Model of optimization of mining complex for the planning of flow of quarry production of limestone in multiple products and with elements for the analysis of the capacity

Activities in mining complexes contain multiple decisions that affect the operations of the system for the extraction, transformation, transport and storage of various subsoil components. The purpose of this research is the planning of continuous flow production systems for mixed products, in non-me...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8971
Acceso en línea:
https://hdl.handle.net/20.500.12585/8971
Palabra clave:
Bottleneck
Flow shop
Mining complex
Production scheduling
Sensitivity analysis
Extraction
Limestone
Logistics
Mathematical transformations
Optimization
Production control
Quarries
Soils
Analysis of alternatives
Bottleneck
Extraction process
Flow-shops
Mathematical optimizations
Production environments
Production scheduling
Production system
Sensitivity analysis
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_fc8b1eadc1c3e43fe587eed2226365aa
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8971
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Model of optimization of mining complex for the planning of flow of quarry production of limestone in multiple products and with elements for the analysis of the capacity
title Model of optimization of mining complex for the planning of flow of quarry production of limestone in multiple products and with elements for the analysis of the capacity
spellingShingle Model of optimization of mining complex for the planning of flow of quarry production of limestone in multiple products and with elements for the analysis of the capacity
Bottleneck
Flow shop
Mining complex
Production scheduling
Sensitivity analysis
Extraction
Limestone
Logistics
Mathematical transformations
Optimization
Production control
Quarries
Soils
Analysis of alternatives
Bottleneck
Extraction process
Flow-shops
Mathematical optimizations
Production environments
Production scheduling
Production system
Sensitivity analysis
title_short Model of optimization of mining complex for the planning of flow of quarry production of limestone in multiple products and with elements for the analysis of the capacity
title_full Model of optimization of mining complex for the planning of flow of quarry production of limestone in multiple products and with elements for the analysis of the capacity
title_fullStr Model of optimization of mining complex for the planning of flow of quarry production of limestone in multiple products and with elements for the analysis of the capacity
title_full_unstemmed Model of optimization of mining complex for the planning of flow of quarry production of limestone in multiple products and with elements for the analysis of the capacity
title_sort Model of optimization of mining complex for the planning of flow of quarry production of limestone in multiple products and with elements for the analysis of the capacity
dc.contributor.editor.none.fl_str_mv Figueroa-Garcia J.C.
Lopez-Santana E.R.
Ferro-Escobar R.
Villa Ramírez, José Luis
dc.subject.keywords.none.fl_str_mv Bottleneck
Flow shop
Mining complex
Production scheduling
Sensitivity analysis
Extraction
Limestone
Logistics
Mathematical transformations
Optimization
Production control
Quarries
Soils
Analysis of alternatives
Bottleneck
Extraction process
Flow-shops
Mathematical optimizations
Production environments
Production scheduling
Production system
Sensitivity analysis
topic Bottleneck
Flow shop
Mining complex
Production scheduling
Sensitivity analysis
Extraction
Limestone
Logistics
Mathematical transformations
Optimization
Production control
Quarries
Soils
Analysis of alternatives
Bottleneck
Extraction process
Flow-shops
Mathematical optimizations
Production environments
Production scheduling
Production system
Sensitivity analysis
description Activities in mining complexes contain multiple decisions that affect the operations of the system for the extraction, transformation, transport and storage of various subsoil components. The purpose of this research is the planning of continuous flow production systems for mixed products, in non-metallic mining extraction processes, considering bottlenecks and capacity planning. This paper presents a model for production, based on mathematical optimization, that facilitates the planning and management of operations in the area of extraction, crushing and transformation of a quarry of aggregates for construction, considering the resources and the constraints that allow to define effective strategies in the increase of the productivity of the lines of low production environment by scenarios. This research develops an analysis of bottlenecks and contrasts the nature of the production system by means of a mathematical model of optimization, which considers the capacities and balances in the flows of the Limestone production line. The mathematical model that maximizes profits can be adapted to systems of continuous flow production in mining complexes where their products are part of a reverse logistics process, analysis of alternatives of extraction, transformation and transport. © 2017, Springer International Publishing AG.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:41Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:41Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Communications in Computer and Information Science; Vol. 742, pp. 544-555
dc.identifier.isbn.none.fl_str_mv 9783319669625
dc.identifier.issn.none.fl_str_mv 18650929
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8971
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-319-66963-2_48
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57194034904
57193533853
57193504630
57195913974
57195913794
identifier_str_mv Communications in Computer and Information Science; Vol. 742, pp. 544-555
9783319669625
18650929
10.1007/978-3-319-66963-2_48
Universidad Tecnológica de Bolívar
Repositorio UTB
57194034904
57193533853
57193504630
57195913974
57195913794
url https://hdl.handle.net/20.500.12585/8971
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 27 September 2017 through 29 September 2017
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030026163&doi=10.1007%2f978-3-319-66963-2_48&partnerID=40&md5=69e12f108d5403ea88f358f73f7aad08
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 4th Workshop on Engineering Applications, WEA 2017
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8971/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021658491486208
spelling Figueroa-Garcia J.C.Lopez-Santana E.R.Ferro-Escobar R.Villa Ramírez, José LuisOspina-Mateus H.Acevedo Chedid, JaimeSalas-Navarro K.Morales-Londoño N.Montero-Perez J.2020-03-26T16:32:41Z2020-03-26T16:32:41Z2017Communications in Computer and Information Science; Vol. 742, pp. 544-555978331966962518650929https://hdl.handle.net/20.500.12585/897110.1007/978-3-319-66963-2_48Universidad Tecnológica de BolívarRepositorio UTB5719403490457193533853571935046305719591397457195913794Activities in mining complexes contain multiple decisions that affect the operations of the system for the extraction, transformation, transport and storage of various subsoil components. The purpose of this research is the planning of continuous flow production systems for mixed products, in non-metallic mining extraction processes, considering bottlenecks and capacity planning. This paper presents a model for production, based on mathematical optimization, that facilitates the planning and management of operations in the area of extraction, crushing and transformation of a quarry of aggregates for construction, considering the resources and the constraints that allow to define effective strategies in the increase of the productivity of the lines of low production environment by scenarios. This research develops an analysis of bottlenecks and contrasts the nature of the production system by means of a mathematical model of optimization, which considers the capacities and balances in the flows of the Limestone production line. The mathematical model that maximizes profits can be adapted to systems of continuous flow production in mining complexes where their products are part of a reverse logistics process, analysis of alternatives of extraction, transformation and transport. © 2017, Springer International Publishing AG.Recurso electrónicoapplication/pdfengSpringer Verlaghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85030026163&doi=10.1007%2f978-3-319-66963-2_48&partnerID=40&md5=69e12f108d5403ea88f358f73f7aad084th Workshop on Engineering Applications, WEA 2017Model of optimization of mining complex for the planning of flow of quarry production of limestone in multiple products and with elements for the analysis of the capacityinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fBottleneckFlow shopMining complexProduction schedulingSensitivity analysisExtractionLimestoneLogisticsMathematical transformationsOptimizationProduction controlQuarriesSoilsAnalysis of alternativesBottleneckExtraction processFlow-shopsMathematical optimizationsProduction environmentsProduction schedulingProduction systemSensitivity analysis27 September 2017 through 29 September 2017Pimentel, B.S., Mateus, G.R., Almeida, F.A., Mathematical models for optimizing the global mining supply chain (2010) Intelligent Systems in Operations: Methods, Models and Applications in the Supply Chain, pp. 133-163Gómez, R.A., Correa, A.A., Análisis del transporte y distribución de materiales de construcción utilizando simulación discreta en 3D (2011) Boletín De Ciencias De La Tierra, 30, pp. 39-52Pimentel, B.S., Mateus, G.R., Almeida, F.A., Stochastic capacity planning in a global mining supply chain (2011) 2011 IEEE Workshop on Computational Intelligence in Production and Logistics Systems (CIPLS), pp. 1-8. , IEEEBodon, P., Fricke, C., Sandeman, T., Stanford, C., Modeling the mining supply chain from mine to port: A combined optimization and simulation approach (2011) J. Min. Sci., 47 (2), pp. 202-211Dimitrakopoulos, R., Stochastic optimization for strategic mine planning: A decade of developments (2011) J. Min. Sci., 47 (2), pp. 138-150Zhao, Y., Zhou, Y., Li, C., Cao, Z., SCM-based optimization of production planning for coal mine (2012) 2012 9Th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 968-972. , IEEEFung, J., Singh, G., Zinder, Y., Capacity planning in supply chains of mineral resources (2015) Inf. Sci., 316, pp. 397-418Goodfellow, R.C., Dimitrakopoulos, R., Global optimization of open pit mining complexes with uncertainty (2016) Appl. Soft Comput., 40, pp. 292-304Zhang, K., Kleit, A.N., Mining rate optimization considering the stockpiling: A theoretical economics and real option model (2016) Resour. Policy, 47, pp. 87-94Vernadat, F.B., Enterprise integration: On business process and enterprise activity modelling (1996) Concurrent Eng, 4 (3), pp. 219-228Vélez, J.G.D., Otero, L.F.R., Modelo matemático para la optimización de una cadena de suministro global con consideraciones de cupos de compra y periodos de pago (2012) El Hombre Y La Máquina, 38, pp. 6-21Benndorf, J., Dimitrakopoulos, R., Stochastic long-term production scheduling of iron ore deposits: Integrating joint multi-element geological uncertainty (2013) J. Min. Sci., 49 (1), pp. 68-81Godoy, M., Dimitrakopoulos, R., Managing risk and waste mining in long-term production scheduling of open-pit mines (2004) SME Trans, 316 (3), pp. 43-50. , https://www.researchgate.net/profile/Roussos_Dimitrakopoulos/publication/43458583_Managing_risk_and_waste_mining_in_long-term_production_scheduling/links/0f31752f9977473219000000/Managing-risk-and-waste-mining-in-long-term-production-scheduling.pdfLamghari, A., Dimitrakopoulos, R., Ferland, J.A., A variable neighbourhood descent algorithm for the open-pit mine production scheduling problem with metal uncertainty (2014) J. Oper. Res. Soc., 65 (9), pp. 1305-1314Montiel, L., Dimitrakopoulos, R., Stochastic mine production scheduling with multiple processes: Application at Escondida Norte, Chile (2013) J. Min. Sci., 49 (4), pp. 583-597Fung, J., Singh, G., Zinder, Y., Capacity planning in supply chains of mineral resources (2015) Inf. Sci., 316, pp. 397-428. , http://dx.doi.org/10.1016/j.ins.2014.11.015Shapiro, J., (2001) Modeling the Supply Chain, , Brooks/Cole-Thomson Learning, Pacific GroveCrainic, T.G., Laporte, G., Planning models for freight transportation (1997) Eur. J. Oper. Res., 97, pp. 409-438Solberg, J.J., Capacity planning with a stochastic workflow model (1981) AIIE Trans, 13, pp. 116-122Mehrjerdi, Z., The collaborative supply chain (2009) Assembly Autom, 29 (2), pp. 127-136Stadtler, H., Supply chain management and advanced planning –basics, overview and challenges (2005) Eur. J. Oper. Res., 163, pp. 575-588http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8971/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8971oai:repositorio.utb.edu.co:20.500.12585/89712023-04-24 08:11:36.202Repositorio Institucional UTBrepositorioutb@utb.edu.co