An information theoretic learning framework based on Renyi’s α entropy for brain effective connectivity estimation
The interactions among neural populations distributed across different brain regions are at the core of cognitive and perceptual processing. Therefore, the ability of studying the flow of information within networks of connected neural assemblies is of fundamental importance to understand such proce...
- Autores:
-
De La Pava Panche , Ivan
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Pereira
- Repositorio:
- Repositorio Institucional UTP
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utp.edu.co:11059/14117
- Acceso en línea:
- https://hdl.handle.net/11059/14117
https://repositorio.utp.edu.co/home
- Palabra clave:
- 620 - Ingeniería y operaciones afines
Kernel - Operating systems
Information entropy
Data compression
Brain connectivity
effective connectivity
transfer entropy
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
UTP2_456a40552037d3a8b922fc5a3a3d2885 |
---|---|
oai_identifier_str |
oai:repositorio.utp.edu.co:11059/14117 |
network_acronym_str |
UTP2 |
network_name_str |
Repositorio Institucional UTP |
repository_id_str |
|
dc.title.eng.fl_str_mv |
An information theoretic learning framework based on Renyi’s α entropy for brain effective connectivity estimation |
title |
An information theoretic learning framework based on Renyi’s α entropy for brain effective connectivity estimation |
spellingShingle |
An information theoretic learning framework based on Renyi’s α entropy for brain effective connectivity estimation 620 - Ingeniería y operaciones afines Kernel - Operating systems Information entropy Data compression Brain connectivity effective connectivity transfer entropy |
title_short |
An information theoretic learning framework based on Renyi’s α entropy for brain effective connectivity estimation |
title_full |
An information theoretic learning framework based on Renyi’s α entropy for brain effective connectivity estimation |
title_fullStr |
An information theoretic learning framework based on Renyi’s α entropy for brain effective connectivity estimation |
title_full_unstemmed |
An information theoretic learning framework based on Renyi’s α entropy for brain effective connectivity estimation |
title_sort |
An information theoretic learning framework based on Renyi’s α entropy for brain effective connectivity estimation |
dc.creator.fl_str_mv |
De La Pava Panche , Ivan |
dc.contributor.author.none.fl_str_mv |
De La Pava Panche , Ivan |
dc.subject.ddc.none.fl_str_mv |
620 - Ingeniería y operaciones afines |
topic |
620 - Ingeniería y operaciones afines Kernel - Operating systems Information entropy Data compression Brain connectivity effective connectivity transfer entropy |
dc.subject.other.none.fl_str_mv |
Kernel - Operating systems Information entropy Data compression |
dc.subject.proposal.eng.fl_str_mv |
Brain connectivity effective connectivity transfer entropy |
description |
The interactions among neural populations distributed across different brain regions are at the core of cognitive and perceptual processing. Therefore, the ability of studying the flow of information within networks of connected neural assemblies is of fundamental importance to understand such processes. In that regard, brain connectivity measures constitute a valuable tool in neuroscience. They allow assessing functional interactions among brain regions through directed or non-directed statistical dependencies estimated from neural time series. Transfer entropy (TE) is one such measure. It is an effective connectivity estimation approach based on information theory concepts and statistical causality premises. It has gained increasing attention in the literature because it can capture purely nonlinear directed interactions, and is model free. That is to say, it does not require an initial hypothesis about the interactions present in the data. These properties make it an especially convenient tool in exploratory analyses. However, like any information-theoretic quantity, TE is defined in terms of probability distributions that in practice need to be estimated from data. A challenging task, whose outcome can significantly affect the results of TE. Also, it lacks a standard spectral representation, so it cannot reveal the local frequency band characteristics of the interactions it detects. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-05-24T21:57:47Z |
dc.date.available.none.fl_str_mv |
2022-05-24T21:57:47Z |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11059/14117 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Pereira |
dc.identifier.reponame.none.fl_str_mv |
Repositorio institucional Universidad Tecnológica de Pereira |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.utp.edu.co/home |
url |
https://hdl.handle.net/11059/14117 https://repositorio.utp.edu.co/home |
identifier_str_mv |
Universidad Tecnológica de Pereira Repositorio institucional Universidad Tecnológica de Pereira |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
Ali Kareem Abbas, Ghasem Azemi, Sajad Amiri, Samin Ravanshadi, and Amir Omidvarnia. Effective connectivity in brain networks estimated using eeg signals is altered in children with ADHD. Computers in Biology and Medicine, 134:1–9, 2021. (page 1) U Rajendra Acharya, Hamido Fujita, Vidya K Sudarshan, Shreya Bhat, and Joel EW Koh. Application of entropies for automated diagnosis of epilepsy using EEG signals: a review. Knowledge-Based Systems, 88:85–96, 2015. Amirmasoud Ahmadi, Saeideh Davoudi, Mahsa Behroozi, and Mohammad Reza Daliri. Decoding covert visual attention based on phase transfer entropy. Physiology & behavior, 222:112932, 2020. Hirotugu Akaike. A new look at the statistical model identification. IEEE transactions on automatic control, 19(6):716–723, 1974. Juhan Aru, Jaan Aru, Viola Priesemann, Michael Wibral, Luiz Lana, Gordon Pipa, Wolf Singer, and Raul Vicente. Untangling cross-frequency coupling in neuroscience. Current opinion in neurobiology, 31:51–61, 2015. Alan Baddeley. Working memory: theories, models, and controversies. Annual review of psychology, 63:1–29, 2012. Hanieh Bakhshayesh, Sean P Fitzgibbon, Azin S Janani, Tyler S Grummett, and Kenneth J Pope. Detecting connectivity in EEG: a comparative study of data-driven effective connectivity measures. Computers in Biology and Medicine, 111:103329, 2019. Lionel Barnett, Adam B Barrett, and Anil K Seth. Granger causality and transfer entropy are equivalent for gaussian variables. Physical review letters, 103(23):238701, 2009. (page 12) André M Bastos André M Bastos and Jan-Mathijs Schoffelen. A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Frontiers in systems neuroscience, 9:175, 2016. Michel Besserve, Bernhard Schölkopf, Nikos K Logothetis, and Stefano Panzeri. Causal relationships between frequency bands of extracellular signals in visual cortex revealed by an information theoretic analysis. Journal of computational neuroscience, 29(3): 547–566, 2010. (pages 5, 8, 20, 21, and 25) Liangyue Cao. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena, 110(1-2):43–50, 1997. (pages 42, 68, and 120) Sezen Cekic, Didier Grandjean, and Olivier Renaud. Time, frequency, and time-varying granger-causality measures in neuroscience. Statistics in medicine, 37(11):1910–1931, 2018. Xiaoling Chen, Yuanyuan Zhang, Shengcui Cheng, and Ping Xie. Transfer spectral entropy and application to functional corticomuscular coupling. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(5):1092–1102, 2019. (pages 5, 7, 8, 19, and 63) Ning Cheng, Qun Li, Sitong Wang, Rubin Wang, and Tao Zhang. Permutation mutual information: a novel approach for measuring neuronal phase-amplitude coupling. Brain topography, 31(2):186–201, 2018. (pages 8 and 20) Michael X Cohen. Comparison of different spatial transformations applied to EEG data: a case study of error processing. International Journal of Psychophysiology, 97 (3):245–257, 2015. (pages 2, 28, and 113) Mike X Cohen. Analyzing neural time series data: theory and practice. MIT press, 2014. (pages 113 and 114) DF Collazos-Huertas, AM Álvarez-Meza, CD Acosta-Medina, GA Castaño-Duque, and G Castellanos-Dominguez. CNN-based framework using spatial dropping for enhanced interpretation of neural activity in motor imagery classification. Brain Informatics, 7,8(1):1–13, 2020. (pages 27, 67, 91, and 94) Christos Constantinidis and Torkel Klingberg. The neuroscience of working memory capacity and training. Nature Reviews Neuroscience, 17(7):438–449, 2016. (page 55) Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for learning kernels based on centered alignment. The Journal of Machine Learning Research, 13: 795–828, 2012. (page 117) Jolien Cremers and Irene Klugkist. One direction? a tutorial for circular data analysis using R with examples in cognitive psychology. Frontiers in psychology, 9:2040, 2018. (page 7) Fernando Lopes Da Silva. EEG: origin and measurement. In EEG-fMRI, pages 19–38. Springer, 2009. (pages 1 and 5) Zhongxiang Dai, Joshua De Souza, Julian Lim, Paul M Ho, Yu Chen, Junhua Li, Nitish Thakor, Anastasios Bezerianos, and Yu Sun. EEG cortical connectivity analysis of working memory reveals topological reorganization in theta and alpha bands. Frontiers in human neuroscience, 11:237, 2017. (pages 28, 30, and 54) Jonathan Daume, Thomas Gruber, Andreas K Engel, and Uwe Friese. Phase-amplitude coupling and long-range phase synchronization reveal frontotemporal interactions during visual working memory. Journal of Neuroscience, 37(2):313–322, 2017. (pages 8 and 30) Olivier David and Karl J Friston. A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage, 20(3):1743–1755, 2003. (pages 60, 63, and 65) Olivier David, Diego Cosmelli, and Karl J Friston. Evaluation of different measures of functional connectivity using a neural mass model. Neuroimage, 21(2):659–673, 2004. (pages 63, 122, and 123) Ivan De La Pava Panche, Andres M Alvarez-Meza, and Alvaro Orozco-Gutierrez. A data-driven measure of effective connectivity based on renyi’s α-entropy. Frontiers in neuroscience, 13:1277, 2019. (pages 24, 51, 61, 68, 74, 75, 78, 96, and 99) Iván De La Pava Panche, Andrés Álvarez-Meza, Paula Marcela Herrera Gómez, David Cárdenas-Peña, Jorge Iván Ríos Patiño, and Álvaro Orozco-Gutiérrez. Kernel-based phase transfer entropy with enhanced feature relevance analysis for brain computer interfaces. Applied Sciences, 11(15):6689, 2021a. (pages 25 and 117) Iván De La Pava Panche, Viviana Gómez-Orozco, Andrés Álvarez-Meza, David Cárdenas-Peña, and Álvaro Orozco-Gutiérrez. Estimating directed phase-amplitude interactions from EEG data through kernel-based phase transfer entropy. Applied Sciences, 11(21):9803, 2021b. (pages 25 and 117) Stefan Debener, Falk Minow, Reiner Emkes, Katharina Gandras, and Maarten De Vos. How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology, 49(11):1617–1621, 2012. (pages 2 and 71) Stavros Dimitriadis, Yu Sun, Nikolaos Laskaris, Nitish Thakor, and Anastasios Bezerianos. Revealing cross-frequency causal interactions during a mental arithmetic task through symbolic transfer entropy: a novel vector-quantization approach. IEEE Trans Neural Syst Rehabil Eng, 24(10):1017–1028, 2016a. (pages 1, 3, 5, 6, 15, 24, 30, 37, 42, 46, 57, 62, 78, 82, and 97) Stavros I Dimitriadis, Nikolaos A Laskaris, Vasso Tsirka, Sofia Erimaki, Michael Vourkas, Sifis Micheloyannis, and Spiros Fotopoulos. A novel symbolization scheme for multichannel recordings with emphasis on phase information and its application to differentiate EEG activity from different mental tasks. Cognitive neurodynamics, 6 (1):107–113, 2012 Stavros I Dimitriadis, Yu Sun, Nitish V Thakor, and Anastasios Bezerianos. Causal interactions between frontalθ–parieto-occipitalα2 predict performance on a mental arithmetic task. Frontiers in human neuroscience, 10:454, 2016b. (pages 3, 8, 20, and 30) Frank H Duffy, Aditi Shankardass, Gloria B McAnulty, and Heidelise Als. A unique pattern of cortical connectivity characterizes patients with attention deficit disorders: a large electroencephalographic coherence study. BMC medicine, 15(1):51, 2017. (page 1 Ali Ekhlasi, Ali Motie Nasrabadi, and Mohammad Reza Mohammadi. Direction of information flow between brain regions in ADHD and healthy children based on EEG by using directed phase transfer entropy. Cognitive Neurodynamics, 15(6):975–986, 2021. (page 19) Basem Elasuty and Seif Eldawlatly. Dynamic bayesian networks for EEG motor imagery feature extraction. In 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), pages 170–173. IEEE, 2015. (pages 27, 52, and 75) Andreas K Engel, Christian Gerloff, Claus C Hilgetag, and Guido Nolte. Intrinsic coupling modes: multiscale interactions in ongoing brain activity. Neuron, 80(4):867–886, 2013 Fernández-Ramírez, A Álvarez-Meza, EM Pereira, A Orozco-Gutiérrez, and G Castellanos-Dominguez. Video-based social behavior recognition based on kernel relevance analysis. The Visual Computer, 36(8):1535–1547, 2020. (pages 25 and 118) Karl J Friston. Functional and effective connectivity: a review. Brain connectivity, 1 (1):13–36, 2011. (pages 1 and 4) Yu Fukuda, Teresa Katthagen, Lorenz Deserno, Leila Shayegan, Jakob Kaminski, Andreas Heinz, and Florian Schlagenhauf. Reduced parietofrontal effective connectivity during a working-memory task in people with high delusional ideation. Journal of Psychiatry and Neuroscience, 44(3):195–204, 2019. (page 1) Steven Galindo-Noreña, David Cárdenas-Peña, and Álvaro Orozco-Gutierrez. Multiple kernel stein spatial patterns for the multiclass discrimination of motor imagery tasks. Applied Sciences, 10(23):8628, 2020. (page 27) Jianbo Gao, Jing Hu, Thomas Buckley, Keith White, and Chris Hass. Shannon and renyi entropies to classify effects of mild traumatic brain injury on postural sway. PLoS One, 6(9):e24446, 2011. (page 34) Pedro García and R Mujica. A local approach for information transfer. Communications in Nonlinear Science and Numerical Simulation, 70:326–333, 2019. (pages 6 and 14) Daniel Guillermo García-Murillo, Andres Alvarez-Meza, and German Castellanos- Dominguez. Single-trial kernel-based functional connectivity for enhanced feature extraction in motor-related tasks. Sensors, 21(8):2750, 2021. (pages 26, 27, 74, and 76) Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O’Reilly Media, 2019. (pages 96, 106, 108, 109, and 117) Matthieu Gilson, Gorka Zamora-López, Vicente Pallarés, Mohit H Adhikari, Mario Senden, Adrià Tauste Campo, Dante Mantini, Maurizio Corbetta, Gustavo Deco, and Andrea Insabato. Model-based whole-brain effective connectivity to study distributed cognition in health and disease. Network Neuroscience, 4(2):338–373, 2020. (page 1) Luis Gonzalo Sanchez Giraldo, Murali Rao, and Jose C Principe. Measures of entropy from data using infinitely divisible kernels. IEEE Transactions on Information Theory, 61(1):535–548, 2015. (pages 5, 6, 13, 17, 24, 34, 43, 58, 68, 87, 106, 110, and 111) V Gómez, A Álvarez, P Herrera, G Castellanos, and A Orozco. Short time EEG connectivity features to support interpretability of MI discrimination. In Iberoamerican Congress on Pattern Recognition, pages 699–706. Springer, 2018. (pages 27, 28, 52, and 75) Anmin Gong, Jianping Liu, Si Chen, and Yunfa Fu. Time–frequency cross mutual information analysis of the brain functional networks underlying multiclass motor imagery. Journal of motor behavior, 50(3):254–267, 2018. (pages 54 and 68) Barbara Hammer and Kai Gersmann. A note on the universal approximation capability of support vector machines. neural processing letters, 17(1):43–53, 2003. (page 109 Mahmoud Hassan and FabriceWendling. Aiming for high resolution of brain networks in time and space electroencephalography source connectivity. IEEE Signal Processing Magazine, 35(3):81–96, 2018. (pages 1 and 2) Mahmoud Hassan, Olivier Dufor, Isabelle Merlet, Claude Berrou, and Fabrice Wendling. EEG source connectivity analysis: from dense array recordings to brain networks. PloS one, 9(8):e105041, 2014. (page 2) Mahmoud Hassan, Pascal Benquet, Arnaud Biraben, Claude Berrou, Olivier Dufor, and FabriceWendling. Dynamic reorganization of functional brain networks during picture naming. Cortex, 73:276–288, 2015. (page 2) Stefan Haufe, Vadim V Nikulin, Klaus-Robert Müller, and Guido Nolte. A critical assessment of connectivity measures for EEG data: a simulation study. Neuroimage, 64:120–133, 2013. (page 44) Sébastien Hétu, Mathieu Grégoire, Arnaud Saimpont, Michel-Pierre Coll, Fanny Eugène, Pierre-Emmanuel Michon, and Philip L Jackson. The neural network of motor imagery: an ale meta-analysis. Neuroscience & Biobehavioral Reviews, 37(5):930–949, 2013. (pages 54 and 78) Arjan Hillebrand, Prejaas Tewarie, Edwin Van Dellen, Meichen Yu, Ellen WS Carbo, Linda Douw, Alida A Gouw, Elisabeth CW Van Straaten, and Cornelis J Stam. Direction of information flow in large-scale resting-state networks is frequency-dependent. Proceedings of the National Academy of Sciences, 113(14):3867–3872, 2016. (pages 7 and 19) Alexandre Hyafil, Anne-Lise Giraud, Lorenzo Fontolan, and Boris Gutkin. Neural crossfrequency coupling: connecting architectures, mechanisms, and functions. Trends in neurosciences, 38(11):725–740, 2015. (page 5) Haiteng Jiang, Ali Bahramisharif, Marcel AJ van Gerven, and Ole Jensen. Measuring directionality between neuronal oscillations of different frequencies. Neuroimage, 118: 359–367, 2015. (pages 7, 8, 18, 20, 62, 70, 84, 85, 88, 94, and 102) Viktor Jirsa and Viktor Müller. Cross-frequency coupling in real and virtual brain networks. Frontiers in computational neuroscience, 7:1–25, 2013. (pages 8, 18, and 19) Elizabeth L Johnson, Jenna N Adams, Anne-Kristin Solbakk, Tor Endestad, Pål G Larsson, Jugoslav Ivanovic, Torstein R Meling, Jack J Lin, and Robert T Knight. Dynamic frontotemporal systems process space and time in working memory. PLoS biology, 16(3):e2004274, 2018. (pages 3, 8, 19, 29, 30, 57, 67, 74, 78, 82, 91, 95, and 97) Elizabeth L Johnson, David King-Stephens, Peter B Weber, Kenneth D Laxer, Jack J Lin, and Robert T Knight. Spectral imprints of working memory for everyday associations in the frontoparietal network. Frontiers in systems neuroscience, 12:65, 2019. (pages 28, 30, 67, 74, 82, 95, and 97) Huan Kang, Xiaofeng Zhang, and Guangbin Zhang. Phase permutation entropy: a complexity measure for nonlinear time series incorporating phase information. Physica A: Statistical Mechanics and its Applications, 568:125686, 2021. (pages 7 and 15) Katherine H Karlsgodt, David C Glahn, Theo GM van Erp, Sebastian Therman, Matti Huttunen, Marko Manninen, Jaakko Kaprio, Mark S Cohen, Jouko Lönnqvist, and Tyrone D Cannon. The relationship between performance and fMRI signal during working memory in patients with schizophrenia, unaffected co-twins, and control subjects. Schizophrenia research, 89(1-3):191–197, 2007. (page 104) Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information. Physical review E, 69(6):066138, 2004. (pages 6, 15, 24, and 62) Rafal Kus, Maciej Kaminski, and Katarzyna J Blinowska. Determination of EEG activity propagation: pair-wise versus multichannel estimate. IEEE transactions on Biomedical Engineering, 51(9):1501–1510, 2004. (page 38) Tom Dupre La Tour, Lucille Tallot, Laetitia Grabot, Valérie Doyère, Virginie Van Wassenhove, Yves Grenier, and Alexandre Gramfort. Non-linear auto-regressive models for cross-frequency coupling in neural time series. PLoS computational biology, 13(12):e1005893, 2017. (pages 5, 8, 18, 19, 20, and 99) Agatha Lenartowicz and Sandra K Loo. Use of EEG to diagnose ADHD. Current psychiatry reports, 16(11):498, 2014. (pages 1 and 2) Duan Li, Hongxin Zhang, Muhammad Saad Khan, and Fang Mi. A self-adaptive frequency selection common spatial pattern and least squares twin support vector machine for motor imagery electroencephalography recognition. Biomedical Signal Processing and Control, 41:222–232, 2018. (pages 27, 52, and 75) Kan Li and Jose C Principe. Fast estimation of information theoretic learning descriptors using explicit inner product spaces. arXiv preprint arXiv:2001.00265, 2020. (pages 12 and 109) Shuang Liang, Kup-Sze Choi, Jing Qin, Qiong Wang, Wai-Man Pang, and Pheng-Ann Heng. Discrimination of motor imagery tasks via information flow pattern of brain connectivity. Technology and Health Care, 24(s2):S795–S801, 2016. (pages 27, 52, and 75) Wei-Kuang Liang, Philip Tseng, Jia-Rong Yeh, Norden E Huang, and Chi-Hung Juan. Frontoparietal beta amplitude modulation and its interareal cross-frequency coupling in visual working memory. Neuroscience, 460:69–87, 2021. (pages 30 and 95) Zhenhu Liang, Yinghua Wang, Xue Sun, Duan Li, Logan J Voss, Jamie W Sleigh, Satoshi Hagihira, and Xiaoli Li. EEG entropy measures in anesthesia. Frontiers in computational neuroscience, 9:1–17, 2015. (page 34) George C Linderman and Stefan Steinerberger. Clustering with t-SNE, provably. SIAM Journal on Mathematics of Data Science, 1(2):313–332, 2019. (page 77) Michael Lindner, Raul Vicente, Viola Priesemann, and Michael Wibral. TRENTOOL: a Matlab open source toolbox to analyse information flow in time series data with transfer entropy. BMC neuroscience, 12(119):1–22, 2011. (pages 6, 10, 16, 24, 39, 42, 43, 48, 64, 67, 68, 82, 90, and 115) Weifeng Liu, Jose C Principe, and Simon Haykin. Kernel adaptive filtering: a comprehensive introduction, volume 57. John Wiley & Sons, 2011. (pages 42, 106, 107, and 109) Muriel Lobier, Felix Siebenhühner, Satu Palva, and J Matias Palva. Phase transfer entropy: a novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions. Neuroimage, 85:853–872, 2014. (pages 5, 7, 18, 19, 21, 24, 60, 61, 62, 63, 65, 71, 74, 82, 85, and 86) Rakesh Malladi, Don H Johnson, Giridhar P Kalamangalam, Nitin Tandon, and Behnaam Aazhang. Mutual information in frequency and its application to measure cross-frequency coupling in epilepsy. IEEE Transactions on signal processing, 66 (11):3008–3023, 2018. (pages 8 and 20) Nadia Mammone, Jonas Duun-Henriksen, Troels Kjaer, and Francesco Morabito. Differentiating interictal and ictal states in childhood absence epilepsy through permutation rényi entropy. Entropy, 17(7):4627–4643, 2015. (page 34) Eric Maris and Robert Oostenveld. Nonparametric statistical testing of EEG-and MEGdata. Journal of neuroscience methods, 164(1):177–190, 2007. (page 115) Ramón Martínez-Cancino, Joseph Heng, Arnaud Delorme, Ken Kreutz-Delgado, Roberto C Sotero, and Scott Makeig. Measuring transient phase-amplitude coupling using local mutual information. NeuroImage, 185:361–378, 2019. (pages 8 and 20) Ramón Martínez-Cancino, Arnaud Delorme, Johanna Wagner, Kenneth Kreutz- Delgado, Roberto C Sotero, and Scott Makeig. What can local transfer entropy tell us about phase-amplitude coupling in electrophysiological signals? Entropy, 22(11): 1262, 2020. (pages 5, 8, 16, 19, 20, 21, and 25) Moemi Matsuo, Naoki Iso, Kengo Fujiwara, Takefumi Moriuchi, Daiki Matsuda, Wataru Mitsunaga, Akira Nakashima, and Toshio Higashi. Comparison of cerebral activation between motor execution and motor imagery of self-feeding activity. Neural regeneration research, 16(4):778, 2021. (page 26) Maarten Mennes, Heidi Wouters, Bart Vanrumste, Lieven Lagae, and Peter Stiers. Validation of ICA as a tool to remove eye movement artifacts from EEG/ERP. Psychophysiology, 47(6):1142–1150, 2010. (pages 2 and 71) Bratislav Mišić and Olaf Sporns. From regions to connections and networks: new bridges between brain and behavior. Current opinion in neurobiology, 40:1–7, 2016. (page 1) Alessandro Montalto, Luca Faes, and Daniele Marinazzo. MuTE: a Matlab toolbox to compare established and novel estimators of the multivariate transfer entropy. PloS one, 9(10):e109462, 2014. (pages 6, 14, 15, and 103) Guido Nolte, Andreas Ziehe, Vadim V Nikulin, Alois Schlögl, Nicole Krämer, Tom Brismar, and Klaus-Robert Müller. Robustly estimating the flow direction of information in complex physical systems. Physical review letters, 100(23):234101, 2008. (pages 7, 18, 62, 70, 85, and 86) Paul L Nunez, Ramesh Srinivasan, et al. Electric fields of the brain: the neurophysics of EEG. Oxford University Press, USA, 2006. (page 113) Yuri G Pavlov and Boris Kotchoubey. Oscillatory brain activity and maintenance of verbal and visual working memory: a systematic review. Psychophysiology, page e13735, 2020. (pages 28 and 29) F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011. (page 40) François Perrin, J Pernier, O Bertrand, and JF Echallier. Spherical splines for scalp potential and current density mapping. Electroencephalography and clinical neurophysiology, 72(2):184–187, 1989. (pages 28, 40, and 113) Edoardo Pinzuti, Patricia Wollstadt, Aaron Gutknecht, Oliver Tüscher, and Michael Wibral. Measuring spectrally-resolved information transfer. PLOS Computational Biology, 16(12):e1008526, 2020. (pages 3, 5, 7, 8, 17, 19, 20, 21, 82, and 99) Jose C Principe. Information theoretic learning: Renyi’s entropy and kernel perspectives. Springer Science & Business Media, 2010. (pages 13, 34, 58, and 109) Dheeraj Rathee, Hubert Cecotti, and Girijesh Prasad. Single-trial effective brain connectivity patterns enhance discriminability of mental imagery tasks. Journal of neural engineering, 14(5):056005, 2017. (pages 1, 2, 27, 28, and 52) Alfréd Rényi et al. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. The Regents of the University of California, 1961. (pages 12, 13, 34, and 110) Vangelis Sakkalis. Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Computers in biology and medicine, 41(12):1110–1117, 2011. (pages 1, 2, 4, 5, and 71) Koichi Sameshima and Luiz Antonio Baccala. Methods in brain connectivity inference through multivariate time series analysis. CRC press, 2016. (page 12) Ralf Schlösser, Thomas Gesierich, Bettina Kaufmann, Goran Vucurevic, Stefan Hunsche, Joachim Gawehn, and Peter Stoeter. Altered effective connectivity during working memory performance in schizophrenia: a study with fMRI and structural equation modeling. Neuroimage, 19(3):751–763, 2003. (page 104) Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al. Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press, 2002. (pages 43, 57, and 68) Thomas Schreiber. Measuring information transfer. Physical review letters, 85(2):461– 464, 2000. (pages 3, 4, 6, 9, and 14) Anil K Seth. A Matlab toolbox for granger causal connectivity analysis. Journal of neuroscience methods, 186(2):262–273, 2010. (page 12) Anil K Seth, Adam B Barrett, and Lionel Barnett. Granger causality analysis in neuroscience and neuroimaging. Journal of Neuroscience, 35(8):3293–3297, 2015. (pages 4 and 11) Robert A Seymour, Gina Rippon, and Klaus Kessler. The detection of phase amplitude coupling during sensory processing. Frontiers in neuroscience, 11:487, 2017. (pages 8, 18, and 19) Wenbin Shi, Chien-Hung Yeh, and Yang Hong. Cross-frequency transfer entropy characterize coupling of interacting nonlinear oscillators in complex systems. IEEE Transactions on Biomedical Engineering, 66(2):521–529, 2018. (page 20) Wenbin Shi, Chien-Hung Yeh, and Jianping An. Cross-channel phase-amplitude transfer entropy conceptualize long-range transmission in sleep: a case study. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 4048–4051. IEEE, 2019. (pages 8 and 20) Chaitra Sridhar, Shreya Bhat, U Rajendra Acharya, Hojjat Adeli, and G Muralidhar Bairy. Diagnosis of attention deficit hyperactivity disorder using imaging and signal processing techniques. Computers in biology and medicine, 88:93–99, 2017. (page 1) Floris Takens. Detecting strange attractors in turbulence. In Dynamical systems and turbulence, Warwick 1980, pages 366–381. Springer, 1981. (page 10) Michael Tangermann, Klaus-Robert Müller, Ad Aertsen, Niels Birbaumer, Christoph Braun, Clemens Brunner, Robert Leeb, Carsten Mehring, Kai J Miller, Gernot Mueller-Putz, et al. Review of the BCI competition IV. Frontiers in neuroscience, 6 (55):1–31, 2012. (pages 27 and 28) Nicholas M Timme and Christopher Lapish. A tutorial for information theory in neuroscience. eNeuro, 5(3):1–40, 2018. (pages 4, 5, and 6) Jlenia Toppi, Laura Astolfi, Monica Risetti, Alessandra Anzolin, Silvia E Kober, Guilherme Wood, and Donatella Mattia. Different topological properties of EEG-derived networks describe working memory phases as revealed by graph theoretical analysis. Frontiers in Human Neuroscience, 11:637, 2018. (page 29) Jennifer Townsend, Susan Y Bookheimer, Lara C Foland-Ross, Catherine A Sugar, and Lori L Altshuler. fMRI abnormalities in dorsolateral prefrontal cortex during a working memory task in manic, euthymic and depressed bipolar subjects. Psychiatry Research: Neuroimaging, 182(1):22–29, 2010. (page 104) Mauro Ursino, Giulia Ricci, and Elisa Magosso. Transfer entropy as a measure of brain connectivity: a critical analysis with the help of neural mass models. Frontiers in computational neuroscience, 14:45, 2020. (pages 3, 4, 63, and 75) Raul Vicente, Michael Wibral, Michael Lindner, and Gordon Pipa. Transfer entropy—a model-free measure of effective connectivity for the neurosciences. Journal of computational neuroscience, 30:45–67, 2011. (pages 3, 4, 5, 6, 10, 35, 42, 45, 46, 57, and 68) Mario Villena-González, Iván Rubio-Venegas, and Vladimir López. Data from brain activity during visual working memory replicates the correlation between contralateral delay activity and memory capacity. Data in brief, 28:105042, 2020. (pages 30, 31, and 54) Edward K Vogel and Maro G Machizawa. Neural activity predicts individual differences in visual working memory capacity. Nature, 428:748–751, 2004. (page 30) Shanshan Wang, Dujuan Zhang, Bei Fang, Xingping Liu, Guoli Yan, Guanghong Sui, Qingwei Huang, Ling Sun, and Suogang Wang. A study on resting EEG effective connectivity difference before and after neurofeedback for children with ADHD. Neuroscience, 457:103–113, 2021a. (pages 2, 7, and 19) Xiuli Wang, Bochao Cheng, Neil Roberts, Song Wang, Ya Luo, Fangfang Tian, and Suping Yue. Shared and distinct brain fMRI response during performance of working memory tasks in adult patients with schizophrenia and major depressive disorder. Human brain mapping, 42(16):5458–5476, 2021b. (page 104) Immo Weber, Esther Florin, Michael Von Papen, and Lars Timmermann. The influence of filtering and downsampling on the estimation of transfer entropy. PloS one, 12(11): e0188210, 2017. (pages 4, 5, 7, 8, 38, 39, 48, 64, 82, 90, and 115) Elvis Wianda and Bernhard Ross. The roles of alpha oscillation in working memory retention. Brain and behavior, 9(4):e01263, 2019. (pages 1 and 5) Michael Wibral, Nicolae Pampu, Viola Priesemann, Felix Siebenhühner, Hannes Seiwert, Michael Lindner, Joseph T Lizier, and Raul Vicente. Measuring information-transfer delays. PloS one, 8(2):e55809, 2013. (pages 2 and 10) Andreas Wilmer, Marc de Lussanet, and Markus Lappe. Time-delayed mutual information of the phase as a measure of functional connectivity. PloS one, 7(9):e44633, 2012. (page 18) Simon Wing, Kristin M Gunnarsdottir, Jorge Gonzalez-Martinez, and Sridevi V Sarma. Transfer entropy between intracranial EEG nodes highlights network dynamics that cause and stop epileptic seizures. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pages 6121–6125. IEEE, 2021. (page 2) Patricia Wollstadt, Mario Martínez-Zarzuela, Raul Vicente, Francisco J Díaz-Pernas, and Michael Wibral. Efficient transfer entropy analysis of non-stationary neural time series. PloS one, 9(7):e102833, 2014. (page 58) Ping Xie, Xiaohui Pang, Shengcui Cheng, Yuanyuan Zhang, Yinan Yang, Xiaoli Li, and Xiaoling Chen. Cross-frequency and iso-frequency estimation of functional corticomuscular coupling after stroke. Cognitive Neurodynamics, 15(3):439–451, 2021. (pages 7 and 18) Chunyao Xu, Chao Sun, Guoqian Jiang, Xiaoling Chen, Qun He, and Ping Xie. Two-level multi-domain feature extraction on sparse representation for motor imagery classification. Biomedical Signal Processing and Control, 62:102160, 2020. (pages 26 and 27) Pengbo Yang, Pengjian Shang, and Aijing Lin. Financial time series analysis based on effective phase transfer entropy. Physica A: Statistical Mechanics and its Applications, 468:398–408, 2017. (page 19) Pega Zarjam, Julien Epps, Fang Chen, and Nigel H Lovell. Estimating cognitive workload using wavelet entropy-based features during an arithmetic task. Computers in biology and medicine, 43(12):2186–2195, 2013. (page 34) Dan Zhang, Huipo Zhao, Wenwen Bai, and Xin Tian. Functional connectivity among multi-channel EEGs when working memory load reaches the capacity. Brain research, 1631:101–112, 2016. (pages 28 and 55 Yu Zhang, Chang S Nam, Guoxu Zhou, Jing Jin, Xingyu Wang, and Andrzej Cichocki. Temporally constrained sparse group spatial patterns for motor imagery BCI. IEEE transactions on cybernetics, 49(9):3322–3332, 2018. (page 52) Sa Zhou, Ping Xie, Xiaoling Chen, Yibo Wang, Yuanyuan Zhang, and Yihao Du. Optimization of relative parameters in transfer entropy estimation and application to corticomuscular coupling in humans. Journal of neuroscience methods, 308:276–285, 2018. (page 98 Jie Zhu, Jean-Jacques Bellanger, Huazhong Shu, and Régine Le Bouquin Jeannès. Contribution to transfer entropy estimation via the k-nearest-neighbors approach. Entropy, 17(6):4173–4201, 2015. (pages 3, 6, and 9) |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
153 Páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Tecnológica de Pereira |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ingeniería |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingenierías |
dc.publisher.place.none.fl_str_mv |
Pereira |
publisher.none.fl_str_mv |
Universidad Tecnológica de Pereira |
institution |
Universidad Tecnológica de Pereira |
bitstream.url.fl_str_mv |
https://dspace7-utp.metabuscador.org/bitstreams/8fea6fd7-3f3e-4276-9e3a-20b7aba6c863/download https://dspace7-utp.metabuscador.org/bitstreams/533ea5f8-8e32-4a11-ac46-5676a329ba9f/download https://dspace7-utp.metabuscador.org/bitstreams/792ed106-1cd2-4556-89e9-10b6392c00a2/download https://dspace7-utp.metabuscador.org/bitstreams/2cd910d6-7046-4e09-b087-1149fd2a43fd/download |
bitstream.checksum.fl_str_mv |
ec71f159d5fd258ce3ba3a290a69a435 2f9959eaf5b71fae44bbf9ec84150c7a 391ee9d9c98461d98a5437aa08c87972 92bbd34cceb38ff1d70a4e941034dd5d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica de Pereira |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814021996149735424 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Manifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 dehttps://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessDe La Pava Panche , Ivan2022-05-24T21:57:47Z2022-05-24T21:57:47Z2021https://hdl.handle.net/11059/14117Universidad Tecnológica de PereiraRepositorio institucional Universidad Tecnológica de Pereirahttps://repositorio.utp.edu.co/homeThe interactions among neural populations distributed across different brain regions are at the core of cognitive and perceptual processing. Therefore, the ability of studying the flow of information within networks of connected neural assemblies is of fundamental importance to understand such processes. In that regard, brain connectivity measures constitute a valuable tool in neuroscience. They allow assessing functional interactions among brain regions through directed or non-directed statistical dependencies estimated from neural time series. Transfer entropy (TE) is one such measure. It is an effective connectivity estimation approach based on information theory concepts and statistical causality premises. It has gained increasing attention in the literature because it can capture purely nonlinear directed interactions, and is model free. That is to say, it does not require an initial hypothesis about the interactions present in the data. These properties make it an especially convenient tool in exploratory analyses. However, like any information-theoretic quantity, TE is defined in terms of probability distributions that in practice need to be estimated from data. A challenging task, whose outcome can significantly affect the results of TE. Also, it lacks a standard spectral representation, so it cannot reveal the local frequency band characteristics of the interactions it detects.Las interacciones entre poblaciones neuronales distribuidas en diferentes regiones del cerebro son el núcleo del procesamiento cognitivo y perceptivo. Por lo tanto, la capacidad de estudiar el flujo de información dentro de redes de conjuntos neuronales conectados es de fundamental importancia para comprender dichos procesos. En ese sentido, las medidas de conectividad cerebral constituyen una valiosa herramienta en neurociencia. Permiten evaluar interacciones funcionales entre regiones cerebrales a través de dependencias estadísticas dirigidas o no dirigidas estimadas a partir de series de tiempo. La transferencia de entropía (TE) es una de esas medidas. Es un enfoque de estimación de conectividad efectiva basada en conceptos de teoría de la información y premisas de causalidad estadística. Ha ganado una atención cada vez mayor en la literatura porque puede capturar interacciones dirigidas puramente no lineales y no depende de un modelo. Es decir, no requiere de una hipótesis inicial sobre las interacciones presentes en los datos. Estas propiedades la convierten en una herramienta especialmente conveniente en análisis exploratorios. Sin embargo, como cualquier concepto basado en teoría de la información, la TE se define en términos de distribuciones de probabilidad que en la práctica deben estimarse a partir de datos. Una tarea desafiante, cuyo resultado puede afectar significativamente los resultados de la TE. Además, carece de una representación espectral estándar, por lo que no puede revelar las características de banda de frecuencia local de las interacciones que detecta.Contents List of Figures xi List of Tables xv Notation xvi 1 Preliminaries 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Probability distribution estimation as an intermediate step in TE computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 The lack of a spectral representation for TE . . . . . . . . . . . . 7 1.3 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.1 Transfer entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.2 Granger causality . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.3 Information theoretic learning from kernel matrices . . . . . . . . 12 1.4 Literature review on transfer entropy estimation . . . . . . . . . . . . . . 14 1.4.1 Transfer entropy in the frequency domain . . . . . . . . . . . . . . 17 1.5 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.5.1 General aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.5.2 Specific aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.6 Outline and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.6.1 Kernel-based Renyi’s transfer entropy . . . . . . . . . . . . . . . . 24 1.6.2 Kernel-based Renyi’s phase transfer entropy . . . . . . . . . . . . 24 1.6.3 Kernel-based Renyi’s phase transfer entropy for the estimation of directed phase-amplitude interactions . . . . . . . . . . . . . . . . 25 1.7 EEG databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Contents ix 1.7.1 Motor imagery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.7.2 Working memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.8 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2 Kernel-based Renyi’s transfer entropy 34 2.1 Kernel-based Renyi’s transfer entropy . . . . . . . . . . . . . . . . . . . . 35 2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2.1 VAR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2.2 Modified linear Kus model . . . . . . . . . . . . . . . . . . . . . . 38 2.2.3 EEG data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2.4 Parameter selection . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.3.1 VAR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.3.2 Modified linear Kus model . . . . . . . . . . . . . . . . . . . . . . 46 2.3.3 EEG data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.3.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3 Kernel-based Renyi’s phase transfer entropy 60 3.1 Kernel-based Renyi’s phase transfer entropy . . . . . . . . . . . . . . . . 61 3.1.1 Phase-based effective connectivity estimation approaches considered in this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2.1 Neural mass models . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2.2 EEG data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.2.3 Parameter selection . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3.1 Neural mass models . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3.2 EEG data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.3.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4 Kernel-based Renyi’s phase transfer entropy for the estimation of directed phase-amplitude interactions 84 4.1 Kernel-based Renyi’s phase transfer entropy for the estimation of directed phase-amplitude interactions . . . . . . . . . . . . . . . . . . . . . . . . . 85 x Contents 4.1.1 Transfer entropy for directed phase-amplitude interactions . . . . 85 4.1.2 Cross-frequency directionality . . . . . . . . . . . . . . . . . . . . 85 4.1.3 Phase transfer entropy and directed phase-amplitude interactions 86 4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.2.1 Simulated phase-amplitude interactions . . . . . . . . . . . . . . . 88 4.2.2 EEG data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.2.3 Parameter selection . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.3.1 Simulated phase-amplitude interactions . . . . . . . . . . . . . . . 92 4.3.2 EEG data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.3.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5 Final Remarks 100 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.3 Academic products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.1 Journal papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.2 Conference papers . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.3.3 Conference presentations . . . . . . . . . . . . . . . . . . . . . . . 105 Appendix A Kernel methods and Renyi’s entropy estimation 106 A.1 Reproducing kernel Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . 106 A.1.1 Reproducing kernels . . . . . . . . . . . . . . . . . . . . . . . . . 106 A.1.2 Kernel-based learning . . . . . . . . . . . . . . . . . . . . . . . . . 107 A.2 Kernel-based estimation of Renyi’s entropy . . . . . . . . . . . . . . . . . 109 Appendix B Surface Laplacian 113 Appendix C Permutation testing 115 Appendix D Kernel-based relevance analysis 117 Appendix E Cao’s criterion 120 Appendix F Neural mass model equations 122 References 125DoctoradoDoctor(a) en Ingeniería153 Páginasapplication/pdfengUniversidad Tecnológica de PereiraDoctorado en IngenieríaFacultad de IngenieríasPereira620 - Ingeniería y operaciones afinesKernel - Operating systemsInformation entropyData compressionBrain connectivityeffective connectivitytransfer entropyAn information theoretic learning framework based on Renyi’s α entropy for brain effective connectivity estimationTrabajo de grado - Doctoradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesisAli Kareem Abbas, Ghasem Azemi, Sajad Amiri, Samin Ravanshadi, and Amir Omidvarnia. Effective connectivity in brain networks estimated using eeg signals is altered in children with ADHD. Computers in Biology and Medicine, 134:1–9, 2021. (page 1)U Rajendra Acharya, Hamido Fujita, Vidya K Sudarshan, Shreya Bhat, and Joel EW Koh. Application of entropies for automated diagnosis of epilepsy using EEG signals: a review. Knowledge-Based Systems, 88:85–96, 2015.Amirmasoud Ahmadi, Saeideh Davoudi, Mahsa Behroozi, and Mohammad Reza Daliri. Decoding covert visual attention based on phase transfer entropy. Physiology & behavior, 222:112932, 2020.Hirotugu Akaike. A new look at the statistical model identification. IEEE transactions on automatic control, 19(6):716–723, 1974.Juhan Aru, Jaan Aru, Viola Priesemann, Michael Wibral, Luiz Lana, Gordon Pipa, Wolf Singer, and Raul Vicente. Untangling cross-frequency coupling in neuroscience. Current opinion in neurobiology, 31:51–61, 2015.Alan Baddeley. Working memory: theories, models, and controversies. Annual review of psychology, 63:1–29, 2012.Hanieh Bakhshayesh, Sean P Fitzgibbon, Azin S Janani, Tyler S Grummett, and Kenneth J Pope. Detecting connectivity in EEG: a comparative study of data-driven effective connectivity measures. Computers in Biology and Medicine, 111:103329, 2019.Lionel Barnett, Adam B Barrett, and Anil K Seth. Granger causality and transfer entropy are equivalent for gaussian variables. Physical review letters, 103(23):238701, 2009. (page 12) André M BastosAndré M Bastos and Jan-Mathijs Schoffelen. A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Frontiers in systems neuroscience, 9:175, 2016.Michel Besserve, Bernhard Schölkopf, Nikos K Logothetis, and Stefano Panzeri. Causal relationships between frequency bands of extracellular signals in visual cortex revealed by an information theoretic analysis. Journal of computational neuroscience, 29(3): 547–566, 2010. (pages 5, 8, 20, 21, and 25)Liangyue Cao. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena, 110(1-2):43–50, 1997. (pages 42, 68, and 120)Sezen Cekic, Didier Grandjean, and Olivier Renaud. Time, frequency, and time-varying granger-causality measures in neuroscience. Statistics in medicine, 37(11):1910–1931, 2018.Xiaoling Chen, Yuanyuan Zhang, Shengcui Cheng, and Ping Xie. Transfer spectral entropy and application to functional corticomuscular coupling. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(5):1092–1102, 2019. (pages 5, 7, 8, 19, and 63)Ning Cheng, Qun Li, Sitong Wang, Rubin Wang, and Tao Zhang. Permutation mutual information: a novel approach for measuring neuronal phase-amplitude coupling. Brain topography, 31(2):186–201, 2018. (pages 8 and 20)Michael X Cohen. Comparison of different spatial transformations applied to EEG data: a case study of error processing. International Journal of Psychophysiology, 97 (3):245–257, 2015. (pages 2, 28, and 113)Mike X Cohen. Analyzing neural time series data: theory and practice. MIT press, 2014. (pages 113 and 114)DF Collazos-Huertas, AM Álvarez-Meza, CD Acosta-Medina, GA Castaño-Duque, and G Castellanos-Dominguez. CNN-based framework using spatial dropping for enhanced interpretation of neural activity in motor imagery classification. Brain Informatics, 7,8(1):1–13, 2020. (pages 27, 67, 91, and 94)Christos Constantinidis and Torkel Klingberg. The neuroscience of working memory capacity and training. Nature Reviews Neuroscience, 17(7):438–449, 2016. (page 55)Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for learning kernels based on centered alignment. The Journal of Machine Learning Research, 13: 795–828, 2012. (page 117)Jolien Cremers and Irene Klugkist. One direction? a tutorial for circular data analysis using R with examples in cognitive psychology. Frontiers in psychology, 9:2040, 2018. (page 7)Fernando Lopes Da Silva. EEG: origin and measurement. In EEG-fMRI, pages 19–38. Springer, 2009. (pages 1 and 5)Zhongxiang Dai, Joshua De Souza, Julian Lim, Paul M Ho, Yu Chen, Junhua Li, Nitish Thakor, Anastasios Bezerianos, and Yu Sun. EEG cortical connectivity analysis of working memory reveals topological reorganization in theta and alpha bands. Frontiers in human neuroscience, 11:237, 2017. (pages 28, 30, and 54)Jonathan Daume, Thomas Gruber, Andreas K Engel, and Uwe Friese. Phase-amplitude coupling and long-range phase synchronization reveal frontotemporal interactions during visual working memory. Journal of Neuroscience, 37(2):313–322, 2017. (pages 8 and 30)Olivier David and Karl J Friston. A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage, 20(3):1743–1755, 2003. (pages 60, 63, and 65)Olivier David, Diego Cosmelli, and Karl J Friston. Evaluation of different measures of functional connectivity using a neural mass model. Neuroimage, 21(2):659–673, 2004. (pages 63, 122, and 123)Ivan De La Pava Panche, Andres M Alvarez-Meza, and Alvaro Orozco-Gutierrez. A data-driven measure of effective connectivity based on renyi’s α-entropy. Frontiers in neuroscience, 13:1277, 2019. (pages 24, 51, 61, 68, 74, 75, 78, 96, and 99)Iván De La Pava Panche, Andrés Álvarez-Meza, Paula Marcela Herrera Gómez, David Cárdenas-Peña, Jorge Iván Ríos Patiño, and Álvaro Orozco-Gutiérrez. Kernel-based phase transfer entropy with enhanced feature relevance analysis for brain computer interfaces. Applied Sciences, 11(15):6689, 2021a. (pages 25 and 117)Iván De La Pava Panche, Viviana Gómez-Orozco, Andrés Álvarez-Meza, David Cárdenas-Peña, and Álvaro Orozco-Gutiérrez. Estimating directed phase-amplitude interactions from EEG data through kernel-based phase transfer entropy. Applied Sciences, 11(21):9803, 2021b. (pages 25 and 117)Stefan Debener, Falk Minow, Reiner Emkes, Katharina Gandras, and Maarten De Vos. How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology, 49(11):1617–1621, 2012. (pages 2 and 71)Stavros Dimitriadis, Yu Sun, Nikolaos Laskaris, Nitish Thakor, and Anastasios Bezerianos. Revealing cross-frequency causal interactions during a mental arithmetic task through symbolic transfer entropy: a novel vector-quantization approach. IEEE Trans Neural Syst Rehabil Eng, 24(10):1017–1028, 2016a. (pages 1, 3, 5, 6, 15, 24, 30, 37, 42, 46, 57, 62, 78, 82, and 97)Stavros I Dimitriadis, Nikolaos A Laskaris, Vasso Tsirka, Sofia Erimaki, Michael Vourkas, Sifis Micheloyannis, and Spiros Fotopoulos. A novel symbolization scheme for multichannel recordings with emphasis on phase information and its application to differentiate EEG activity from different mental tasks. Cognitive neurodynamics, 6 (1):107–113, 2012Stavros I Dimitriadis, Yu Sun, Nitish V Thakor, and Anastasios Bezerianos. Causal interactions between frontalθ–parieto-occipitalα2 predict performance on a mental arithmetic task. Frontiers in human neuroscience, 10:454, 2016b. (pages 3, 8, 20, and 30)Frank H Duffy, Aditi Shankardass, Gloria B McAnulty, and Heidelise Als. A unique pattern of cortical connectivity characterizes patients with attention deficit disorders: a large electroencephalographic coherence study. BMC medicine, 15(1):51, 2017. (page 1Ali Ekhlasi, Ali Motie Nasrabadi, and Mohammad Reza Mohammadi. Direction of information flow between brain regions in ADHD and healthy children based on EEG by using directed phase transfer entropy. Cognitive Neurodynamics, 15(6):975–986, 2021. (page 19)Basem Elasuty and Seif Eldawlatly. Dynamic bayesian networks for EEG motor imagery feature extraction. In 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), pages 170–173. IEEE, 2015. (pages 27, 52, and 75)Andreas K Engel, Christian Gerloff, Claus C Hilgetag, and Guido Nolte. Intrinsic coupling modes: multiscale interactions in ongoing brain activity. Neuron, 80(4):867–886, 2013Fernández-Ramírez, A Álvarez-Meza, EM Pereira, A Orozco-Gutiérrez, and G Castellanos-Dominguez. Video-based social behavior recognition based on kernel relevance analysis. The Visual Computer, 36(8):1535–1547, 2020. (pages 25 and 118)Karl J Friston. Functional and effective connectivity: a review. Brain connectivity, 1 (1):13–36, 2011. (pages 1 and 4)Yu Fukuda, Teresa Katthagen, Lorenz Deserno, Leila Shayegan, Jakob Kaminski, Andreas Heinz, and Florian Schlagenhauf. Reduced parietofrontal effective connectivity during a working-memory task in people with high delusional ideation. Journal of Psychiatry and Neuroscience, 44(3):195–204, 2019. (page 1)Steven Galindo-Noreña, David Cárdenas-Peña, and Álvaro Orozco-Gutierrez. Multiple kernel stein spatial patterns for the multiclass discrimination of motor imagery tasks. Applied Sciences, 10(23):8628, 2020. (page 27)Jianbo Gao, Jing Hu, Thomas Buckley, Keith White, and Chris Hass. Shannon and renyi entropies to classify effects of mild traumatic brain injury on postural sway. PLoS One, 6(9):e24446, 2011. (page 34)Pedro García and R Mujica. A local approach for information transfer. Communications in Nonlinear Science and Numerical Simulation, 70:326–333, 2019. (pages 6 and 14)Daniel Guillermo García-Murillo, Andres Alvarez-Meza, and German Castellanos- Dominguez. Single-trial kernel-based functional connectivity for enhanced feature extraction in motor-related tasks. Sensors, 21(8):2750, 2021. (pages 26, 27, 74, and 76)Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O’Reilly Media, 2019. (pages 96, 106, 108, 109, and 117)Matthieu Gilson, Gorka Zamora-López, Vicente Pallarés, Mohit H Adhikari, Mario Senden, Adrià Tauste Campo, Dante Mantini, Maurizio Corbetta, Gustavo Deco, and Andrea Insabato. Model-based whole-brain effective connectivity to study distributed cognition in health and disease. Network Neuroscience, 4(2):338–373, 2020. (page 1)Luis Gonzalo Sanchez Giraldo, Murali Rao, and Jose C Principe. Measures of entropy from data using infinitely divisible kernels. IEEE Transactions on Information Theory, 61(1):535–548, 2015. (pages 5, 6, 13, 17, 24, 34, 43, 58, 68, 87, 106, 110, and 111)V Gómez, A Álvarez, P Herrera, G Castellanos, and A Orozco. Short time EEG connectivity features to support interpretability of MI discrimination. In Iberoamerican Congress on Pattern Recognition, pages 699–706. Springer, 2018. (pages 27, 28, 52, and 75)Anmin Gong, Jianping Liu, Si Chen, and Yunfa Fu. Time–frequency cross mutual information analysis of the brain functional networks underlying multiclass motor imagery. Journal of motor behavior, 50(3):254–267, 2018. (pages 54 and 68)Barbara Hammer and Kai Gersmann. A note on the universal approximation capability of support vector machines. neural processing letters, 17(1):43–53, 2003. (page 109Mahmoud Hassan and FabriceWendling. Aiming for high resolution of brain networks in time and space electroencephalography source connectivity. IEEE Signal Processing Magazine, 35(3):81–96, 2018. (pages 1 and 2)Mahmoud Hassan, Olivier Dufor, Isabelle Merlet, Claude Berrou, and Fabrice Wendling. EEG source connectivity analysis: from dense array recordings to brain networks. PloS one, 9(8):e105041, 2014. (page 2)Mahmoud Hassan, Pascal Benquet, Arnaud Biraben, Claude Berrou, Olivier Dufor, and FabriceWendling. Dynamic reorganization of functional brain networks during picture naming. Cortex, 73:276–288, 2015. (page 2)Stefan Haufe, Vadim V Nikulin, Klaus-Robert Müller, and Guido Nolte. A critical assessment of connectivity measures for EEG data: a simulation study. Neuroimage, 64:120–133, 2013. (page 44)Sébastien Hétu, Mathieu Grégoire, Arnaud Saimpont, Michel-Pierre Coll, Fanny Eugène, Pierre-Emmanuel Michon, and Philip L Jackson. The neural network of motor imagery: an ale meta-analysis. Neuroscience & Biobehavioral Reviews, 37(5):930–949, 2013. (pages 54 and 78)Arjan Hillebrand, Prejaas Tewarie, Edwin Van Dellen, Meichen Yu, Ellen WS Carbo, Linda Douw, Alida A Gouw, Elisabeth CW Van Straaten, and Cornelis J Stam. Direction of information flow in large-scale resting-state networks is frequency-dependent. Proceedings of the National Academy of Sciences, 113(14):3867–3872, 2016. (pages 7 and 19)Alexandre Hyafil, Anne-Lise Giraud, Lorenzo Fontolan, and Boris Gutkin. Neural crossfrequency coupling: connecting architectures, mechanisms, and functions. Trends in neurosciences, 38(11):725–740, 2015. (page 5)Haiteng Jiang, Ali Bahramisharif, Marcel AJ van Gerven, and Ole Jensen. Measuring directionality between neuronal oscillations of different frequencies. Neuroimage, 118: 359–367, 2015. (pages 7, 8, 18, 20, 62, 70, 84, 85, 88, 94, and 102)Viktor Jirsa and Viktor Müller. Cross-frequency coupling in real and virtual brain networks. Frontiers in computational neuroscience, 7:1–25, 2013. (pages 8, 18, and 19)Elizabeth L Johnson, Jenna N Adams, Anne-Kristin Solbakk, Tor Endestad, Pål G Larsson, Jugoslav Ivanovic, Torstein R Meling, Jack J Lin, and Robert T Knight. Dynamic frontotemporal systems process space and time in working memory. PLoS biology, 16(3):e2004274, 2018. (pages 3, 8, 19, 29, 30, 57, 67, 74, 78, 82, 91, 95, and 97)Elizabeth L Johnson, David King-Stephens, Peter B Weber, Kenneth D Laxer, Jack J Lin, and Robert T Knight. Spectral imprints of working memory for everyday associations in the frontoparietal network. Frontiers in systems neuroscience, 12:65, 2019. (pages 28, 30, 67, 74, 82, 95, and 97)Huan Kang, Xiaofeng Zhang, and Guangbin Zhang. Phase permutation entropy: a complexity measure for nonlinear time series incorporating phase information. Physica A: Statistical Mechanics and its Applications, 568:125686, 2021. (pages 7 and 15)Katherine H Karlsgodt, David C Glahn, Theo GM van Erp, Sebastian Therman, Matti Huttunen, Marko Manninen, Jaakko Kaprio, Mark S Cohen, Jouko Lönnqvist, and Tyrone D Cannon. The relationship between performance and fMRI signal during working memory in patients with schizophrenia, unaffected co-twins, and control subjects. Schizophrenia research, 89(1-3):191–197, 2007. (page 104)Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information. Physical review E, 69(6):066138, 2004. (pages 6, 15, 24, and 62)Rafal Kus, Maciej Kaminski, and Katarzyna J Blinowska. Determination of EEG activity propagation: pair-wise versus multichannel estimate. IEEE transactions on Biomedical Engineering, 51(9):1501–1510, 2004. (page 38)Tom Dupre La Tour, Lucille Tallot, Laetitia Grabot, Valérie Doyère, Virginie Van Wassenhove, Yves Grenier, and Alexandre Gramfort. Non-linear auto-regressive models for cross-frequency coupling in neural time series. PLoS computational biology, 13(12):e1005893, 2017. (pages 5, 8, 18, 19, 20, and 99)Agatha Lenartowicz and Sandra K Loo. Use of EEG to diagnose ADHD. Current psychiatry reports, 16(11):498, 2014. (pages 1 and 2)Duan Li, Hongxin Zhang, Muhammad Saad Khan, and Fang Mi. A self-adaptive frequency selection common spatial pattern and least squares twin support vector machine for motor imagery electroencephalography recognition. Biomedical Signal Processing and Control, 41:222–232, 2018. (pages 27, 52, and 75)Kan Li and Jose C Principe. Fast estimation of information theoretic learning descriptors using explicit inner product spaces. arXiv preprint arXiv:2001.00265, 2020. (pages 12 and 109)Shuang Liang, Kup-Sze Choi, Jing Qin, Qiong Wang, Wai-Man Pang, and Pheng-Ann Heng. Discrimination of motor imagery tasks via information flow pattern of brain connectivity. Technology and Health Care, 24(s2):S795–S801, 2016. (pages 27, 52, and 75)Wei-Kuang Liang, Philip Tseng, Jia-Rong Yeh, Norden E Huang, and Chi-Hung Juan. Frontoparietal beta amplitude modulation and its interareal cross-frequency coupling in visual working memory. Neuroscience, 460:69–87, 2021. (pages 30 and 95)Zhenhu Liang, Yinghua Wang, Xue Sun, Duan Li, Logan J Voss, Jamie W Sleigh, Satoshi Hagihira, and Xiaoli Li. EEG entropy measures in anesthesia. Frontiers in computational neuroscience, 9:1–17, 2015. (page 34)George C Linderman and Stefan Steinerberger. Clustering with t-SNE, provably. SIAM Journal on Mathematics of Data Science, 1(2):313–332, 2019. (page 77)Michael Lindner, Raul Vicente, Viola Priesemann, and Michael Wibral. TRENTOOL: a Matlab open source toolbox to analyse information flow in time series data with transfer entropy. BMC neuroscience, 12(119):1–22, 2011. (pages 6, 10, 16, 24, 39, 42, 43, 48, 64, 67, 68, 82, 90, and 115)Weifeng Liu, Jose C Principe, and Simon Haykin. Kernel adaptive filtering: a comprehensive introduction, volume 57. John Wiley & Sons, 2011. (pages 42, 106, 107, and 109)Muriel Lobier, Felix Siebenhühner, Satu Palva, and J Matias Palva. Phase transfer entropy: a novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions. Neuroimage, 85:853–872, 2014. (pages 5, 7, 18, 19, 21, 24, 60, 61, 62, 63, 65, 71, 74, 82, 85, and 86)Rakesh Malladi, Don H Johnson, Giridhar P Kalamangalam, Nitin Tandon, and Behnaam Aazhang. Mutual information in frequency and its application to measure cross-frequency coupling in epilepsy. IEEE Transactions on signal processing, 66 (11):3008–3023, 2018. (pages 8 and 20)Nadia Mammone, Jonas Duun-Henriksen, Troels Kjaer, and Francesco Morabito. Differentiating interictal and ictal states in childhood absence epilepsy through permutation rényi entropy. Entropy, 17(7):4627–4643, 2015. (page 34)Eric Maris and Robert Oostenveld. Nonparametric statistical testing of EEG-and MEGdata. Journal of neuroscience methods, 164(1):177–190, 2007. (page 115)Ramón Martínez-Cancino, Joseph Heng, Arnaud Delorme, Ken Kreutz-Delgado, Roberto C Sotero, and Scott Makeig. Measuring transient phase-amplitude coupling using local mutual information. NeuroImage, 185:361–378, 2019. (pages 8 and 20)Ramón Martínez-Cancino, Arnaud Delorme, Johanna Wagner, Kenneth Kreutz- Delgado, Roberto C Sotero, and Scott Makeig. What can local transfer entropy tell us about phase-amplitude coupling in electrophysiological signals? Entropy, 22(11): 1262, 2020. (pages 5, 8, 16, 19, 20, 21, and 25)Moemi Matsuo, Naoki Iso, Kengo Fujiwara, Takefumi Moriuchi, Daiki Matsuda, Wataru Mitsunaga, Akira Nakashima, and Toshio Higashi. Comparison of cerebral activation between motor execution and motor imagery of self-feeding activity. Neural regeneration research, 16(4):778, 2021. (page 26)Maarten Mennes, Heidi Wouters, Bart Vanrumste, Lieven Lagae, and Peter Stiers. Validation of ICA as a tool to remove eye movement artifacts from EEG/ERP. Psychophysiology, 47(6):1142–1150, 2010. (pages 2 and 71)Bratislav Mišić and Olaf Sporns. From regions to connections and networks: new bridges between brain and behavior. Current opinion in neurobiology, 40:1–7, 2016. (page 1)Alessandro Montalto, Luca Faes, and Daniele Marinazzo. MuTE: a Matlab toolbox to compare established and novel estimators of the multivariate transfer entropy. PloS one, 9(10):e109462, 2014. (pages 6, 14, 15, and 103)Guido Nolte, Andreas Ziehe, Vadim V Nikulin, Alois Schlögl, Nicole Krämer, Tom Brismar, and Klaus-Robert Müller. Robustly estimating the flow direction of information in complex physical systems. Physical review letters, 100(23):234101, 2008. (pages 7, 18, 62, 70, 85, and 86)Paul L Nunez, Ramesh Srinivasan, et al. Electric fields of the brain: the neurophysics of EEG. Oxford University Press, USA, 2006. (page 113)Yuri G Pavlov and Boris Kotchoubey. Oscillatory brain activity and maintenance of verbal and visual working memory: a systematic review. Psychophysiology, page e13735, 2020. (pages 28 and 29)F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011. (page 40)François Perrin, J Pernier, O Bertrand, and JF Echallier. Spherical splines for scalp potential and current density mapping. Electroencephalography and clinical neurophysiology, 72(2):184–187, 1989. (pages 28, 40, and 113)Edoardo Pinzuti, Patricia Wollstadt, Aaron Gutknecht, Oliver Tüscher, and Michael Wibral. Measuring spectrally-resolved information transfer. PLOS Computational Biology, 16(12):e1008526, 2020. (pages 3, 5, 7, 8, 17, 19, 20, 21, 82, and 99)Jose C Principe. Information theoretic learning: Renyi’s entropy and kernel perspectives. Springer Science & Business Media, 2010. (pages 13, 34, 58, and 109)Dheeraj Rathee, Hubert Cecotti, and Girijesh Prasad. Single-trial effective brain connectivity patterns enhance discriminability of mental imagery tasks. Journal of neural engineering, 14(5):056005, 2017. (pages 1, 2, 27, 28, and 52)Alfréd Rényi et al. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. The Regents of the University of California, 1961. (pages 12, 13, 34, and 110)Vangelis Sakkalis. Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Computers in biology and medicine, 41(12):1110–1117, 2011. (pages 1, 2, 4, 5, and 71)Koichi Sameshima and Luiz Antonio Baccala. Methods in brain connectivity inference through multivariate time series analysis. CRC press, 2016. (page 12)Ralf Schlösser, Thomas Gesierich, Bettina Kaufmann, Goran Vucurevic, Stefan Hunsche, Joachim Gawehn, and Peter Stoeter. Altered effective connectivity during working memory performance in schizophrenia: a study with fMRI and structural equation modeling. Neuroimage, 19(3):751–763, 2003. (page 104)Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al. Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press, 2002. (pages 43, 57, and 68)Thomas Schreiber. Measuring information transfer. Physical review letters, 85(2):461– 464, 2000. (pages 3, 4, 6, 9, and 14)Anil K Seth. A Matlab toolbox for granger causal connectivity analysis. Journal of neuroscience methods, 186(2):262–273, 2010. (page 12)Anil K Seth, Adam B Barrett, and Lionel Barnett. Granger causality analysis in neuroscience and neuroimaging. Journal of Neuroscience, 35(8):3293–3297, 2015. (pages 4 and 11)Robert A Seymour, Gina Rippon, and Klaus Kessler. The detection of phase amplitude coupling during sensory processing. Frontiers in neuroscience, 11:487, 2017. (pages 8, 18, and 19)Wenbin Shi, Chien-Hung Yeh, and Yang Hong. Cross-frequency transfer entropy characterize coupling of interacting nonlinear oscillators in complex systems. IEEE Transactions on Biomedical Engineering, 66(2):521–529, 2018. (page 20)Wenbin Shi, Chien-Hung Yeh, and Jianping An. Cross-channel phase-amplitude transfer entropy conceptualize long-range transmission in sleep: a case study. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 4048–4051. IEEE, 2019. (pages 8 and 20)Chaitra Sridhar, Shreya Bhat, U Rajendra Acharya, Hojjat Adeli, and G Muralidhar Bairy. Diagnosis of attention deficit hyperactivity disorder using imaging and signal processing techniques. Computers in biology and medicine, 88:93–99, 2017. (page 1)Floris Takens. Detecting strange attractors in turbulence. In Dynamical systems and turbulence, Warwick 1980, pages 366–381. Springer, 1981. (page 10)Michael Tangermann, Klaus-Robert Müller, Ad Aertsen, Niels Birbaumer, Christoph Braun, Clemens Brunner, Robert Leeb, Carsten Mehring, Kai J Miller, Gernot Mueller-Putz, et al. Review of the BCI competition IV. Frontiers in neuroscience, 6 (55):1–31, 2012. (pages 27 and 28)Nicholas M Timme and Christopher Lapish. A tutorial for information theory in neuroscience. eNeuro, 5(3):1–40, 2018. (pages 4, 5, and 6)Jlenia Toppi, Laura Astolfi, Monica Risetti, Alessandra Anzolin, Silvia E Kober, Guilherme Wood, and Donatella Mattia. Different topological properties of EEG-derived networks describe working memory phases as revealed by graph theoretical analysis. Frontiers in Human Neuroscience, 11:637, 2018. (page 29)Jennifer Townsend, Susan Y Bookheimer, Lara C Foland-Ross, Catherine A Sugar, and Lori L Altshuler. fMRI abnormalities in dorsolateral prefrontal cortex during a working memory task in manic, euthymic and depressed bipolar subjects. Psychiatry Research: Neuroimaging, 182(1):22–29, 2010. (page 104)Mauro Ursino, Giulia Ricci, and Elisa Magosso. Transfer entropy as a measure of brain connectivity: a critical analysis with the help of neural mass models. Frontiers in computational neuroscience, 14:45, 2020. (pages 3, 4, 63, and 75)Raul Vicente, Michael Wibral, Michael Lindner, and Gordon Pipa. Transfer entropy—a model-free measure of effective connectivity for the neurosciences. Journal of computational neuroscience, 30:45–67, 2011. (pages 3, 4, 5, 6, 10, 35, 42, 45, 46, 57, and 68)Mario Villena-González, Iván Rubio-Venegas, and Vladimir López. Data from brain activity during visual working memory replicates the correlation between contralateral delay activity and memory capacity. Data in brief, 28:105042, 2020. (pages 30, 31, and 54)Edward K Vogel and Maro G Machizawa. Neural activity predicts individual differences in visual working memory capacity. Nature, 428:748–751, 2004. (page 30)Shanshan Wang, Dujuan Zhang, Bei Fang, Xingping Liu, Guoli Yan, Guanghong Sui, Qingwei Huang, Ling Sun, and Suogang Wang. A study on resting EEG effective connectivity difference before and after neurofeedback for children with ADHD. Neuroscience, 457:103–113, 2021a. (pages 2, 7, and 19)Xiuli Wang, Bochao Cheng, Neil Roberts, Song Wang, Ya Luo, Fangfang Tian, and Suping Yue. Shared and distinct brain fMRI response during performance of working memory tasks in adult patients with schizophrenia and major depressive disorder. Human brain mapping, 42(16):5458–5476, 2021b. (page 104)Immo Weber, Esther Florin, Michael Von Papen, and Lars Timmermann. The influence of filtering and downsampling on the estimation of transfer entropy. PloS one, 12(11): e0188210, 2017. (pages 4, 5, 7, 8, 38, 39, 48, 64, 82, 90, and 115)Elvis Wianda and Bernhard Ross. The roles of alpha oscillation in working memory retention. Brain and behavior, 9(4):e01263, 2019. (pages 1 and 5)Michael Wibral, Nicolae Pampu, Viola Priesemann, Felix Siebenhühner, Hannes Seiwert, Michael Lindner, Joseph T Lizier, and Raul Vicente. Measuring information-transfer delays. PloS one, 8(2):e55809, 2013. (pages 2 and 10)Andreas Wilmer, Marc de Lussanet, and Markus Lappe. Time-delayed mutual information of the phase as a measure of functional connectivity. PloS one, 7(9):e44633, 2012. (page 18)Simon Wing, Kristin M Gunnarsdottir, Jorge Gonzalez-Martinez, and Sridevi V Sarma. Transfer entropy between intracranial EEG nodes highlights network dynamics that cause and stop epileptic seizures. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pages 6121–6125. IEEE, 2021. (page 2)Patricia Wollstadt, Mario Martínez-Zarzuela, Raul Vicente, Francisco J Díaz-Pernas, and Michael Wibral. Efficient transfer entropy analysis of non-stationary neural time series. PloS one, 9(7):e102833, 2014. (page 58)Ping Xie, Xiaohui Pang, Shengcui Cheng, Yuanyuan Zhang, Yinan Yang, Xiaoli Li, and Xiaoling Chen. Cross-frequency and iso-frequency estimation of functional corticomuscular coupling after stroke. Cognitive Neurodynamics, 15(3):439–451, 2021. (pages 7 and 18)Chunyao Xu, Chao Sun, Guoqian Jiang, Xiaoling Chen, Qun He, and Ping Xie. Two-level multi-domain feature extraction on sparse representation for motor imagery classification. Biomedical Signal Processing and Control, 62:102160, 2020. (pages 26 and 27)Pengbo Yang, Pengjian Shang, and Aijing Lin. Financial time series analysis based on effective phase transfer entropy. Physica A: Statistical Mechanics and its Applications, 468:398–408, 2017. (page 19)Pega Zarjam, Julien Epps, Fang Chen, and Nigel H Lovell. Estimating cognitive workload using wavelet entropy-based features during an arithmetic task. Computers in biology and medicine, 43(12):2186–2195, 2013. (page 34)Dan Zhang, Huipo Zhao, Wenwen Bai, and Xin Tian. Functional connectivity among multi-channel EEGs when working memory load reaches the capacity. Brain research, 1631:101–112, 2016. (pages 28 and 55Yu Zhang, Chang S Nam, Guoxu Zhou, Jing Jin, Xingyu Wang, and Andrzej Cichocki. Temporally constrained sparse group spatial patterns for motor imagery BCI. IEEE transactions on cybernetics, 49(9):3322–3332, 2018. (page 52)Sa Zhou, Ping Xie, Xiaoling Chen, Yibo Wang, Yuanyuan Zhang, and Yihao Du. Optimization of relative parameters in transfer entropy estimation and application to corticomuscular coupling in humans. Journal of neuroscience methods, 308:276–285, 2018. (page 98Jie Zhu, Jean-Jacques Bellanger, Huazhong Shu, and Régine Le Bouquin Jeannès. Contribution to transfer entropy estimation via the k-nearest-neighbors approach. Entropy, 17(6):4173–4201, 2015. (pages 3, 6, and 9)PublicationORIGINALTRABAJO DE GRADO.pdfapplication/pdf18944274https://dspace7-utp.metabuscador.org/bitstreams/8fea6fd7-3f3e-4276-9e3a-20b7aba6c863/downloadec71f159d5fd258ce3ba3a290a69a435MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://dspace7-utp.metabuscador.org/bitstreams/533ea5f8-8e32-4a11-ac46-5676a329ba9f/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTTRABAJO DE GRADO.pdf.txtTRABAJO DE GRADO.pdf.txtExtracted texttext/plain319233https://dspace7-utp.metabuscador.org/bitstreams/792ed106-1cd2-4556-89e9-10b6392c00a2/download391ee9d9c98461d98a5437aa08c87972MD54THUMBNAILTRABAJO DE GRADO.pdf.jpgTRABAJO DE GRADO.pdf.jpgGenerated Thumbnailimage/jpeg7939https://dspace7-utp.metabuscador.org/bitstreams/2cd910d6-7046-4e09-b087-1149fd2a43fd/download92bbd34cceb38ff1d70a4e941034dd5dMD5511059/14117oai:dspace7-utp.metabuscador.org:11059/141172024-09-05 17:16:30.037https://creativecommons.org/licenses/by-nc-nd/4.0/Manifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 deopen.accesshttps://dspace7-utp.metabuscador.orgRepositorio de la Universidad Tecnológica de Pereirabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |