Control temperature of the air conditioning system of a vessel from exergoeconomic analysis

In this work the air conditioning system of a 93 m long and 14 m wide vessel with 4081 refrigerated m3 distributed in 51 premises is studied. In which energy, exergetic and exergoeconomic analyzes were carried out for control temperatures between 20 and 27 ° C and 50% relative humidity, with outdoor...

Full description

Autores:
Barreto Ponton, Deibys
Torres, Rosa
Fajardo Cuadro, Juan Gabriel
Gordon, Yimy
Berrio, Julián
Vidal, Carlos
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10657
Acceso en línea:
https://hdl.handle.net/20.500.12585/10657
https://doi.org/10.1115/IMECE2021-68569
Palabra clave:
Thermal load
Air conditioning
Control temperature
Vessels
exergy
Thermoeconomic.
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_fc2bb06864f01854a4c340299de0f177
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10657
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Control temperature of the air conditioning system of a vessel from exergoeconomic analysis
title Control temperature of the air conditioning system of a vessel from exergoeconomic analysis
spellingShingle Control temperature of the air conditioning system of a vessel from exergoeconomic analysis
Thermal load
Air conditioning
Control temperature
Vessels
exergy
Thermoeconomic.
title_short Control temperature of the air conditioning system of a vessel from exergoeconomic analysis
title_full Control temperature of the air conditioning system of a vessel from exergoeconomic analysis
title_fullStr Control temperature of the air conditioning system of a vessel from exergoeconomic analysis
title_full_unstemmed Control temperature of the air conditioning system of a vessel from exergoeconomic analysis
title_sort Control temperature of the air conditioning system of a vessel from exergoeconomic analysis
dc.creator.fl_str_mv Barreto Ponton, Deibys
Torres, Rosa
Fajardo Cuadro, Juan Gabriel
Gordon, Yimy
Berrio, Julián
Vidal, Carlos
dc.contributor.author.none.fl_str_mv Barreto Ponton, Deibys
Torres, Rosa
Fajardo Cuadro, Juan Gabriel
Gordon, Yimy
Berrio, Julián
Vidal, Carlos
dc.subject.keywords.spa.fl_str_mv Thermal load
Air conditioning
Control temperature
Vessels
exergy
Thermoeconomic.
topic Thermal load
Air conditioning
Control temperature
Vessels
exergy
Thermoeconomic.
description In this work the air conditioning system of a 93 m long and 14 m wide vessel with 4081 refrigerated m3 distributed in 51 premises is studied. In which energy, exergetic and exergoeconomic analyzes were carried out for control temperatures between 20 and 27 ° C and 50% relative humidity, with outdoor air conditions of 35 ° C and 70% relative humidity. For the vessel, the thermal load is calculated with an adaptation of the ASHRAE CLDT / SCL / CLF (cooling load temperature difference/cooling load factor/solar cooling load factor) methodology and the ISO 7547 standard. Thermal load contributors taken into account for the study were heat transfer through walls, ceilings, and glass in addition to gains from people, lighting, and Appliances. Transmission through walls and ceilings represents 33% of the thermal load, followed by glass with 18% and power equipment with 15%, the last three sources of thermal load generation are Appliances (12%), people (12%) and lighting (10%). For each degree centigrade of the control temperature, the thermal load is reduced by 2.4 and 1.1%, respectively, as determined by the ASHRAE and ISO methodologies. Similarly, the destruction of exergy is reduced by 4.16% for each degree Celsius that the control temperature is increased. An indicator is proposed to calculate the cost of generation of cooling load per unit volume and exergy of the thermal load from which it is obtained that the higher the control temperature, the lower the value of the cost of generation of the cooling load. From the exergoeconomic analysis, it is highlighted that the destruction of exergy is the main factor in the increase in system costs. Increases in exergy destruction increase the value of the indicator of cooling load generation
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-11-01
dc.date.accessioned.none.fl_str_mv 2022-04-01T21:05:40Z
dc.date.available.none.fl_str_mv 2022-04-01T21:05:40Z
dc.date.submitted.none.fl_str_mv 2022-04-01
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition IMECE2021 November 1-5, 2021,Virtual, Online
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10657
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1115/IMECE2021-68569
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition IMECE2021 November 1-5, 2021,Virtual, Online
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10657
https://doi.org/10.1115/IMECE2021-68569
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 9 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10657/1/IMECE2021-68569_control%20temperature.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10657/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10657/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10657/4/IMECE2021-68569_control%20temperature.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10657/5/IMECE2021-68569_control%20temperature.pdf.jpg
bitstream.checksum.fl_str_mv feeb6362e8db005c4228dbb3970d4a5f
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
17cf0b861bc5bb5678bdb2d2b07b7a9e
a6b53950034f8e3d40768c1c9f66ec7b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021600670908416
spelling Barreto Ponton, Deibys9295bc7a-88e7-4c5c-a26a-b285014a141eTorres, Rosab3ccddc7-2e25-4811-97f5-5dba43c7d91fFajardo Cuadro, Juan Gabriel5681b114-d542-428e-a5ed-8e6ceeb90db3Gordon, Yimy0f7f2657-2f86-4161-aa1d-87dc767be1a8Berrio, Juliánf4e3861d-4af5-41b2-a6b8-c53b9a4fc6e7Vidal, Carlosfd687428-eea7-4f6f-b8ab-d23bd7a655a32022-04-01T21:05:40Z2022-04-01T21:05:40Z2021-11-012022-04-01Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition IMECE2021 November 1-5, 2021,Virtual, Onlinehttps://hdl.handle.net/20.500.12585/10657https://doi.org/10.1115/IMECE2021-68569Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarIn this work the air conditioning system of a 93 m long and 14 m wide vessel with 4081 refrigerated m3 distributed in 51 premises is studied. In which energy, exergetic and exergoeconomic analyzes were carried out for control temperatures between 20 and 27 ° C and 50% relative humidity, with outdoor air conditions of 35 ° C and 70% relative humidity. For the vessel, the thermal load is calculated with an adaptation of the ASHRAE CLDT / SCL / CLF (cooling load temperature difference/cooling load factor/solar cooling load factor) methodology and the ISO 7547 standard. Thermal load contributors taken into account for the study were heat transfer through walls, ceilings, and glass in addition to gains from people, lighting, and Appliances. Transmission through walls and ceilings represents 33% of the thermal load, followed by glass with 18% and power equipment with 15%, the last three sources of thermal load generation are Appliances (12%), people (12%) and lighting (10%). For each degree centigrade of the control temperature, the thermal load is reduced by 2.4 and 1.1%, respectively, as determined by the ASHRAE and ISO methodologies. Similarly, the destruction of exergy is reduced by 4.16% for each degree Celsius that the control temperature is increased. An indicator is proposed to calculate the cost of generation of cooling load per unit volume and exergy of the thermal load from which it is obtained that the higher the control temperature, the lower the value of the cost of generation of the cooling load. From the exergoeconomic analysis, it is highlighted that the destruction of exergy is the main factor in the increase in system costs. Increases in exergy destruction increase the value of the indicator of cooling load generation9 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Proceedings of the ASME 2021 International Mechanical Engineering Congress and ExpositionControl temperature of the air conditioning system of a vessel from exergoeconomic analysisinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Thermal loadAir conditioningControl temperatureVesselsexergyThermoeconomic.Cartagena de IndiasInvestigadoresLast Name, First Name. The Name of the Book, 2019R. Lugo-Villalba, M. Álvarez Guerra y B. Sarria, «Calculation of marine air conditioning systems based on energy savings,» Ship Science & Technology, vol. 11, pp. 103-117, 2017.I. Dincer y M. Rosen, Exergy: energy, environment, and sustainable development, segunda ed., Oxford: ELSEVIER, 2013.V. Bianco, D. Righi, F. Scarpa y L. Tagliafico, «Modeling energy consumption and efficiency measures in the Italian hotel sector,» Energy and Buildings , vol. 149, pp. 329- 338, 2017.M. Beccali, P. Finocchiaro, M. G. Ippolito, G. Leone, D. Panno y G. Zizzo, «Analysis of some renewable energy uses and demand side measures for hotels on small Mediterranean islands: a case study,» Energy, 2018.B. Cristina, S. P. Corganati, M. Vio, G. Crespi, L. Prendin y M. Magagnini, «HVAC solutions for energy retrofitted hotel in Mediterranean area,» Energy Procedia, vol. 133, pp. 145-157, 2017.G. Zhang, X. Li, W. Shi, B. Wang, Z. Li y Y. Cao, «Simulations of the energy performance of variable refrigerant flow system in representative operation modes for residential buildings in the hot summer and cold winter region in China,» Energy and Building, vol. 174, pp. 414- 427, 2018SNAME, Thermal Insulation Report, New York: SNAME, 1992.G. H. Hart, P. Fulton y G. Cox, Ship Configurations and Insulation Design / Application, Sandiego: SNAME, 2008.J. Fajardo, B. Sarria, M. Alvarez Guerra y O. Cruz, «Exergy study of air-conditioned space of a prototype scale of a river vessel room,» IMECE, vol. 16, 2016.R. a. A. C. E. American Society of Heating, Handbook of Fundamentals, Atlanta: ASHRAE, 2005.International Organization for Standarization, «ISO 7547 “Ship and marine technology of accommodation spaces – Desing conditions and basis of calculations”,» ISO, Ginebra, 2002.J. Fajardo, B. Sarria y M. Alvarez Guerra, «Thermoeconomic Indicators of Air Conditioning in a River Ship to Change the Configuration of Their Thermal Insulation,» ASME International Mechanical Engineering Congress and Exposition, p. 10, 2015P. Sakulpipatsin, L. Itard, H. van der Kooi, E. Boelman y P. Luscuere, «An exergy application for analysis of buildings and HVAC systems,» Energy and Buildings, vol. 42, pp. 90-99, 2010.Z. Du, X. Jin and B. Fan, "Evaluation of operation and control in HVAC (heating, ventilation and air conditioning) system using exergy analysis method," Energy, vol. 89, pp. 372-381, 2015P. Goncalves, A. Rodrigues Gaspar y M. Gameiro da Silva, «Energy and exergy-based ubducatirs for the energy performance assessment of a hotel building,» Energy and Buildings, vol. 52, pp. 181-188, 2012.Cotecmar, «Corporación de Ciencia y Tecnología para el Desarrollo de la Industria Naval Marítima y Fluvial,» CMS Drupal, 03 11 2020. [En línea]. Available: https://www.cotecmar.com/. [Último acceso: 03 11 2020].CATERPILLAR, Marine Gen Set Package Performance Data C32 730 ekW/60 Hz/1800 RPM, USA: CATERPILLAR, 2013.A. Bejan, G. Tsatsaronis y M. Moran, Thermal Desing and Optimazation, New York: John Wiley & Sons, 1996M. Saghafifar, A. Omar, S. Erfanmoghaddam y M. Gadalla, «Ther-economic analysis of recuperated maisotsenko bottoming cycle using triplex air saturaror: comparative analyses,» Applied Thermal Engineering, vol. 111, pp. 431-444, 2017.I. S. Seddiek, M. Mosleh y A. A. Banawan, «Thermoeconomic approach for absortion air condition onboard high-seed crafts,» International Journal of naval Architecture and Ocean Engineering, vol. 4, pp. 460-476, 2012F. Mohammadkhani, N. Shokati, S. Mahmoudi, M. Yari y M. Rosen, «Exergoecnomic assessment and parametric study of a gas turbine-modular helium reactor combined with two organic rankine cycles,» Energy, vol. 65, pp. 533- 543, 2014.IndexMundi, «Indexmundi,» Indexmundi, 15 08 2020. [En línea]. Available: https://www.indexmundi.com/es/precios-demercado/?mercancia=diesel. [Último acceso: 30 Julio 2020].http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALIMECE2021-68569_control temperature.pdfIMECE2021-68569_control temperature.pdfapplication/pdf473612https://repositorio.utb.edu.co/bitstream/20.500.12585/10657/1/IMECE2021-68569_control%20temperature.pdffeeb6362e8db005c4228dbb3970d4a5fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10657/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10657/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTIMECE2021-68569_control temperature.pdf.txtIMECE2021-68569_control temperature.pdf.txtExtracted texttext/plain37961https://repositorio.utb.edu.co/bitstream/20.500.12585/10657/4/IMECE2021-68569_control%20temperature.pdf.txt17cf0b861bc5bb5678bdb2d2b07b7a9eMD54THUMBNAILIMECE2021-68569_control temperature.pdf.jpgIMECE2021-68569_control temperature.pdf.jpgGenerated Thumbnailimage/jpeg92567https://repositorio.utb.edu.co/bitstream/20.500.12585/10657/5/IMECE2021-68569_control%20temperature.pdf.jpga6b53950034f8e3d40768c1c9f66ec7bMD5520.500.12585/10657oai:repositorio.utb.edu.co:20.500.12585/106572023-05-26 09:19:19.577Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=