Newman–Janis Ansatz in conformastatic spacetimes
The Newman–Janis Ansatz was used first to obtain the stationary Kerr metric from the static Schwarzschild metric. Many works have been devoted to investigate the physical significance of this Ansatz, but no definite answer has been given so far. We show that this Ansatz can be applied in general to...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8979
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8979
- Palabra clave:
- Conformastatic fields
Exact solutions
Newman–Janis Ansatz
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_fd7684959e6fa0c4a7c9a2bd87ac9503 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8979 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Newman–Janis Ansatz in conformastatic spacetimes |
title |
Newman–Janis Ansatz in conformastatic spacetimes |
spellingShingle |
Newman–Janis Ansatz in conformastatic spacetimes Conformastatic fields Exact solutions Newman–Janis Ansatz |
title_short |
Newman–Janis Ansatz in conformastatic spacetimes |
title_full |
Newman–Janis Ansatz in conformastatic spacetimes |
title_fullStr |
Newman–Janis Ansatz in conformastatic spacetimes |
title_full_unstemmed |
Newman–Janis Ansatz in conformastatic spacetimes |
title_sort |
Newman–Janis Ansatz in conformastatic spacetimes |
dc.subject.keywords.none.fl_str_mv |
Conformastatic fields Exact solutions Newman–Janis Ansatz |
topic |
Conformastatic fields Exact solutions Newman–Janis Ansatz |
description |
The Newman–Janis Ansatz was used first to obtain the stationary Kerr metric from the static Schwarzschild metric. Many works have been devoted to investigate the physical significance of this Ansatz, but no definite answer has been given so far. We show that this Ansatz can be applied in general to conformastatic vacuum metrics, and leads to stationary generalizations which, however, do not preserve the conformal symmetry. We investigate also the particular case when the seed solution is given by the Schwarzschild spacetime and show that the resulting rotating configuration does not correspond to a vacuum solution, even in the limiting case of slow rotation. In fact, it describes in general a relativistic fluid with anisotropic pressure and heat flux. This implies that the Newman–Janis Ansatz strongly depends on the choice of representation for the seed solution. We interpret this result as a further indication of its applicability limitations. © 2016, Springer Science+Business Media New York. |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:42Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:42Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
General Relativity and Gravitation; Vol. 48, Núm. 11 |
dc.identifier.issn.none.fl_str_mv |
00017701 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8979 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s10714-016-2144-0 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
25225467000 55989741100 |
identifier_str_mv |
General Relativity and Gravitation; Vol. 48, Núm. 11 00017701 10.1007/s10714-016-2144-0 Universidad Tecnológica de Bolívar Repositorio UTB 25225467000 55989741100 |
url |
https://hdl.handle.net/20.500.12585/8979 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer New York LLC |
publisher.none.fl_str_mv |
Springer New York LLC |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991490399&doi=10.1007%2fs10714-016-2144-0&partnerID=40&md5=f0b8018f710fcc5b6674dfae6bb6b7cb |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8979/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021776988962816 |
spelling |
2020-03-26T16:32:42Z2020-03-26T16:32:42Z2016General Relativity and Gravitation; Vol. 48, Núm. 1100017701https://hdl.handle.net/20.500.12585/897910.1007/s10714-016-2144-0Universidad Tecnológica de BolívarRepositorio UTB2522546700055989741100The Newman–Janis Ansatz was used first to obtain the stationary Kerr metric from the static Schwarzschild metric. Many works have been devoted to investigate the physical significance of this Ansatz, but no definite answer has been given so far. We show that this Ansatz can be applied in general to conformastatic vacuum metrics, and leads to stationary generalizations which, however, do not preserve the conformal symmetry. We investigate also the particular case when the seed solution is given by the Schwarzschild spacetime and show that the resulting rotating configuration does not correspond to a vacuum solution, even in the limiting case of slow rotation. In fact, it describes in general a relativistic fluid with anisotropic pressure and heat flux. This implies that the Newman–Janis Ansatz strongly depends on the choice of representation for the seed solution. We interpret this result as a further indication of its applicability limitations. © 2016, Springer Science+Business Media New York.Recurso electrónicoapplication/pdfengSpringer New York LLChttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84991490399&doi=10.1007%2fs10714-016-2144-0&partnerID=40&md5=f0b8018f710fcc5b6674dfae6bb6b7cbNewman–Janis Ansatz in conformastatic spacetimesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Conformastatic fieldsExact solutionsNewman–Janis AnsatzGutiérrez-Piñeres A.C.Quevedo H.Kerr, R.P., (1963) Phys. Rev. Lett., 11, pp. 237-238Newman, E.T., Janis, A.I., (1965) J. Math. Phys., 6, pp. 915-917Newman, E.T., (1965) J. Math. Phys., 6, p. 918Demianski, M., Newman, E.T., (1966) Bull Acad. Polon. Sci. Set. Math. Astron. Phys., 14, p. 653Talbot, C.G., (1969) Commun. Math. Phys., 13, p. 45Demianski, M., (1972) Phys. Lett. A, 42, p. 157Schiffer, M., Adler, R., Mark, J., Sheffield, C., (1973) J. Math. Phys., 14, pp. 52-56Finkelstein, R.J., (1975) J. Math. Phys., 16, pp. 1271-1277Quevedo, H., (1992) Gen. Relativ. Gravit., 24, p. 693Quevedo, H., (1992) Gen. Relativ. Gravit., 24, p. 799Herrera, L., Jiménez, J., (1982) J. Math. Phys., 23, p. 2339Drake, S., Turolla, R., (1997) Class. Quantum Gravity, 14, p. 1883Ibohal, N., (2005) Gen. Relativ. Gravit., 37, p. 19Papakostas, T., Phys, J., (2005) Conf. Ser., 8, p. 22Papakostas, T., Phys, J., (2009) Conf. Ser., 189, p. 012027Viaggiu, S., (2006) Int. J. Modern Phys. D, 15, p. 1441Viaggiu, S., (2010) Int. J. Modern Phys. D, 19, p. 1783Rosquist, K., (1999) Class. Quantum Gravity, 16, p. 1755Lozanovski, C., Wylleman, L., (2011) Class. Quantum Gravity, 28, p. 075015Ferraro, R., (2014) Gen. Relativ. Gravit., 46, p. 1705Hansen, D., Yunes, N., (2013) Phys. Rev. D, 88, p. 104020Lessner, G., (2008) Gen. Relativ. Gravit., 40, p. 2177Modesto, L., Nicolini, P., (2010) Phys. Rev. D, 82, p. 104035Miao, Y., Xue, Z., Zhang, S., (2012) Int. J. Mod. Phys. D, 21, p. 1250017Caravelli, F., Modesto, L., (2010) Class. Quantum Gravity, 27, p. 245022Azrag-Ainou, M., (2014) Eur. Phys. J. C, 74, p. 2865Azrag-Ainou, M., (2014) Phys. Rev. D, 90, p. 064041Larranaga, A., Cardenas-Avendano, A., Torres, D., (2015) Phys. Lett. B, 743, p. 492Erbin, H., (2015) Gen. Relativ. Gravit., 47, p. 19Synge, J., (1960) Relativity: The General Theory, , North-Holland Pub. Co. Interscience Publishers, AmsterdamGutiérrez-Piñeres, A.C., González, G.A., Quevedo, H., (2013) Phys. Rev. D, 87, p. 044010Gutiérrez-Piñeres, A.C., Lopez-Monsalvo, C.S., Quevedo, H., (2015) Gen. Relativ. Gravit., 47, p. 1Gutiérrez-Piñeres, A.C., (2015) Gen. Relativ. Gravit., 47, p. 54Gutiérrez-Piñeres, A.C., Capistrano, A.J., (2015) Adv. Math. Phys., 15, p. 2015Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E., (2009) Exact Solutions of Einstein’s Field Equations, , Cambridge University Press, Cambridgehttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8979/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8979oai:repositorio.utb.edu.co:20.500.12585/89792021-02-02 14:52:02.921Repositorio Institucional UTBrepositorioutb@utb.edu.co |