773b49bd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica de Pereira
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1831930653681123328
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Manifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de la Ley 23 de 1982. En concordancia suscribo (suscribimos) este documento en el momento mismo que hago (hacemos) entrega de mi (nuestra) OBRA a la Biblioteca “Jorge Roa Martínez” de la Universidad Tecnológica de Pereira. Manifiesto (manifestamos) que la OBRA objeto de la presente autorizaciónhttps://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessEscobar Vargas, Laura MónicaRivera Heredia, Elkin Aldanir2025-04-11T18:10:44Z2025-04-11T18:10:44Z2024https://hdl.handle.net/11059/15711Universidad Tecnológica de PereiraRepositorio Universidad Tecnológica de Pereirahttps://repositorio.utp.edu.co/home: figuras, tablasEste proyecto se centra en el proceso de análisis de datos aplicado al despacho hidrotérmico, abarcando todas las fases: desde la extracción y clasificación de la información hasta la depuración de datos que no aportan valor. El problema de despacho hidrotérmico, sea desde el enfoque del planeamiento o la operación es de gran importancia para la mejora y actualización de los sistemas eléctricos, por lo tanto exige identificar las variables más relevantes y descubrir comportamientos claves, con el objetivo de mejorar la calidad de los resultados arrojados por técnicas no exactas, estocásticas o heurísticas, dada la alta complejidad matemática de estos problemas y su gran exigencia en términos computacionales. En este contexto, se aplican técnicas de machine learning con el fin de reconocer patrones diferenciales en la información proporcionada por XM a travez de su API (Application Program Interface). El flujo de trabajo completo, desde la preparación de los datos hasta el modelado y la interpretación de resultados, se ilustra con código en Python y el uso de librerías especializadas en análisis de datos, destacando el potencial de la analítica para optimizar la toma de decisiones en sistemas de generación eléctrica complejos.Índice general -- 4 Índice de tablas -- 5 Índice de figuras -- 6 1. Introducción -- 7 1.1. Planteamiento del problema -- 8 1.2. Justificación -- 10 1.3. Objetivos -- 11 1.3.1. Objetivo general -- 11 1.3.2. Objetivos específicos -- 12 1.4. Estado del arte -- 12 2. Funcionamiento de la plataforma API -- 15 3. Métodos de clusterización 23 3.1. PCA (Principal Components Analysis) -- 24 3.1.1. Código PCA (Principal Components Analysis) -- 26 3.1.2. Análisis Cluster -- 29 3.1.3. k-means -- 30 3.1.4. DBSCAN (Density-based spatial clustering of applications with noise) -- 31 4. Pruebas y Resultados -- 44 5. Conclusiones y trabajos futuros -- 52PregradoIngeniero(a) Electricista58 páginasapplication/pdfspaUniversidad Tecnológica de PereiraIngeniería EléctricaFacultad de IngenieríasPereira530 - Física::537 - Electricidad y electrónicaAlmacenamiento de datosAnálisis de la informaciónPython (Lenguaje de programación de computadores)2. Ingeniería y Tecnología::2B. Ingenierías Eléctrica, Electrónica e InformáticaAnálisis de datosClusteringPythonProgramaciónODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todosAnálisis de datos de generación eléctrica con Python y la interfaz de programación de aplicaciones XMTrabajo de grado - Pregradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesisPereira, Risaralda, Colombia[Adhau et al., 2014] Adhau, S., Moharil, R., and Adhau, P. (2014). K-means clustering technique applied to availability of micro hydro power. Sustainable Energy Technologies and Assessments, 8:191–201.[Akanksha Shukla, 2016] Akanksha Shukla, Kusum Verma, R. K. (2016). Consumer perspective based placement of electric vehicle charging stations by clustering techniques. 978-1-4799-5141- 3/14/31,00.[An et al., 2008] An, X. et al. (2008). Vibration fault diagnosis for hydraulic generator units with pattern recognition and cluster analysis. In Wireless Communications, Networking and Mobile Computing, 2008. WiCOM’08. 4th International Conference on. IEEE. Conference Paper.[Arslan et al., 2018] Arslan, Y., Küçük, D., Eren, S., and Birturk, A. (2018). Clustering river basins using time-series data mining on hydroelectric energy generation. pages 103–115.[Atiqur Rehman et al., 2024] Atiqur Rehman, Muhammad Akhtar Ali, Aurangzeb Khan, Muham- mad Umair Khan, Shafqat Ullah Khan, and Liaqat Ali (2024). Machine learning para la predicción de energía eléctrica: una revisión sistemática de literatura. In Ingeniería Y Competitividad, volume 26, pages 1–14.[Atiqur Rehman, 2020] Atiqur Rehman, Muhammad Akhtar Ali, A. K. M. U. K. S. U. K. L. A. (2020). Performance analysis of pca, sparse pca, kernel pca and incremental pca algorithms for heart failure prediction.[Bishop, 2006] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.[Burgas et al., 2014] Burgas, L., Melendez, J., and Colomer, J. (2014). Principal component analysis for monitoring electrical consumption of academic buildings. Energy Procedia, 62:555–564. 6th International Conference on Sustainability in Energy and Buildings, SEB-14.[College, ] College, J. Dbscan and misc. clustering topics. Accedido el 26 Octubre 2024.[CRETULESCU, 2019] CRETULESCU, R. G. (2019). Dbscan algorithm for document clustering. Sciendo.[Duchesne et al., 2018] Duchesne, L., Karangelos, E., and Wehenkel, L. (2018). Using machine learning to enable probabilistic reliability assessment in operation planning. In 2018 Power Systems Computation Conference (PSCC), pages 1–8.[Duchesne et al., 2021] Duchesne, L., Karangelos, E., and Wehenkel, L. (2021). Machine learning in photovoltaic systems. In Universidad de los Andes, pages 1–18.[Ekanayake et al., 2021] Ekanayake, P., Wickramasinghe, L., Jayasinghe, J., and Rathnayake, U. (2021). Regression-based prediction of power generation at samanalawewa hydropower plant in sri lanka using machine learning. Mathematical Problems in Engineering, 2021:1–12.[gate, ] gate, R. Superpixel-based segmentation of glottal area from videolaryngoscopy images. Accedido el 26 Octubre 2024.[Gauci et al., 2020] Gauci, J., Camilleri, K. P., and Falzon, O. (2020). Principal component analysis for dynamic thermal video analysis. Infrared Physics Technology, 109:103359.[Herve Abdi, 2010] Herve Abdi, L. J. W. (2010). Principal component analysis. Wiley Interdiscipli- nary Reviews: Computational Statistics.[Hoyos, 2024] Hoyos, S. G. (2024). Ubicacion y dimensionamiento optimo de d-statcoms y gd renovalbes en redes de distribucion usando un enfoque estocastico.[Hui Chen, 2022] Hui Chen, Lixue Wang, Y. G. H. H. H. H. J. Z. (2022). Distributed photovoltaic power cluster partition based on dpc clustering algorithm.[Iswan, 2017] Iswan, I. G. (2017). Principal component analysis and cluster analysis for development of electrical system. 2017 15th Intl. Conf. QiR: Intl. Symp. Elec. and Com. Eng.[Jaime D. Pinzón, 2023] Jaime D. Pinzón, Francisco Santamaria, A. E. (2023). Parallel computing- based pmu measurements big data query tool to analyze the colombian power system dynamic performance.[Jianliang Meng, 2012] Jianliang Meng, Y. Y. (2012). The application of improved decision tree algorithm in the electric power marketing. orld Automation Congress 2012.[Joseline Sánchez Solís, 2022] Joseline Sánchez Solís, M. C. J. (2022). Estado del arte de la predicción de variables en sistemas de ingeniería eléctrica basada en inteligencia artificial. e-Ciencias de la Información, 12(1):59–78.[Kamoona et al., 2023] Kamoona, A., Song, H., Keshavarzian, K., Levy, K., Jalili, M., Wilkinson, R., Yu, X., McGrath, B., and Meegahapola, L. (2023). Machine learning based energy demand prediction. Energy Reports, 9:171–176. The 8th International Conference on Sustainable and Renewable Energy Engineering.[Masooma Nazari and Musilek, 2023] Masooma Nazari, A. H. and Musilek, P. (2023). Aplicaciones de los métodos de agrupamiento para diferentes aspectos de los vehículos eléctricos. electronics, 12(4).[M.E. and M., 2024] M.E., S. and M., O. K. (2024). Smart hydropower management: utilizing machine learning and deep learning method to enhance dam’s energy generation efficiency. Neural Comput & Applic, 36:11195–11211.[Mund, 2017] Mund, S. K. (2017). How does dbscan clustering algorithm work? Accedido el 25 Octubre 2024.[Ordoñez et al., 2020] Ordoñez, L. E., León, D. A., Bucheli, V., and Ordoñez, H. (2020). Predicción de radiación solar en sistemas fotovoltaicos utilizando técnicas de aprendizaje automático. Revista Facultad de Ingenieria, 29.[Oviedo, 2024] Oviedo, U. (2024). k-means algorithm applied to image classification and processing.[Pang-Ning Tan, 2014] Pang-Ning Tan, Michael Steinbach, V. K. (2014). Introduction to Data Mining. Pearson.[Plazas Niño, 2021] Plazas Niño, F. (2021). IntroducciÓn al anÁlisis clÚster: Una aplicaciÓn en la clasificaciÓn de campos petroleros.[Portafolio, 2020] Portafolio (2020). El impacto del covid en el mercado eléctrico colombiano. Portafolio.[Redondo, 2021] Redondo, E. C. M. (2021). Caracterización estadística de la matriz óptima de generación eléctrica colombiana.[Resende et al., 2022] Resende, N., Santos, J., Josué, I., Barros, N., and Cardoso, S. (2022). Compa- ring spatio-temporal dynamics of functional and taxonomic diversity of phytoplankton community in tropical cascading reservoirs. Frontiers in Environmental Science, 10:903180.[Ribeiro et al., 2023] Ribeiro, J., dos Santos Dias, C., de Stefano Piedade, S., Vale, G., and de Jesus Silva Oliveira, V. (2023). Application of cluster analysis to electricity generation data from the santo antônio hydroelectric plant in the state of rondônia, brazil. In Proceedings of the 8th Brazilian Technology Symposium (BTSym’22), volume 353 of Smart Innovation, Systems and Technologies. Springer, Cham.[Sessa et al., 2021] Sessa, V., Assoumou, E., Bossy, M., and Simões, S. G. (2021). Analyzing the applicability of random forest-based models for the forecast of run-of-river hydropower generation. Clean Technologies, 3(4):858–880.[Shahriari, 2013] Shahriari, H., R. H. . H. M. (2013). Image segmentation for hydrothermal alteration mapping using pca and concentration–area fractal model. Nat Resour Res, 22:191–206.[Springer, ] Springer. Accedido el 26 Octubre 2024.[Tong Jiahong, 2021] Tong Jiahong, Wu Zhigang, L. X. (2021). Load curve clustering based on feature engineering and uniform manifold approximation.[UPME, 2024] UPME (2024). Proyecciones de demanda. Accedido el 24 Julio 2024.[Veeramsetty et al., 2022] Veeramsetty, V., Rakesh Chandra, D., Grimaccia, F., and Mussetta, M. (2022). Short term electric power load forecasting using principal component analysis and recurrent neural networks. Forecasting, 4(1):149–164.[Xm, a] Xm. Equipoanaliticaxm. Accedido el 24 Julio 2024.[Xm, b] Xm. Xm. Accedido el 24 Julio 2024.[Xm, c] Xm. Xm sinergox. Accedido el 24 Julio 2024.[Xm, d] Xm. ¿que hacemos? Accedido el 24 Julio 2024.[Xm, e] Xm. ¿quienes somos? Accedido el 24 Julio 2024.[Zhu et al., 2014] Zhu, W., Zhou, J., Xia, X., Li, C., Xiao, J., Xiao, H., and Zhang, X. (2014). A novel kica–pca fault detection model for condition process of hydroelectric generating unit. Measurement, 58:197–206.Comunidad académica y científica, Estudiantes, Docentes, InvestigadoresPublicationORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf998133https://repositorio.utp.edu.co/bitstreams/8e4db4a9-474d-4ac5-b6ca-27232d2d82e5/download1027e3ebdf133568f99b9236fc57beafMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.utp.edu.co/bitstreams/2c83b01e-9358-493c-a988-bfca717e8dbd/download73a5432e0b76442b22b026844140d683MD52THUMBNAILImagen2.pngimage/png61064https://repositorio.utp.edu.co/bitstreams/abe1c3e8-69a5-49a1-b9e9-3c5bc2257a3e/download9d65ed3d12a7ecd612784e2e6d0bc63dMD53Trabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg8567https://repositorio.utp.edu.co/bitstreams/dddc8ff7-d371-49b3-9d18-c1a361fae184/download82c34d09a29d30fe9249cbe94881d082MD55TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain97581https://repositorio.utp.edu.co/bitstreams/9194cd19-d89e-4d04-bdb6-e087ce05974d/download21ad6e65950685cf46607c05773b49bdMD5411059/15711oai:repositorio.utp.edu.co:11059/157112025-04-12 05:01:56.894https://creativecommons.org/licenses/by-nc-nd/4.0/Manifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de la Ley 23 de 1982. En concordancia suscribo (suscribimos) este documento en el momento mismo que hago (hacemos) entrega de mi (nuestra) OBRA a la Biblioteca “Jorge Roa Martínez” de la Universidad Tecnológica de Pereira. Manifiesto (manifestamos) que la OBRA objeto de la presente autorizaciónopen.accesshttps://repositorio.utp.edu.coRepositorio de la Universidad Tecnológica de Pereirabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K