Integration of non-conventional renewable sources of energy in developing countries: challenges and opportunities in the Colombian case
: 108 páginas
- Autores:
-
Caicedo-Bravo, Eduardo
Mora-Flórez, Juan José
Orozco-Henao, César Augusto
Salazar-Isaza, Harold
Tibaquirá-Giraldo, Juan Esteban
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2024
- Institución:
- Universidad Tecnológica de Pereira
- Repositorio:
- Repositorio Institucional UTP
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utp.edu.co:11059/15548
- Acceso en línea:
- https://hdl.handle.net/11059/15548
https://doi.org/10.22517/9789587229394
https://repositorio.utp.edu.co/home
- Palabra clave:
- 370 - Educación
Centrales hidroeléctricas
Energía hidráulica
Combustibles fósiles
Energía hidroeléctrica
Colombia
Energía renovable - Costos
Combustibles fósiles
Costos
Energía renovable - Biodiversidad
Energía renovable
Colombia
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
id |
UTP2_2cacd9786d7e05fbefd804853f89dbba |
---|---|
oai_identifier_str |
oai:repositorio.utp.edu.co:11059/15548 |
network_acronym_str |
UTP2 |
network_name_str |
Repositorio Institucional UTP |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Integration of non-conventional renewable sources of energy in developing countries: challenges and opportunities in the Colombian case |
title |
Integration of non-conventional renewable sources of energy in developing countries: challenges and opportunities in the Colombian case |
spellingShingle |
Integration of non-conventional renewable sources of energy in developing countries: challenges and opportunities in the Colombian case 370 - Educación Centrales hidroeléctricas Energía hidráulica Combustibles fósiles Energía hidroeléctrica Colombia Energía renovable - Costos Combustibles fósiles Costos Energía renovable - Biodiversidad Energía renovable Colombia |
title_short |
Integration of non-conventional renewable sources of energy in developing countries: challenges and opportunities in the Colombian case |
title_full |
Integration of non-conventional renewable sources of energy in developing countries: challenges and opportunities in the Colombian case |
title_fullStr |
Integration of non-conventional renewable sources of energy in developing countries: challenges and opportunities in the Colombian case |
title_full_unstemmed |
Integration of non-conventional renewable sources of energy in developing countries: challenges and opportunities in the Colombian case |
title_sort |
Integration of non-conventional renewable sources of energy in developing countries: challenges and opportunities in the Colombian case |
dc.creator.fl_str_mv |
Caicedo-Bravo, Eduardo Mora-Flórez, Juan José Orozco-Henao, César Augusto Salazar-Isaza, Harold Tibaquirá-Giraldo, Juan Esteban |
dc.contributor.author.none.fl_str_mv |
Caicedo-Bravo, Eduardo Mora-Flórez, Juan José Orozco-Henao, César Augusto Salazar-Isaza, Harold Tibaquirá-Giraldo, Juan Esteban |
dc.subject.ddc.none.fl_str_mv |
370 - Educación |
topic |
370 - Educación Centrales hidroeléctricas Energía hidráulica Combustibles fósiles Energía hidroeléctrica Colombia Energía renovable - Costos Combustibles fósiles Costos Energía renovable - Biodiversidad Energía renovable Colombia |
dc.subject.armarc.none.fl_str_mv |
Centrales hidroeléctricas Energía hidráulica Combustibles fósiles |
dc.subject.proposal.spa.fl_str_mv |
Energía hidroeléctrica Colombia Energía renovable - Costos Combustibles fósiles Costos Energía renovable - Biodiversidad Energía renovable Colombia |
description |
: 108 páginas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-12-04T12:33:29Z |
dc.date.available.none.fl_str_mv |
2024-12-04T12:33:29Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.none.fl_str_mv |
Libro |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2f33 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/book |
format |
http://purl.org/coar/resource_type/c_2f33 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11059/15548 |
dc.identifier.eisbn.none.fl_str_mv |
978-958-722-939-4 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.22517/9789587229394 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Pereira |
dc.identifier.reponame.none.fl_str_mv |
Repositorio Universidad Tecnológica de Pereira |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.utp.edu.co/home |
url |
https://hdl.handle.net/11059/15548 https://doi.org/10.22517/9789587229394 https://repositorio.utp.edu.co/home |
identifier_str_mv |
978-958-722-939-4 Universidad Tecnológica de Pereira Repositorio Universidad Tecnológica de Pereira |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
[1] T. Adefarati, R. C. Bansal, M. Bettayeb, and R. Naidoo, “Technical, economic, and environmental assessment of the distribution power system with the application of renewable energy technologies,” Renewable Energy, vol. 199, pp. 278–297, 2022. [2] S. L. Lemos and M. C. C. Rubiano, “Plan nacional de desarrollo 2022-2026: Colombia, potencia mundial de la vida,” Revista Fasecolda, no. 189, pp. 64–69, 2023. [3] Q. Hassan, P. Viktor, T. J. Al-Musawi, B. M. Ali, S. Algburi, H. M. Alzoubi, A. K. Al-Jiboory, A. Z. Sameen, H. M. Salman, and M. Jaszczur, “The renewable energy role in the global energy transformations,” Renewable Energy Focus, vol. 48, p. 100545, 2024. [4] H. Ritchie, P. Rosado, and M. Roser, “Energy production and consumption,” Our World in Data, 2024. [5] A. Aghahosseini, A. Solomon, C. Breyer, T. Pregger, S. Simon, P. Strachan, and A. Jäger-Waldau, “Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness,” Applied energy, vol. 331, p. 120401, 2023. [6] A. M. López-Grajales, J. W. González-Sanchez, H. A. Cardona-Restrepo, I. A. Isaac-Millan, G. J. López-Jiménez, and O. H. Vasco-Echeverri, “Economy, financial, and regulatory method for the integration of electrical energy storage in a power network,” Journal of Energy Storage, vol. 58, p. 106433, 2023. [7] L. Z. Velimirović, A. Janjić, and J. D. Velimirović, “Renewable energy integration in smart grids,” in Multi-criteria Decision Making for Smart Grid Design and Operation: A Society 5.0 Perspective, pp. 61–80, Springer, 2023. [8] M. Shafiullah, S. D. Ahmed, and F. A. Al-Sulaiman, “Grid integration challenges and solution strategies for solar pv systems: a review,” IEEE Access, vol. 10, pp. 52233–52257, 2022. [9] R. Štefko, M. Šárpataky, L. Šárpataky, V. Kohan, P. Havran, and M. Kolcun, “Modeling of protection relays and renewable energy sources for microgrid systems,” Acta Electrotechnica et Informatica, vol. 22, no. 3, pp. 9–17, 2022. [10] A. Hooshyar and R. Iravani, “Microgrid protection,” Proceedings of the IEEE, vol. 105, no. 7, pp. 1332–1353, 2017. [11] P. H. A. Barra, D. V. Coury, and R. A. S. Fernandes, “A survey on adaptive protection of microgrids and distribution systems with distributed generators,” Renewable and Sustainable Energy Reviews, vol. 118, p. 109524, 2020. [12] B. Patnaik, M. Mishra, R. C. Bansal, and R. K. Jena, “Ac microgrid protection – a review: Current and future prospective,” Applied Energy, vol. 271, p. 115210, 2020. [13] C. García-Ceballos, S. Pérez-Londoño, and J. Mora-Flórez, “Compensated fault impedance estimation for distance-based protection in active distribution networks,” International Journal of Electrical Power & Energy Systems, vol. 151, p. 109114, 2023. [14] U. Bhattarai, T. Maraseni, and A. Apan, “Assay of renewable energy transition: A systematic literature review,” Science of The Total Environment, vol. 833, p. 155159, 2022. [15] A. A. Memon and K. Kauhaniemi, “A critical review of ac microgrid protection issues and available solutions,” Electric Power Systems Research, vol. 129, pp. 23–31, 2015. [16] C. García-Ceballos, S. Pérez-Londoño, and J. Mora-Flórez, “Integration of distributed energy resource models in the VSC control for microgrid applications,” Electric Power Systems Research, vol. 196, p. 107278, 2021. [17] S. Velasco-Gómez, S. Pérez-Londoño, and J. Mora-Floréz, “Unbalance compensated distance relay for active distribution networks,” Energy Reports, vol. 9, pp. 438–446, 2023. [18] H. Xie, S. Zheng, and M. Ni, “Microgrid development in china: A method for renewable energy and energy storage capacity configuration in a megawatt-level isolated microgrid,” IEEE Electrification Magazine, vol. 5, no. 2, pp. 28–35, 2017. [19] M. Liu and K. Lo, “Multi-actor perspective, socio-technical barriers, and microgrid development in China,” The Electricity Journal, vol. 35, no. 7, p. 107158, 2022. [20] W. Feng, M. Jin, X. Liu, Y. Bao, C. Marnay, C. Yao, and J. Yu, “A review of microgrid development in the United States – a decade of progress on policies, demonstrations, controls, and software tools,” Applied Energy, vol. 228, pp. 1656–1668, 2018. [21] T. M. Guibentif and F. Vuille, “Prospects and barriers for microgrids in Switzerland,” Energy Strategy Reviews, vol. 39, p. 100776, 2022. [22] V. Harish, N. Anwer, and A. Kumar, “Applications, planning and socio-techno-economic analysis of distributed energy systems for rural electrification in india and other countries: A review,” Sustainable Energy Technologies and Assessments, vol. 52, p. 102032, 2022. [23] E. Gaona, C. Trujillo, and J. Guacaneme, “Rural microgrids and its potential application in Colombia,” Renewable and Sustainable Energy Reviews, vol. 51, pp. 125–137, 2015. [24] W. Guerrero Hernandez A., N. Muñoz-Galeano, E. F. Caicedo-Bravo, P. Maya-Duque, and J. M. López-Lezama, “Sizing assessment of islanded microgrids considering total investment cost and tax benefits in Colombia,” Energies, vol. 15, no. 14, p. 5161, 2022. [25] A. S. Guerrero Hernandez and L. V. R. de Arruda, “Economic viability and optimization of solar microgrids with hybrid storage in a non-interconnected zone in colombia,” Environment, Development and Sustainability, vol. 23, no. 9, pp. 12842–12866, 2021. [26] L. Che, M. E. Khodayar, and M. Shahidehpour, “Adaptive protection system for microgrids: Protection practices of a functional microgrid system.,” IEEE Electrification Magazine, vol. 2, no. 1, pp. 66–80, 2014. [27] G. Muñoz-Arango, J. Mora-Flórez, and S. Pérez-Londoño, “Optimal data-driven adaptive overcurrent relay coordination for active distribution networks,” Electric Power Systems Research, vol. 228, p. 110078, 2024. [28] C. Battistelli and A. Monti, “Chapter 5 - dynamics of modern power systems,” in Converter-Based Dynamics and Control of Modern Power Systems (A. Monti, F. Milano, E. Bompard, and X. Guillaud, eds.), pp. 91–124, Academic Press, 2021. [29] J. W. Stevens, R. H. Bonn, J. W. Ginn, S. Gonzalez, and G. A. Kern, “Development and testing of an approach to anti-islanding in utility-interconnected photovoltaic systems,” tech. rep., Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2000. [30] “IEEE standard conformance test procedures for equipment interconnecting distributed energy resources with electric power systems and associated interfaces,” IEEE Std 1547.1-2020, pp. 1–282, 2020. [31] K. Kauhaniemi and L. Kumpulainen, “Impact of distributed generation on the protection of distribution networks,” in 2004 Eighth IEE International Conference on Developments in Power System Protection, vol. 1, pp. 315–318 Vol.1, 2004. [32] L. Kumpulainen and K. Kauhaniemi, “Distributed generation and reclosing coordination,” in Nordic Distribution and Asset Management Conference, Citeseer, 2004. [33] B. Amanulla, S. Chakrabarti, and S. N. Singh, “Reconfiguration of power distribution systems considering reliability and power loss,” IEEE Transactions on Power Delivery, vol. 27, no. 2, pp. 918–926, 2012. [34] L.-H. Tsai, “Network reconfiguration to enhance reliability of electric distribution systems,” Electric Power Systems Research, vol. 27, no. 2, pp. 135–140, 1993. [35] B. Sultana, M. Mustafa, U. Sultana, and A. R. Bhatti, “Review on reliability improvement and power loss reduction in distribution system via network reconfiguration,” Renewable and Sustainable Energy Reviews, vol. 66, pp. 297–310, 2016. [36] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jiménez-Estévez, and N. D. Hatziargyriou, “Trends in microgrid control,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1905–1919, 2014. [37] Y. Yoldaş, A. Önen, S. Muyeen, A. V. Vasilakos, and İrfan Alan, “Enhancing smart grid with microgrids: Challenges and opportunities,” Renewable and Sustainable Energy Reviews, vol. 72, pp. 205–214, 2017. [38] R. A. Spalding, L. H. L. Rosa, C. F. M. Almeida, R. F. Morais, M. R. Gouvea, N. Kagan, D. Mollica, A. Dominice, L. Zamboni, G. H. Batista, J. P. Silva, L. A. Costa, and M. A. P. Fredes, “Fault location, isolation and service restoration (flisr) functionalities tests in a smart grids laboratory for evaluation of the quality of service,” in 2016 17th International Conference on Harmonics and Quality of Power (ICHQP), pp. 879–884, 2016. [39] N. D. Hatziargyriou, Microgrids: Architectures and Control. Wiley - IEEE, Wiley, 2014. [40] S. Beheshtaein, M. Savaghebi, J. M. Guerrero, R. Cuzner, and J. C. Vasquez, “A secondary-control based fault current limiter for four-wire three phase inverter-interfaced dgs,” in IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, pp. 2363–2368, 2017. [41] S. AG, “Overcurrent and feeder protection – SIPROTEC 7SJ82,” 2024. [Online; accessed 2024-04-14]. [42] A. Barranco-Carlos, C. Orozco-Henao, J. Marín-Quintero, J. Mora-Flórez, and A. Herrera-Orozco, “Adaptive protection for active distribution networks: An approach based on fuses and relays with multiple setting groups,” IEEE Access, vol. 11, pp. 31075–31091, 2023. [43] S. A. Gopalan, V. Sreeram, and H. H. Iu, “A review of coordination strategies and protection schemes for microgrids,” Renewable and Sustainable Energy Reviews, vol. 32, pp. 222–228, 2014. [44] B. J. Brearley and R. R. Prabu, “A review on issues and approaches for microgrid protection,” Renewable and Sustainable Energy Reviews, vol. 67, pp. 988–997, 2017. [45] B. Grisales-Soto, S. Pérez-Londoño, and J. Mora-Flórez, “Low computational burden adaptive overcurrent protection for active distribution networks,” International Transactions on Electrical Energy Systems, vol. 2023, 2023. [46] S. Kar, S. R. Samantaray, and M. D. Zadeh, “Data-mining model based intelligent differential microgrid protection scheme,” IEEE Systems Journal, vol. 11, no. 2, pp. 1161–1169, 2017. [47] W.-J. Tang and H.-T. Yang, “Data mining and neural networks based self-adaptive protection strategies for distribution systems with dgs and fcls,” Energies, vol. 11, no. 2, p. 426, 2018. [48] J. Orozco-Álvarez, A. Herrera-Orozco, and J. Mora-Flórez, “Communication-less adaptive directional overcurrent protection strategy considering islanded mode detection in active distribution networks,” Results in Engineering, vol. 20, p. 101538, 2023. [49] S. Shen, D. Lin, H. Wang, P. Hu, K. Jiang, D. Lin, and B. He, “An adaptive protection scheme for distribution systems with dgs based on optimized thevenin equivalent parameters estimation,” IEEE Transactions on Power Delivery, vol. 32, no. 1, pp. 411–419, 2017. [50] P. Anderson, C. Henville, R. Rifaat, B. Johnson, and S. Meliopoulos, Power System Protection. IEEE Press Series on Power and Energy Systems, Wiley, 2022. [51] M. Y. Shih, A. Conde, C. Ángeles Camacho, E. Fernández, Z. Leonowicz, F. Lezama, and J. Chan, “A two stage fault current limiter and directional overcurrent relay optimization for adaptive protection resetting using differential evolution multi-objective algorithm in presence of distributed generation,” Electric Power Systems Research, vol. 190, p. 106844, 2021. [52] A. Phadke and J. Thorp, Computer Relaying for Power Systems. Wiley, 2009. [53] H. Lin, K. Sun, Z.-H. Tan, C. Liu, J. M. Guerrero, and J. C. Vasquez, “Adaptive protection combined with machine learning for microgrids,” IET generation, transmission & distribution, vol. 13, no. 6, pp. 770–779, 2019. [54] Q. Yang, J. A. Barria, and T. C. Green, “Communication infrastructures for distributed control of power distribution networks,” IEEE Transactions on Industrial Informatics, vol. 7, no. 2, pp. 316–327, 2011. [55] I. Serban, S. Céspedes, C. Marinescu, C. A. Azurdia-Meza, J. S. Gómez, and D. S. Hueichapan, “Communication requirements in microgrids: A practical survey,” IEEE Access, vol. 8, pp. 47694–47712, 2020. [56] M. A. Setiawan, F. Shahnia, S. Rajakaruna, and A. Ghosh, “Zigbee-based communication system for data transfer within future microgrids,” IEEE Transactions on Smart Grid, vol. 6, no. 5, pp. 2343–2355, 2015. [57] T. Dragičević, P. Siano, and S. S. Prabaharan, “Future generation 5g wireless networks for smart grid: A comprehensive review,” Energies, vol. 12, no. 11, p. 2140, 2019. [58] T. Mai, A. Haque, T. Vo, P. Nguyen, and M. Pham, “Development of ict infrastructure for physical lv microgrids,” in 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / ICPS Europe), pp. 1–6, 2018. [59] D. Gutierrez-Rojas, P. H. J. Nardelli, G. Mendes, and P. Popovski, “Review of the state of the art on adaptive protection for microgrids based on communications,” IEEE Transactions on Industrial Informatics, vol. 17, no. 3, pp. 1539–1552, 2021. [60] D. Martin, P. Sharma, A. Sinclair, and D. Finney, “Distance protection in distribution systems: How it assists with integrating distributed resources,” in 2012 65th Annual Conference for Protective Relay Engineers, pp. 166–177, 2012. [61] A. M. Tsimtsios and V. C. Nikolaidis, “Setting zero-sequence compensation factor in distance relays protecting distribution systems,” IEEE Transactions on Power Delivery, vol. 33, no. 3, pp. 1236–1246, 2017. [62] Y. Yin, Y. Fu, Z. Zhang, and A. Zamani, “Protection of microgrid interconnection lines using distance relay with residual voltage compensations,” IEEE Transactions on Power Delivery, vol. 37, no. 1, pp. 486–495, 2021. [63] A. C. Adewole, A. D. Rajapakse, D. Ouellette, and P. Forsyth, “Protection of active distribution networks incorporating microgrids with multi-technology distributed energy resources,” Electric Power Systems Research, vol. 202, p. 107575, 2022. [64] J. Ma, J. Liu, Z. Deng, S. Wu, and J. S. Thorp, “An adaptive directional current protection scheme for distribution network with dg integration based on fault steady-state component,” International Journal of Electrical Power & Energy Systems, vol. 102, pp. 223–234, 2018. [65] J. Andruszkiewicz, J. Lorenc, B. Staszak, A. Weychan, and B. Zięba, “Overcurrent protection against multi-phase faults in mv networks based on negative and zero sequence criteria,” International Journal of Electrical Power & Energy Systems, vol. 134, p. 107449, 2022. [66] P. Mahat, Z. Chen, B. Bak-Jensen, and C. L. Bak, “A simple adaptive overcurrent protection of distribution systems with distributed generation,” IEEE Transactions on Smart Grid, vol. 2, no. 3, pp. 428–437, 2011. [67] A. Soleimanisardoo and H. Kazemi Karegar, “Alleviating the impact of dgs and network operation modes on the protection system,” IET Generation, Transmission & Distribution, vol. 14, no. 1, pp. 21–28, 2020. [68] A. J. Pansini, Guide to electrical power distribution systems. River Publishers, 2020. [69] A. Fazanehrafat, S. Javadian, S. Bathaee, and M.-R. Haghifam, “Maintaining the recloser-fuse coordination in distribution systems in presence of DG by determining DG’s size,” in IET 9th International Conference on Developments in Power Systems Protection (DPSP 2008), pp. 132–137, IET, 2008. [70] S. Ghobadpour, M. Gandomkar, and J. Nikoukar, “Determining optimal size of superconducting fault current limiters to achieve protection coordination of fuse-recloser in radial distribution networks with synchronous DGs,” Electric Power Systems Research, vol. 185, p. 106357, 2020. [71] A. Elmitwally, E. Gouda, and S. Eladawy, “Restoring recloser-fuse coordination by optimal fault current limiters planning in dg-integrated distribution systems,” International Journal of Electrical Power & Energy Systems, vol. 77, pp. 9–18, 2016. [72] M. N. Alam, B. Das, and V. Pant, “Protection scheme for reconfigurable radial distribution networks in presence of distributed generation,” Electric Power Systems Research, vol. 192, p. 106973, 2021. [73] CREG, “Resolución 121 de 2017,” 2017. [74] CREG, “Resolución 030 de 2018,” 2018. [75] CREG, “Resolución 281 de 2015,” 2015. [76] CREG, “Resolución 174 de 2018,” 2018. [77] W. Wang, Y. Xu, and M. Khanna, “A survey on the communication architectures in smart grid,” Computer networks, vol. 55, no. 15, pp. 3604–3629, 2011. [78] H. Salazar Isaza, R. A. Hincapié Isaza, A. Arias Londoño, D. Paredes Cortés, and L. S. Peña, “Apoyo en el estudio y elaboración de las bases para proponer el agente que debe desarrollar la implementación de la infraestructura de medición avanzada,” tech. rep., Universidad Tecnológica de Pereira, 2019. [79] CREG, “Resolución 002 de 2022,” 2022. [80] Ministerio de Minas y Energía, “Resolución CREG No.015 De 2018,” tech. rep., 2018. [81] M. Gottschalk, M. Uslar, and C. Delfs, The Use Case and Smart Grid Architecture Model Approach The IEC 62559-2 Use Case Template and the SGAM Applied in Various Domains. 2017. [82] Graphic Resources LLC., “Freepik,” 2014. [83] I. E. A. (IEA), “Global energy review: CO2 emissions in 2020,” 2021. [Online; accessed 2021-08-24]. [84] I. E. A. (IEA), “After steep drop in early 2020, global carbon dioxide emissions have rebounded strongly,” 2021. [Online; accessed 2021-08-25]. [85] R. Turconi, A. Boldrin, and T. Astrup, “Life cycle assessment (lca) of electricity generation technologies: Overview, comparability and limitations,” Renewable and Sustainable Energy Reviews, vol. 28, pp. 555–565, 2013. [86] I. E. A. (IEA), “Electricity market report – july 2021,” Tech. Rep. July, France, 2021. [87] E. Nam and T. Jin, “Mitigating carbon emissions by energy transition, energy efficiency, and electrification: Difference between regulation indicators and empirical data,” Journal of Cleaner Production, vol. 300, p. 126962, 2021. [88] P. Bertoldi and R. Mosconi, “Do energy efficiency policies save energy? a new approach based on energy policy indicators (in the eu member states),” Energy Policy, vol. 139, no. January, p. 111320, 2020. [89] F. deLlano Paz, P. Martínez Fernandez, and I. Soares, “Addressing 2030 EU policy framework for energy and climate: Cost, risk and energy security issues,” Energy, vol. 115, pp. 1347–1360, 2016. [90] N. Unidas, “¿qué es el acuerdo de parís?,” 2021. [Online; accessed 2021-08-24]. [91] IEA, “World energy outlook 2020,” 2020. [Online; accessed 2021-06-04]. [92] E. Marrasso, C. Roselli, and M. Sasso, “Electric efficiency indicators and carbon dioxide emission factors for power generation by fossil and renewable energy sources on hourly basis,” Energy Conversion and Management, vol. 196, pp. 1369–1384, 9 2019. [93] F. Greer, P. Raftery, and A. Horvath, “Considerations for estimating operational greenhouse gas emissions in whole building life-cycle assessments,” Building and Environment, p. 111383, 2024. [94] P. M. De Oliveira-De Jesus, “Effect of generation capacity factors on carbon emission intensity of electricity of latin america amp; the caribbean, a temporal ida-lmdi analysis,” Renewable and Sustainable Energy Reviews, vol. 101, pp. 516–526, 3 2019. [95] B. Ang and B. Su, “Carbon emission intensity in electricity production: A global analysis,” Energy Policy, vol. 94, pp. 56–63, 7 2016. [96] I. E. Agency, “Indicadores de eficiencia energética: Fundamentos estadísticos,” IEA Publications, pp. 1–211, 2016. [97] X. Wang, Y. Lu, C. Chen, X. Yi, and H. Cui, “Total-factor energy efficiency of ten major global energy-consuming countries,” Journal of Environmental Sciences, vol. 137, pp. 41–52, 2024. [98] UPME, “Balance Energético Colombiano (BECO) - Consulta,” 2020. [99] UPME, “Plan energetico nacional colombia: Ideario energético 2050,” Unidad de Planeación Minero Energética, Republica de Colombia, p. 184, 2015. [100] M. G. Patterson, “What is energy efficiency? concepts, indicators and methodological issues,” Energy Policy, vol. 24, no. 5, pp. 377–390, 1996. [101] M. Wünsch, R. Offermann, K. Weinert, F. Seefeldt, and I. Ziegenhagen, “Benefits of energy efficiency on the german power sector,” Agora Energiewende, no. April, 2014. [102] T. Jin, “Impact of heat and electricity consumption on energy intensity: A panel data analysis,” Energy, vol. 239, p. 121903, 1 2022. [103] XM, “Capacidad efectiva por tipo de generación,” 2021. [Online; accessed 2021-07-31]. [104] H. Al Garni, A. Kassem, A. Awasthi, D. Komljenovic, and K. Al-Haddad, “A multicriteria decision making approach for evaluating renewable power generation sources in saudi arabia,” Sustainable Energy Technologies and Assessments, vol. 16, pp. 137–150, 2016. [105] Y. Soler-Castillo, J. C. Rimada, L. Hernández, and G. Martínez-Criado, “Modelling of the efficiency of the photovoltaic modules: Grid-connected plants to the Cuban national electrical system,” Solar Energy, vol. 223, pp. 150–157, 2021. [106] H. Dargahi and K. B. Khameneh, “Energy intensity determinants in an energy-exporting developing economy: Case of iran,” Energy, vol. 168, pp. 1031–1044, 2 2019. [107] U. de Planeación Minero Energética, “Consultoría técnica para el fortalecimiento y mejora de la base de datos de factores de emisión de los combustibles colombianos - fecoc,” tech. rep., 2016. [108] F. Dong, B. Yu, T. Hadachin, Y. Dai, Y. Wang, S. Zhang, and R. Long, “Drivers of carbon emission intensity change in china,” Resources, Conservation and Recycling, vol. 129, pp. 187–201, 2 2018. [109] Ministerio de Minas y Energía, “Resolución CREG No.097 de 2008,” tech. rep., 2008. [110] Comisión de Regulación de Energía y Gas - CREG, “Resolución CREG No. 025 de 1995,” 1995. [111] F. Lucero García and M. V. Toasa Yujato, Manual de estadísticas energéticas. 2017. [112] T. Chalá and V. García, “Pérdidas en distribución de energía eléctrica,” Master’s thesis, 2012. [113] XM, “Liquidación y Administración de Cuentas (LAC),” 2023. [114] D. J. Romero-López and A. Vargas-Rojas, “Modelo de incentivos para la reducción de pérdidas de energía eléctrica en Colombia,” Revista de la Maestría en Derecho Económico, vol. 6, no. 6, pp. 221–257, 2013. [115] I. A. E. Agency, Energy indicators for sustainable development: guidelines and methodologies. 2005. [116] I. E. Agency, “Indicadores de eficiencia energética: Bases esenciales para el establecimiento de políticas,” IEA Publications, p. 182, 2015. [117] Ministerio de Minas y Energía, “Resolución CREG No.133 de 2013,” tech. rep., 2013. [118] Ministerio de Minas y Energía, “Resolución CREG No.174 De 2011,” tech. rep., 2011. [119] ANDI, “Informe encuesta de calidad de la energía. septiembre 2020,” tech. rep., 2020. [120] CREG, “Resolución 058 de 2008,” 2008. [121] Ministerio de Minas y Energía, “Resolución CREG No.109 De 2019,” tech. rep., 2019. [122] A. N. de Industriales, “Informe nacional de competitividad 2019 - 2020,” 2020. [123] M. de energía and UPME, “Inflación de energía en Colombia,” 9 2020. [124] E. F. S. Úbeda, J. P. G. A. M. S. Roque, E. Chueca, and M. Hallack, “Impacto del covid-19 en la demanda de energía eléctrica en latinoamérica y el caribe,” 2021. [125] A. Damodaran, Investment Valuation Tools and Techniques for Determining the Value of Any Asset, vol. 666. John Wiley & Sons Inc, 2002. [126] C. Tascheret, G. Rattá, and A. M. Andreoni, “Methodology to determine the optimal electricity distribution tariff using benchmarking techniques,” in 2016 13th International Conference on the European Energy Market (EEM), vol. 2016-July, pp. 1–5, IEEE, IEEE Computer Society, 7 2016. [127] P. Corredor, U. Helman, D. Jara, and F. A. Wolac, “Misión de transformación energética y modernización de la industria eléctrica: hoja de ruta para la energía del futuro,” 2020. [128] R. Cruz, H. Torres, M. Montoya, J. Barrientos, L. Pineda, L. Niebles, O. Bedoya, B. Duque, C. Gómez, J. Uribe, and A. Franco, Caracterización del Sector Eléctrico colombiano. SENA, 2013. [129] S. Chawda, R. Bhakar, and P. Mathuria, “Uncertainty and risk management in electricity market: Challenges and opportunities,” in 2016 national power systems conference (NPSC), pp. 1–6, IEEE, 2016. [130] J. Cardona, M. Gil, and J. Arbelaéz, “Administración de riesgos financieros en los mercados de energía eléctrica.,” 2019. [131] CREG, “Circular CREG 037-2006,” 2006. [132] C. G. Soops, “Sostenibilidad del mercado eléctrico colombiano. implementación de un mercado anónimo y estandarizado de contratos,” 2021. [133] CREG, “Circular CREG 070-2021,” 2021. [134] J. Campo and V. Sarmiento, “The relationship between energy consumption and gdp: Evidence from a panel of 10 Latin American countries,” Latin American Journal of Economics, vol. 50, pp. 233–255, 2013. [135] J. Millán, Entre el mercado y el Estado. Tres décadas de reformas en el sector eléctrico de América Latina. Banco Interamericano de Desarollo, 2006. [136] M. Santa María, N. Von Der Fehr, J. Millán, J. Benavides, O. Gracia, and E. Schutt, El Mercado de la Energía Eléctrica en Colombia: Características, Evolución e Impacto Sobre Otros Sectores. 2009. [137] CREG, “Resolución CREG 083-2021,” 2021. [138] CREG, “Resolución CREG 119-2007,” 2007. [139] CREG, “Resolución CREG 101-002,” 2022. [140] I. J. Pérez-Arriaga, Regulation of Power Sector. Springer, 2013. [141] M. Jonas J, “Ratemaking as climate adaptation governance,” Frontiers in Climate, vol. 3, p. 738972, 2021. [142] CREG, “Resolución CREG 031-1997,” 1997. [143] M. Liu, F. F. Wu, and Y. Ni, “A survey on risk management in electricity markets,” in 2006 IEEE Power Engineering Society General Meeting, pp. 1–6, 2006. [144] C. Guadarrama, A. Viana, J. Gutiérrez, and A. Paz, Renewable energy auctions in Colombia: Context, design and results. IRENA and USAID, 2021. [145] XM, “Informe de resultados nuevas subasta 2021.” [Online; accessed 2023-09-25]. [146] CREG, “Resolución CREG 114-2018,” 2018. |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
108 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Tecnológica de Pereira |
dc.publisher.place.none.fl_str_mv |
Pereira |
publisher.none.fl_str_mv |
Universidad Tecnológica de Pereira |
institution |
Universidad Tecnológica de Pereira |
bitstream.url.fl_str_mv |
https://repositorio.utp.edu.co/bitstreams/55f02718-382a-4fc5-ac3d-4c50d025750a/download https://repositorio.utp.edu.co/bitstreams/2a928359-cf9c-47ad-aa84-d72a47f80103/download https://repositorio.utp.edu.co/bitstreams/10a90a53-f7bb-459a-b8b6-559443fee3bb/download https://repositorio.utp.edu.co/bitstreams/adc6084e-d0bf-4a67-93a2-c546b2f20107/download https://repositorio.utp.edu.co/bitstreams/f976318a-55dd-4dc2-95e8-779140b8c8aa/download |
bitstream.checksum.fl_str_mv |
14123bb8545c4dc1128f3af4f978dc83 73a5432e0b76442b22b026844140d683 ad9194a32b4e91c2d14c0a5562b375e3 6827220cbf0e8703f2e1b02b51214bf6 64dfde1a944ba7a63fb4d03dac2bf508 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica de Pereira |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1828202085950160896 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)Manifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de la Ley 23 de 1982. En concordancia suscribo (suscribimos) este documento en el momento mismo que hago (hacemos) entrega de mi (nuestra) OBRA a la Biblioteca “Jorge Roa Martínez” de la Universidad Tecnológica de Pereira. Manifiesto (manifestamos) que la OBRA objeto de la presente autorizaciónhttps://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessCaicedo-Bravo, EduardoMora-Flórez, Juan JoséOrozco-Henao, César AugustoSalazar-Isaza, HaroldTibaquirá-Giraldo, Juan Esteban2024-12-04T12:33:29Z2024-12-04T12:33:29Z2024https://hdl.handle.net/11059/15548978-958-722-939-4https://doi.org/10.22517/9789587229394Universidad Tecnológica de PereiraRepositorio Universidad Tecnológica de Pereirahttps://repositorio.utp.edu.co/home: 108 páginasEnergy plays a fundamental role in developing societies worldwide, with most of its changes affecting economic progress [1]. As stated in the “Plan Nacional de Desarrollo, PND 2022-2026” chapter four, the challenges posed must drive innovation in energy transition, leading to technological advancements, greater supply capacity, and improved energy efficiency rates, including environmental aspects [2]. At the same time, global behavior shows increasing energy consumption rates, with forecasts pointing to a 49% increase in global energy consumption between 2007 and 2035. Developing countries, including Colombia, would increase their demand by 84%, while developed countries will do it by 14% [3, 4]. The previous situation implies more outstanding commitments from the developed nations. Furthermore, the environment is increasingly crucial, limiting the management and use of energy resources. Several regulations have stimulated the inclusion of new sources and technologies not previously considered in the traditional energy market. In particular, promoting non-fossil energy resources and implementing more flexible systems are becoming competitive scenarios due to successful research efforts and the consequent advancement in learning curves [3]. Therefore, global economic improvement will largely depend on technological industry changes. Reinventing energy and leveraging it to take advantage is crucial in facing the challenges ahead, and implementing these measures can build new industries, economies, and fortunes of this century [5].Preface 13 CHAPTER ONE Introduction 15 1.1. Field of research 17 1.2 Protection challenges for NCRE integration . . . . . . . . . . . . . . . . . . . . . 18 1.3 Energy efficiency indicators for the electric sector 19 1.4 Market risk influence on the integration policies 20 CHAPTER TWO Protection strategies for active distribution systems in the Colombian context 21 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Contextual background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 ADN characteristics which most influences the system protection 25 2.3.1 Unintentional islanding 25 2.3.2 Failure in protection devices . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.3 Blinding protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.4 False tripping 27 2.3.5 Automatic reclosing and synchronism 27 2.3.6 Network configuration changes 28 2.4 Approaches for ADN protection 29 2.4.1 Fault current limiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4.2 Fault current sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4.3 Relays with several setting groups . . . . . . . . . . . . . . . . . . . . . . . 30 2.4.4 Adaptive protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5. General requirements of protection strategies for ADN . . . . . . . . . . . . . . . 33 2.5.1 Protection strategies based on communications . . . . . . . . . . . . . . . . 34 2.5.2 Protection schemes without communications 36 2.6. Current state of distribution system infrastructure in Colombia 36 2.6.1 Colombian distribution systems: a general description 36 2.6.2 Existing protection and operation schemes 37 2.7. Colombian general regulatory framework related to operation and protection in ADN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.7.1 Active distribution networks in the Colombian context: DERs integration progress 38 2.7.2 Advanced metering infrastructure 38 2.7.3 Distribution systems automation . . . . . . . . . . . . . . . . . . . . . . . . 39 2.8. Towards an implementation of ADN protection schemes in Colombia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.8.1 Stage 1: Analysis and selection of the protection scheme 40 2.8.2 Stage 2: Description of the protection scheme . . . . . . . . . . . . . . . . . 40 2.8.3 Stage 3: Development of the protection scheme in a reference architecture 42 2.9. Conclusions 48 CHAPTER THREE Energy efficiency indicators in generation, distribution, and final use of energy in Colombia 49 3.1. Introduction 51 3.2. Brief background 52 3.3. Proposed methodology 53 3.4. Step 1: Data collection. 54 3.5. Step 1: Structure of the electric sector in Colombia . . . . . . . . . . . . . . . . . 55 3.6. Step 2a: Calculation of the energy efficiency indicators in electricity generation. 56 3.6.1 The efficiency of electricity generation . . . . . . . . . . . . . . . . . . . . . 56 3.6.2 Primary energy intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 3.6.3 Carbon emission intensity 57 3.7. Step 2c. Estimation of energy efficiency indicators in electricity distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.7.1 Distribution system loss factor . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.7.2 Cost of distribution system losses 59 3.7.3 Accumulated Annual Discontinuity Index (AADI) 60 3.8. Step 2d. Energy efficiency indicators in electricity final use 60 3.8.1 Consumption per capita 61 3.8.2 Energy intensity of the electricity final use . . . . . . . . . . . . . . . . . . . 61 3.9. Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.9.1 Analysis of energy efficiency indicators in electricity generation 62 3.9.2 Analysis of energy efficiency indicators in electricity distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.9.3 Analysis of energy efficiency indicators in electricity final use 67 3.10. Conclusions 72 CHAPTER FOUR Hedging Instruments: A Necessity Amid the Growth of Non-Conventional Electrical Energy Sources in Colombia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.1. Introduction 77 4.2. G Component of Unit Cost 79 4.2.1 Preliminaries 79 4.2.2 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.2.a Formation of the G Component 81 4.2.2.b Market risk for the regulated user . . . . . . . . . . . . . . . . . . . . 83 4.3. Auctions as a mechanism to strengthen NCRE 85 4.3.1 Results of the second NCRE auction 86 4.3.2 Results of the third NCRE auction 86 4.4. Reflections on a type of market required to harmonize the deployment of NCRE. 87 CHAPTER FIVE Concluding remarks 91 5.1. Protection challenges for NCRE integration 93 5.2. Energy efficiency indicators for the electric sector 94 5.3. Hedging instruments for the electricity market in Colombia 95 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Colección Trabajos de investigación108 páginasapplication/pdfengUniversidad Tecnológica de PereiraPereira370 - EducaciónCentrales hidroeléctricasEnergía hidráulicaCombustibles fósilesEnergía hidroeléctricaColombiaEnergía renovable - CostosCombustibles fósilesCostosEnergía renovable - BiodiversidadEnergía renovableColombiaIntegration of non-conventional renewable sources of energy in developing countries: challenges and opportunities in the Colombian caseLibroinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_2f33Textinfo:eu-repo/semantics/book[1] T. Adefarati, R. C. Bansal, M. Bettayeb, and R. Naidoo, “Technical, economic, and environmental assessment of the distribution power system with the application of renewable energy technologies,” Renewable Energy, vol. 199, pp. 278–297, 2022.[2] S. L. Lemos and M. C. C. Rubiano, “Plan nacional de desarrollo 2022-2026: Colombia, potencia mundial de la vida,” Revista Fasecolda, no. 189, pp. 64–69, 2023.[3] Q. Hassan, P. Viktor, T. J. Al-Musawi, B. M. Ali, S. Algburi, H. M. Alzoubi, A. K. Al-Jiboory, A. Z. Sameen, H. M. Salman, and M. Jaszczur, “The renewable energy role in the global energy transformations,” Renewable Energy Focus, vol. 48, p. 100545, 2024.[4] H. Ritchie, P. Rosado, and M. Roser, “Energy production and consumption,” Our World in Data, 2024.[5] A. Aghahosseini, A. Solomon, C. Breyer, T. Pregger, S. Simon, P. Strachan, and A. Jäger-Waldau, “Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness,” Applied energy, vol. 331, p. 120401, 2023.[6] A. M. López-Grajales, J. W. González-Sanchez, H. A. Cardona-Restrepo, I. A. Isaac-Millan, G. J. López-Jiménez, and O. H. Vasco-Echeverri, “Economy, financial, and regulatory method for the integration of electrical energy storage in a power network,” Journal of Energy Storage, vol. 58, p. 106433, 2023.[7] L. Z. Velimirović, A. Janjić, and J. D. Velimirović, “Renewable energy integration in smart grids,” in Multi-criteria Decision Making for Smart Grid Design and Operation: A Society 5.0 Perspective, pp. 61–80, Springer, 2023.[8] M. Shafiullah, S. D. Ahmed, and F. A. Al-Sulaiman, “Grid integration challenges and solution strategies for solar pv systems: a review,” IEEE Access, vol. 10, pp. 52233–52257, 2022.[9] R. Štefko, M. Šárpataky, L. Šárpataky, V. Kohan, P. Havran, and M. Kolcun, “Modeling of protection relays and renewable energy sources for microgrid systems,” Acta Electrotechnica et Informatica, vol. 22, no. 3, pp. 9–17, 2022.[10] A. Hooshyar and R. Iravani, “Microgrid protection,” Proceedings of the IEEE, vol. 105, no. 7, pp. 1332–1353, 2017.[11] P. H. A. Barra, D. V. Coury, and R. A. S. Fernandes, “A survey on adaptive protection of microgrids and distribution systems with distributed generators,” Renewable and Sustainable Energy Reviews, vol. 118, p. 109524, 2020.[12] B. Patnaik, M. Mishra, R. C. Bansal, and R. K. Jena, “Ac microgrid protection – a review: Current and future prospective,” Applied Energy, vol. 271, p. 115210, 2020.[13] C. García-Ceballos, S. Pérez-Londoño, and J. Mora-Flórez, “Compensated fault impedance estimation for distance-based protection in active distribution networks,” International Journal of Electrical Power & Energy Systems, vol. 151, p. 109114, 2023.[14] U. Bhattarai, T. Maraseni, and A. Apan, “Assay of renewable energy transition: A systematic literature review,” Science of The Total Environment, vol. 833, p. 155159, 2022.[15] A. A. Memon and K. Kauhaniemi, “A critical review of ac microgrid protection issues and available solutions,” Electric Power Systems Research, vol. 129, pp. 23–31, 2015.[16] C. García-Ceballos, S. Pérez-Londoño, and J. Mora-Flórez, “Integration of distributed energy resource models in the VSC control for microgrid applications,” Electric Power Systems Research, vol. 196, p. 107278, 2021.[17] S. Velasco-Gómez, S. Pérez-Londoño, and J. Mora-Floréz, “Unbalance compensated distance relay for active distribution networks,” Energy Reports, vol. 9, pp. 438–446, 2023.[18] H. Xie, S. Zheng, and M. Ni, “Microgrid development in china: A method for renewable energy and energy storage capacity configuration in a megawatt-level isolated microgrid,” IEEE Electrification Magazine, vol. 5, no. 2, pp. 28–35, 2017.[19] M. Liu and K. Lo, “Multi-actor perspective, socio-technical barriers, and microgrid development in China,” The Electricity Journal, vol. 35, no. 7, p. 107158, 2022.[20] W. Feng, M. Jin, X. Liu, Y. Bao, C. Marnay, C. Yao, and J. Yu, “A review of microgrid development in the United States – a decade of progress on policies, demonstrations, controls, and software tools,” Applied Energy, vol. 228, pp. 1656–1668, 2018.[21] T. M. Guibentif and F. Vuille, “Prospects and barriers for microgrids in Switzerland,” Energy Strategy Reviews, vol. 39, p. 100776, 2022.[22] V. Harish, N. Anwer, and A. Kumar, “Applications, planning and socio-techno-economic analysis of distributed energy systems for rural electrification in india and other countries: A review,” Sustainable Energy Technologies and Assessments, vol. 52, p. 102032, 2022.[23] E. Gaona, C. Trujillo, and J. Guacaneme, “Rural microgrids and its potential application in Colombia,” Renewable and Sustainable Energy Reviews, vol. 51, pp. 125–137, 2015.[24] W. Guerrero Hernandez A., N. Muñoz-Galeano, E. F. Caicedo-Bravo, P. Maya-Duque, and J. M. López-Lezama, “Sizing assessment of islanded microgrids considering total investment cost and tax benefits in Colombia,” Energies, vol. 15, no. 14, p. 5161, 2022.[25] A. S. Guerrero Hernandez and L. V. R. de Arruda, “Economic viability and optimization of solar microgrids with hybrid storage in a non-interconnected zone in colombia,” Environment, Development and Sustainability, vol. 23, no. 9, pp. 12842–12866, 2021.[26] L. Che, M. E. Khodayar, and M. Shahidehpour, “Adaptive protection system for microgrids: Protection practices of a functional microgrid system.,” IEEE Electrification Magazine, vol. 2, no. 1, pp. 66–80, 2014.[27] G. Muñoz-Arango, J. Mora-Flórez, and S. Pérez-Londoño, “Optimal data-driven adaptive overcurrent relay coordination for active distribution networks,” Electric Power Systems Research, vol. 228, p. 110078, 2024.[28] C. Battistelli and A. Monti, “Chapter 5 - dynamics of modern power systems,” in Converter-Based Dynamics and Control of Modern Power Systems (A. Monti, F. Milano, E. Bompard, and X. Guillaud, eds.), pp. 91–124, Academic Press, 2021.[29] J. W. Stevens, R. H. Bonn, J. W. Ginn, S. Gonzalez, and G. A. Kern, “Development and testing of an approach to anti-islanding in utility-interconnected photovoltaic systems,” tech. rep., Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2000.[30] “IEEE standard conformance test procedures for equipment interconnecting distributed energy resources with electric power systems and associated interfaces,” IEEE Std 1547.1-2020, pp. 1–282, 2020.[31] K. Kauhaniemi and L. Kumpulainen, “Impact of distributed generation on the protection of distribution networks,” in 2004 Eighth IEE International Conference on Developments in Power System Protection, vol. 1, pp. 315–318 Vol.1, 2004.[32] L. Kumpulainen and K. Kauhaniemi, “Distributed generation and reclosing coordination,” in Nordic Distribution and Asset Management Conference, Citeseer, 2004.[33] B. Amanulla, S. Chakrabarti, and S. N. Singh, “Reconfiguration of power distribution systems considering reliability and power loss,” IEEE Transactions on Power Delivery, vol. 27, no. 2, pp. 918–926, 2012.[34] L.-H. Tsai, “Network reconfiguration to enhance reliability of electric distribution systems,” Electric Power Systems Research, vol. 27, no. 2, pp. 135–140, 1993.[35] B. Sultana, M. Mustafa, U. Sultana, and A. R. Bhatti, “Review on reliability improvement and power loss reduction in distribution system via network reconfiguration,” Renewable and Sustainable Energy Reviews, vol. 66, pp. 297–310, 2016.[36] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jiménez-Estévez, and N. D. Hatziargyriou, “Trends in microgrid control,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1905–1919, 2014.[37] Y. Yoldaş, A. Önen, S. Muyeen, A. V. Vasilakos, and İrfan Alan, “Enhancing smart grid with microgrids: Challenges and opportunities,” Renewable and Sustainable Energy Reviews, vol. 72, pp. 205–214, 2017.[38] R. A. Spalding, L. H. L. Rosa, C. F. M. Almeida, R. F. Morais, M. R. Gouvea, N. Kagan, D. Mollica, A. Dominice, L. Zamboni, G. H. Batista, J. P. Silva, L. A. Costa, and M. A. P. Fredes, “Fault location, isolation and service restoration (flisr) functionalities tests in a smart grids laboratory for evaluation of the quality of service,” in 2016 17th International Conference on Harmonics and Quality of Power (ICHQP), pp. 879–884, 2016.[39] N. D. Hatziargyriou, Microgrids: Architectures and Control. Wiley - IEEE, Wiley, 2014.[40] S. Beheshtaein, M. Savaghebi, J. M. Guerrero, R. Cuzner, and J. C. Vasquez, “A secondary-control based fault current limiter for four-wire three phase inverter-interfaced dgs,” in IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, pp. 2363–2368, 2017.[41] S. AG, “Overcurrent and feeder protection – SIPROTEC 7SJ82,” 2024. [Online; accessed 2024-04-14].[42] A. Barranco-Carlos, C. Orozco-Henao, J. Marín-Quintero, J. Mora-Flórez, and A. Herrera-Orozco, “Adaptive protection for active distribution networks: An approach based on fuses and relays with multiple setting groups,” IEEE Access, vol. 11, pp. 31075–31091, 2023.[43] S. A. Gopalan, V. Sreeram, and H. H. Iu, “A review of coordination strategies and protection schemes for microgrids,” Renewable and Sustainable Energy Reviews, vol. 32, pp. 222–228, 2014.[44] B. J. Brearley and R. R. Prabu, “A review on issues and approaches for microgrid protection,” Renewable and Sustainable Energy Reviews, vol. 67, pp. 988–997, 2017.[45] B. Grisales-Soto, S. Pérez-Londoño, and J. Mora-Flórez, “Low computational burden adaptive overcurrent protection for active distribution networks,” International Transactions on Electrical Energy Systems, vol. 2023, 2023.[46] S. Kar, S. R. Samantaray, and M. D. Zadeh, “Data-mining model based intelligent differential microgrid protection scheme,” IEEE Systems Journal, vol. 11, no. 2, pp. 1161–1169, 2017.[47] W.-J. Tang and H.-T. Yang, “Data mining and neural networks based self-adaptive protection strategies for distribution systems with dgs and fcls,” Energies, vol. 11, no. 2, p. 426, 2018.[48] J. Orozco-Álvarez, A. Herrera-Orozco, and J. Mora-Flórez, “Communication-less adaptive directional overcurrent protection strategy considering islanded mode detection in active distribution networks,” Results in Engineering, vol. 20, p. 101538, 2023.[49] S. Shen, D. Lin, H. Wang, P. Hu, K. Jiang, D. Lin, and B. He, “An adaptive protection scheme for distribution systems with dgs based on optimized thevenin equivalent parameters estimation,” IEEE Transactions on Power Delivery, vol. 32, no. 1, pp. 411–419, 2017.[50] P. Anderson, C. Henville, R. Rifaat, B. Johnson, and S. Meliopoulos, Power System Protection. IEEE Press Series on Power and Energy Systems, Wiley, 2022.[51] M. Y. Shih, A. Conde, C. Ángeles Camacho, E. Fernández, Z. Leonowicz, F. Lezama, and J. Chan, “A two stage fault current limiter and directional overcurrent relay optimization for adaptive protection resetting using differential evolution multi-objective algorithm in presence of distributed generation,” Electric Power Systems Research, vol. 190, p. 106844, 2021.[52] A. Phadke and J. Thorp, Computer Relaying for Power Systems. Wiley, 2009.[53] H. Lin, K. Sun, Z.-H. Tan, C. Liu, J. M. Guerrero, and J. C. Vasquez, “Adaptive protection combined with machine learning for microgrids,” IET generation, transmission & distribution, vol. 13, no. 6, pp. 770–779, 2019.[54] Q. Yang, J. A. Barria, and T. C. Green, “Communication infrastructures for distributed control of power distribution networks,” IEEE Transactions on Industrial Informatics, vol. 7, no. 2, pp. 316–327, 2011.[55] I. Serban, S. Céspedes, C. Marinescu, C. A. Azurdia-Meza, J. S. Gómez, and D. S. Hueichapan, “Communication requirements in microgrids: A practical survey,” IEEE Access, vol. 8, pp. 47694–47712, 2020.[56] M. A. Setiawan, F. Shahnia, S. Rajakaruna, and A. Ghosh, “Zigbee-based communication system for data transfer within future microgrids,” IEEE Transactions on Smart Grid, vol. 6, no. 5, pp. 2343–2355, 2015.[57] T. Dragičević, P. Siano, and S. S. Prabaharan, “Future generation 5g wireless networks for smart grid: A comprehensive review,” Energies, vol. 12, no. 11, p. 2140, 2019.[58] T. Mai, A. Haque, T. Vo, P. Nguyen, and M. Pham, “Development of ict infrastructure for physical lv microgrids,” in 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / ICPS Europe), pp. 1–6, 2018.[59] D. Gutierrez-Rojas, P. H. J. Nardelli, G. Mendes, and P. Popovski, “Review of the state of the art on adaptive protection for microgrids based on communications,” IEEE Transactions on Industrial Informatics, vol. 17, no. 3, pp. 1539–1552, 2021.[60] D. Martin, P. Sharma, A. Sinclair, and D. Finney, “Distance protection in distribution systems: How it assists with integrating distributed resources,” in 2012 65th Annual Conference for Protective Relay Engineers, pp. 166–177, 2012.[61] A. M. Tsimtsios and V. C. Nikolaidis, “Setting zero-sequence compensation factor in distance relays protecting distribution systems,” IEEE Transactions on Power Delivery, vol. 33, no. 3, pp. 1236–1246, 2017.[62] Y. Yin, Y. Fu, Z. Zhang, and A. Zamani, “Protection of microgrid interconnection lines using distance relay with residual voltage compensations,” IEEE Transactions on Power Delivery, vol. 37, no. 1, pp. 486–495, 2021.[63] A. C. Adewole, A. D. Rajapakse, D. Ouellette, and P. Forsyth, “Protection of active distribution networks incorporating microgrids with multi-technology distributed energy resources,” Electric Power Systems Research, vol. 202, p. 107575, 2022.[64] J. Ma, J. Liu, Z. Deng, S. Wu, and J. S. Thorp, “An adaptive directional current protection scheme for distribution network with dg integration based on fault steady-state component,” International Journal of Electrical Power & Energy Systems, vol. 102, pp. 223–234, 2018.[65] J. Andruszkiewicz, J. Lorenc, B. Staszak, A. Weychan, and B. Zięba, “Overcurrent protection against multi-phase faults in mv networks based on negative and zero sequence criteria,” International Journal of Electrical Power & Energy Systems, vol. 134, p. 107449, 2022.[66] P. Mahat, Z. Chen, B. Bak-Jensen, and C. L. Bak, “A simple adaptive overcurrent protection of distribution systems with distributed generation,” IEEE Transactions on Smart Grid, vol. 2, no. 3, pp. 428–437, 2011.[67] A. Soleimanisardoo and H. Kazemi Karegar, “Alleviating the impact of dgs and network operation modes on the protection system,” IET Generation, Transmission & Distribution, vol. 14, no. 1, pp. 21–28, 2020.[68] A. J. Pansini, Guide to electrical power distribution systems. River Publishers, 2020.[69] A. Fazanehrafat, S. Javadian, S. Bathaee, and M.-R. Haghifam, “Maintaining the recloser-fuse coordination in distribution systems in presence of DG by determining DG’s size,” in IET 9th International Conference on Developments in Power Systems Protection (DPSP 2008), pp. 132–137, IET, 2008.[70] S. Ghobadpour, M. Gandomkar, and J. Nikoukar, “Determining optimal size of superconducting fault current limiters to achieve protection coordination of fuse-recloser in radial distribution networks with synchronous DGs,” Electric Power Systems Research, vol. 185, p. 106357, 2020.[71] A. Elmitwally, E. Gouda, and S. Eladawy, “Restoring recloser-fuse coordination by optimal fault current limiters planning in dg-integrated distribution systems,” International Journal of Electrical Power & Energy Systems, vol. 77, pp. 9–18, 2016.[72] M. N. Alam, B. Das, and V. Pant, “Protection scheme for reconfigurable radial distribution networks in presence of distributed generation,” Electric Power Systems Research, vol. 192, p. 106973, 2021.[73] CREG, “Resolución 121 de 2017,” 2017.[74] CREG, “Resolución 030 de 2018,” 2018.[75] CREG, “Resolución 281 de 2015,” 2015.[76] CREG, “Resolución 174 de 2018,” 2018.[77] W. Wang, Y. Xu, and M. Khanna, “A survey on the communication architectures in smart grid,” Computer networks, vol. 55, no. 15, pp. 3604–3629, 2011.[78] H. Salazar Isaza, R. A. Hincapié Isaza, A. Arias Londoño, D. Paredes Cortés, and L. S. Peña, “Apoyo en el estudio y elaboración de las bases para proponer el agente que debe desarrollar la implementación de la infraestructura de medición avanzada,” tech. rep., Universidad Tecnológica de Pereira, 2019.[79] CREG, “Resolución 002 de 2022,” 2022.[80] Ministerio de Minas y Energía, “Resolución CREG No.015 De 2018,” tech. rep., 2018.[81] M. Gottschalk, M. Uslar, and C. Delfs, The Use Case and Smart Grid Architecture Model Approach The IEC 62559-2 Use Case Template and the SGAM Applied in Various Domains. 2017.[82] Graphic Resources LLC., “Freepik,” 2014.[83] I. E. A. (IEA), “Global energy review: CO2 emissions in 2020,” 2021. [Online; accessed 2021-08-24].[84] I. E. A. (IEA), “After steep drop in early 2020, global carbon dioxide emissions have rebounded strongly,” 2021. [Online; accessed 2021-08-25].[85] R. Turconi, A. Boldrin, and T. Astrup, “Life cycle assessment (lca) of electricity generation technologies: Overview, comparability and limitations,” Renewable and Sustainable Energy Reviews, vol. 28, pp. 555–565, 2013.[86] I. E. A. (IEA), “Electricity market report – july 2021,” Tech. Rep. July, France, 2021.[87] E. Nam and T. Jin, “Mitigating carbon emissions by energy transition, energy efficiency, and electrification: Difference between regulation indicators and empirical data,” Journal of Cleaner Production, vol. 300, p. 126962, 2021.[88] P. Bertoldi and R. Mosconi, “Do energy efficiency policies save energy? a new approach based on energy policy indicators (in the eu member states),” Energy Policy, vol. 139, no. January, p. 111320, 2020.[89] F. deLlano Paz, P. Martínez Fernandez, and I. Soares, “Addressing 2030 EU policy framework for energy and climate: Cost, risk and energy security issues,” Energy, vol. 115, pp. 1347–1360, 2016.[90] N. Unidas, “¿qué es el acuerdo de parís?,” 2021. [Online; accessed 2021-08-24].[91] IEA, “World energy outlook 2020,” 2020. [Online; accessed 2021-06-04].[92] E. Marrasso, C. Roselli, and M. Sasso, “Electric efficiency indicators and carbon dioxide emission factors for power generation by fossil and renewable energy sources on hourly basis,” Energy Conversion and Management, vol. 196, pp. 1369–1384, 9 2019.[93] F. Greer, P. Raftery, and A. Horvath, “Considerations for estimating operational greenhouse gas emissions in whole building life-cycle assessments,” Building and Environment, p. 111383, 2024.[94] P. M. De Oliveira-De Jesus, “Effect of generation capacity factors on carbon emission intensity of electricity of latin america amp; the caribbean, a temporal ida-lmdi analysis,” Renewable and Sustainable Energy Reviews, vol. 101, pp. 516–526, 3 2019.[95] B. Ang and B. Su, “Carbon emission intensity in electricity production: A global analysis,” Energy Policy, vol. 94, pp. 56–63, 7 2016.[96] I. E. Agency, “Indicadores de eficiencia energética: Fundamentos estadísticos,” IEA Publications, pp. 1–211, 2016.[97] X. Wang, Y. Lu, C. Chen, X. Yi, and H. Cui, “Total-factor energy efficiency of ten major global energy-consuming countries,” Journal of Environmental Sciences, vol. 137, pp. 41–52, 2024.[98] UPME, “Balance Energético Colombiano (BECO) - Consulta,” 2020.[99] UPME, “Plan energetico nacional colombia: Ideario energético 2050,” Unidad de Planeación Minero Energética, Republica de Colombia, p. 184, 2015.[100] M. G. Patterson, “What is energy efficiency? concepts, indicators and methodological issues,” Energy Policy, vol. 24, no. 5, pp. 377–390, 1996.[101] M. Wünsch, R. Offermann, K. Weinert, F. Seefeldt, and I. Ziegenhagen, “Benefits of energy efficiency on the german power sector,” Agora Energiewende, no. April, 2014.[102] T. Jin, “Impact of heat and electricity consumption on energy intensity: A panel data analysis,” Energy, vol. 239, p. 121903, 1 2022.[103] XM, “Capacidad efectiva por tipo de generación,” 2021. [Online; accessed 2021-07-31].[104] H. Al Garni, A. Kassem, A. Awasthi, D. Komljenovic, and K. Al-Haddad, “A multicriteria decision making approach for evaluating renewable power generation sources in saudi arabia,” Sustainable Energy Technologies and Assessments, vol. 16, pp. 137–150, 2016.[105] Y. Soler-Castillo, J. C. Rimada, L. Hernández, and G. Martínez-Criado, “Modelling of the efficiency of the photovoltaic modules: Grid-connected plants to the Cuban national electrical system,” Solar Energy, vol. 223, pp. 150–157, 2021.[106] H. Dargahi and K. B. Khameneh, “Energy intensity determinants in an energy-exporting developing economy: Case of iran,” Energy, vol. 168, pp. 1031–1044, 2 2019.[107] U. de Planeación Minero Energética, “Consultoría técnica para el fortalecimiento y mejora de la base de datos de factores de emisión de los combustibles colombianos - fecoc,” tech. rep., 2016.[108] F. Dong, B. Yu, T. Hadachin, Y. Dai, Y. Wang, S. Zhang, and R. Long, “Drivers of carbon emission intensity change in china,” Resources, Conservation and Recycling, vol. 129, pp. 187–201, 2 2018.[109] Ministerio de Minas y Energía, “Resolución CREG No.097 de 2008,” tech. rep., 2008.[110] Comisión de Regulación de Energía y Gas - CREG, “Resolución CREG No. 025 de 1995,” 1995.[111] F. Lucero García and M. V. Toasa Yujato, Manual de estadísticas energéticas. 2017.[112] T. Chalá and V. García, “Pérdidas en distribución de energía eléctrica,” Master’s thesis, 2012.[113] XM, “Liquidación y Administración de Cuentas (LAC),” 2023.[114] D. J. Romero-López and A. Vargas-Rojas, “Modelo de incentivos para la reducción de pérdidas de energía eléctrica en Colombia,” Revista de la Maestría en Derecho Económico, vol. 6, no. 6, pp. 221–257, 2013.[115] I. A. E. Agency, Energy indicators for sustainable development: guidelines and methodologies. 2005.[116] I. E. Agency, “Indicadores de eficiencia energética: Bases esenciales para el establecimiento de políticas,” IEA Publications, p. 182, 2015.[117] Ministerio de Minas y Energía, “Resolución CREG No.133 de 2013,” tech. rep., 2013.[118] Ministerio de Minas y Energía, “Resolución CREG No.174 De 2011,” tech. rep., 2011.[119] ANDI, “Informe encuesta de calidad de la energía. septiembre 2020,” tech. rep., 2020.[120] CREG, “Resolución 058 de 2008,” 2008.[121] Ministerio de Minas y Energía, “Resolución CREG No.109 De 2019,” tech. rep., 2019.[122] A. N. de Industriales, “Informe nacional de competitividad 2019 - 2020,” 2020.[123] M. de energía and UPME, “Inflación de energía en Colombia,” 9 2020.[124] E. F. S. Úbeda, J. P. G. A. M. S. Roque, E. Chueca, and M. Hallack, “Impacto del covid-19 en la demanda de energía eléctrica en latinoamérica y el caribe,” 2021.[125] A. Damodaran, Investment Valuation Tools and Techniques for Determining the Value of Any Asset, vol. 666. John Wiley & Sons Inc, 2002.[126] C. Tascheret, G. Rattá, and A. M. Andreoni, “Methodology to determine the optimal electricity distribution tariff using benchmarking techniques,” in 2016 13th International Conference on the European Energy Market (EEM), vol. 2016-July, pp. 1–5, IEEE, IEEE Computer Society, 7 2016.[127] P. Corredor, U. Helman, D. Jara, and F. A. Wolac, “Misión de transformación energética y modernización de la industria eléctrica: hoja de ruta para la energía del futuro,” 2020.[128] R. Cruz, H. Torres, M. Montoya, J. Barrientos, L. Pineda, L. Niebles, O. Bedoya, B. Duque, C. Gómez, J. Uribe, and A. Franco, Caracterización del Sector Eléctrico colombiano. SENA, 2013.[129] S. Chawda, R. Bhakar, and P. Mathuria, “Uncertainty and risk management in electricity market: Challenges and opportunities,” in 2016 national power systems conference (NPSC), pp. 1–6, IEEE, 2016.[130] J. Cardona, M. Gil, and J. Arbelaéz, “Administración de riesgos financieros en los mercados de energía eléctrica.,” 2019.[131] CREG, “Circular CREG 037-2006,” 2006.[132] C. G. Soops, “Sostenibilidad del mercado eléctrico colombiano. implementación de un mercado anónimo y estandarizado de contratos,” 2021.[133] CREG, “Circular CREG 070-2021,” 2021.[134] J. Campo and V. Sarmiento, “The relationship between energy consumption and gdp: Evidence from a panel of 10 Latin American countries,” Latin American Journal of Economics, vol. 50, pp. 233–255, 2013.[135] J. Millán, Entre el mercado y el Estado. Tres décadas de reformas en el sector eléctrico de América Latina. Banco Interamericano de Desarollo, 2006.[136] M. Santa María, N. Von Der Fehr, J. Millán, J. Benavides, O. Gracia, and E. Schutt, El Mercado de la Energía Eléctrica en Colombia: Características, Evolución e Impacto Sobre Otros Sectores. 2009.[137] CREG, “Resolución CREG 083-2021,” 2021.[138] CREG, “Resolución CREG 119-2007,” 2007.[139] CREG, “Resolución CREG 101-002,” 2022.[140] I. J. Pérez-Arriaga, Regulation of Power Sector. Springer, 2013.[141] M. Jonas J, “Ratemaking as climate adaptation governance,” Frontiers in Climate, vol. 3, p. 738972, 2021.[142] CREG, “Resolución CREG 031-1997,” 1997.[143] M. Liu, F. F. Wu, and Y. Ni, “A survey on risk management in electricity markets,” in 2006 IEEE Power Engineering Society General Meeting, pp. 1–6, 2006.[144] C. Guadarrama, A. Viana, J. Gutiérrez, and A. Paz, Renewable energy auctions in Colombia: Context, design and results. IRENA and USAID, 2021.[145] XM, “Informe de resultados nuevas subasta 2021.” [Online; accessed 2023-09-25].[146] CREG, “Resolución CREG 114-2018,” 2018.PublicationORIGINALIntegration of non-conventional renewable sources of energy in developing countries (2).pdfIntegration of non-conventional renewable sources of energy in developing countries (2).pdfapplication/pdf5223455https://repositorio.utp.edu.co/bitstreams/55f02718-382a-4fc5-ac3d-4c50d025750a/download14123bb8545c4dc1128f3af4f978dc83MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.utp.edu.co/bitstreams/2a928359-cf9c-47ad-aa84-d72a47f80103/download73a5432e0b76442b22b026844140d683MD52THUMBNAILImagen1.pngimage/png554935https://repositorio.utp.edu.co/bitstreams/10a90a53-f7bb-459a-b8b6-559443fee3bb/downloadad9194a32b4e91c2d14c0a5562b375e3MD53Integration of non-conventional renewable sources of energy in developing countries (2).pdf.jpgIntegration of non-conventional renewable sources of energy in developing countries (2).pdf.jpgGenerated Thumbnailimage/jpeg14353https://repositorio.utp.edu.co/bitstreams/adc6084e-d0bf-4a67-93a2-c546b2f20107/download6827220cbf0e8703f2e1b02b51214bf6MD55TEXTIntegration of non-conventional renewable sources of energy in developing countries (2).pdf.txtIntegration of non-conventional renewable sources of energy in developing countries (2).pdf.txtExtracted texttext/plain100631https://repositorio.utp.edu.co/bitstreams/f976318a-55dd-4dc2-95e8-779140b8c8aa/download64dfde1a944ba7a63fb4d03dac2bf508MD5411059/15548oai:repositorio.utp.edu.co:11059/155482024-12-06 09:12:26.564https://creativecommons.org/licenses/by-nc-sa/4.0/Manifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de la Ley 23 de 1982. En concordancia suscribo (suscribimos) este documento en el momento mismo que hago (hacemos) entrega de mi (nuestra) OBRA a la Biblioteca “Jorge Roa Martínez” de la Universidad Tecnológica de Pereira. Manifiesto (manifestamos) que la OBRA objeto de la presente autorizaciónopen.accesshttps://repositorio.utp.edu.coRepositorio de la Universidad Tecnológica de Pereirabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |