Newman–Janis Ansatz in conformastatic spacetimes

The Newman–Janis Ansatz was used first to obtain the stationary Kerr metric from the static Schwarzschild metric. Many works have been devoted to investigate the physical significance of this Ansatz, but no definite answer has been given so far. We show that this Ansatz can be applied in general to...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8979
Acceso en línea:
https://hdl.handle.net/20.500.12585/8979
Palabra clave:
Conformastatic fields
Exact solutions
Newman–Janis Ansatz
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_fd7684959e6fa0c4a7c9a2bd87ac9503
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8979
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Newman–Janis Ansatz in conformastatic spacetimes
title Newman–Janis Ansatz in conformastatic spacetimes
spellingShingle Newman–Janis Ansatz in conformastatic spacetimes
Conformastatic fields
Exact solutions
Newman–Janis Ansatz
title_short Newman–Janis Ansatz in conformastatic spacetimes
title_full Newman–Janis Ansatz in conformastatic spacetimes
title_fullStr Newman–Janis Ansatz in conformastatic spacetimes
title_full_unstemmed Newman–Janis Ansatz in conformastatic spacetimes
title_sort Newman–Janis Ansatz in conformastatic spacetimes
dc.subject.keywords.none.fl_str_mv Conformastatic fields
Exact solutions
Newman–Janis Ansatz
topic Conformastatic fields
Exact solutions
Newman–Janis Ansatz
description The Newman–Janis Ansatz was used first to obtain the stationary Kerr metric from the static Schwarzschild metric. Many works have been devoted to investigate the physical significance of this Ansatz, but no definite answer has been given so far. We show that this Ansatz can be applied in general to conformastatic vacuum metrics, and leads to stationary generalizations which, however, do not preserve the conformal symmetry. We investigate also the particular case when the seed solution is given by the Schwarzschild spacetime and show that the resulting rotating configuration does not correspond to a vacuum solution, even in the limiting case of slow rotation. In fact, it describes in general a relativistic fluid with anisotropic pressure and heat flux. This implies that the Newman–Janis Ansatz strongly depends on the choice of representation for the seed solution. We interpret this result as a further indication of its applicability limitations. © 2016, Springer Science+Business Media New York.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:42Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:42Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv General Relativity and Gravitation; Vol. 48, Núm. 11
dc.identifier.issn.none.fl_str_mv 00017701
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8979
dc.identifier.doi.none.fl_str_mv 10.1007/s10714-016-2144-0
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 25225467000
55989741100
identifier_str_mv General Relativity and Gravitation; Vol. 48, Núm. 11
00017701
10.1007/s10714-016-2144-0
Universidad Tecnológica de Bolívar
Repositorio UTB
25225467000
55989741100
url https://hdl.handle.net/20.500.12585/8979
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer New York LLC
publisher.none.fl_str_mv Springer New York LLC
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991490399&doi=10.1007%2fs10714-016-2144-0&partnerID=40&md5=f0b8018f710fcc5b6674dfae6bb6b7cb
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8979/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021776988962816
spelling 2020-03-26T16:32:42Z2020-03-26T16:32:42Z2016General Relativity and Gravitation; Vol. 48, Núm. 1100017701https://hdl.handle.net/20.500.12585/897910.1007/s10714-016-2144-0Universidad Tecnológica de BolívarRepositorio UTB2522546700055989741100The Newman–Janis Ansatz was used first to obtain the stationary Kerr metric from the static Schwarzschild metric. Many works have been devoted to investigate the physical significance of this Ansatz, but no definite answer has been given so far. We show that this Ansatz can be applied in general to conformastatic vacuum metrics, and leads to stationary generalizations which, however, do not preserve the conformal symmetry. We investigate also the particular case when the seed solution is given by the Schwarzschild spacetime and show that the resulting rotating configuration does not correspond to a vacuum solution, even in the limiting case of slow rotation. In fact, it describes in general a relativistic fluid with anisotropic pressure and heat flux. This implies that the Newman–Janis Ansatz strongly depends on the choice of representation for the seed solution. We interpret this result as a further indication of its applicability limitations. © 2016, Springer Science+Business Media New York.Recurso electrónicoapplication/pdfengSpringer New York LLChttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84991490399&doi=10.1007%2fs10714-016-2144-0&partnerID=40&md5=f0b8018f710fcc5b6674dfae6bb6b7cbNewman–Janis Ansatz in conformastatic spacetimesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Conformastatic fieldsExact solutionsNewman–Janis AnsatzGutiérrez-Piñeres A.C.Quevedo H.Kerr, R.P., (1963) Phys. Rev. Lett., 11, pp. 237-238Newman, E.T., Janis, A.I., (1965) J. Math. Phys., 6, pp. 915-917Newman, E.T., (1965) J. Math. Phys., 6, p. 918Demianski, M., Newman, E.T., (1966) Bull Acad. Polon. Sci. Set. Math. Astron. Phys., 14, p. 653Talbot, C.G., (1969) Commun. Math. Phys., 13, p. 45Demianski, M., (1972) Phys. Lett. A, 42, p. 157Schiffer, M., Adler, R., Mark, J., Sheffield, C., (1973) J. Math. Phys., 14, pp. 52-56Finkelstein, R.J., (1975) J. Math. Phys., 16, pp. 1271-1277Quevedo, H., (1992) Gen. Relativ. Gravit., 24, p. 693Quevedo, H., (1992) Gen. Relativ. Gravit., 24, p. 799Herrera, L., Jiménez, J., (1982) J. Math. Phys., 23, p. 2339Drake, S., Turolla, R., (1997) Class. Quantum Gravity, 14, p. 1883Ibohal, N., (2005) Gen. Relativ. Gravit., 37, p. 19Papakostas, T., Phys, J., (2005) Conf. Ser., 8, p. 22Papakostas, T., Phys, J., (2009) Conf. Ser., 189, p. 012027Viaggiu, S., (2006) Int. J. Modern Phys. D, 15, p. 1441Viaggiu, S., (2010) Int. J. Modern Phys. D, 19, p. 1783Rosquist, K., (1999) Class. Quantum Gravity, 16, p. 1755Lozanovski, C., Wylleman, L., (2011) Class. Quantum Gravity, 28, p. 075015Ferraro, R., (2014) Gen. Relativ. Gravit., 46, p. 1705Hansen, D., Yunes, N., (2013) Phys. Rev. D, 88, p. 104020Lessner, G., (2008) Gen. Relativ. Gravit., 40, p. 2177Modesto, L., Nicolini, P., (2010) Phys. Rev. D, 82, p. 104035Miao, Y., Xue, Z., Zhang, S., (2012) Int. J. Mod. Phys. D, 21, p. 1250017Caravelli, F., Modesto, L., (2010) Class. Quantum Gravity, 27, p. 245022Azrag-Ainou, M., (2014) Eur. Phys. J. C, 74, p. 2865Azrag-Ainou, M., (2014) Phys. Rev. D, 90, p. 064041Larranaga, A., Cardenas-Avendano, A., Torres, D., (2015) Phys. Lett. B, 743, p. 492Erbin, H., (2015) Gen. Relativ. Gravit., 47, p. 19Synge, J., (1960) Relativity: The General Theory, , North-Holland Pub. Co. Interscience Publishers, AmsterdamGutiérrez-Piñeres, A.C., González, G.A., Quevedo, H., (2013) Phys. Rev. D, 87, p. 044010Gutiérrez-Piñeres, A.C., Lopez-Monsalvo, C.S., Quevedo, H., (2015) Gen. Relativ. Gravit., 47, p. 1Gutiérrez-Piñeres, A.C., (2015) Gen. Relativ. Gravit., 47, p. 54Gutiérrez-Piñeres, A.C., Capistrano, A.J., (2015) Adv. Math. Phys., 15, p. 2015Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E., (2009) Exact Solutions of Einstein’s Field Equations, , Cambridge University Press, Cambridgehttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8979/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8979oai:repositorio.utb.edu.co:20.500.12585/89792021-02-02 14:52:02.921Repositorio Institucional UTBrepositorioutb@utb.edu.co