Heterogeneous Photocatalytic Pilot Plant for Cyanide Decontamination: A Novel Solar Rotary Photoreactor

During the gold extraction in opencast mining, many hazardous substances, such as cyanide, are spilled into the water bodies. This study’s aim was to develop a novel rotary photocatalytic TiO2-based reactor to remove cyanide from polluted water using a rotary concentrator photoreactor (RCPR). This p...

Full description

Autores:
Tirado-Munõz, Omar
Tirado-Ballestas, Irina
Barbosa Lopez, Aida Liliana
Colina-Marquez, Jose
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12219
Acceso en línea:
https://hdl.handle.net/20.500.12585/12219
Palabra clave:
Titanium Dioxide;
Tio2;
Reactors
LEMB
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UTB2_fba42856f8ecedee7912e666c56fa591
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12219
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Heterogeneous Photocatalytic Pilot Plant for Cyanide Decontamination: A Novel Solar Rotary Photoreactor
title Heterogeneous Photocatalytic Pilot Plant for Cyanide Decontamination: A Novel Solar Rotary Photoreactor
spellingShingle Heterogeneous Photocatalytic Pilot Plant for Cyanide Decontamination: A Novel Solar Rotary Photoreactor
Titanium Dioxide;
Tio2;
Reactors
LEMB
title_short Heterogeneous Photocatalytic Pilot Plant for Cyanide Decontamination: A Novel Solar Rotary Photoreactor
title_full Heterogeneous Photocatalytic Pilot Plant for Cyanide Decontamination: A Novel Solar Rotary Photoreactor
title_fullStr Heterogeneous Photocatalytic Pilot Plant for Cyanide Decontamination: A Novel Solar Rotary Photoreactor
title_full_unstemmed Heterogeneous Photocatalytic Pilot Plant for Cyanide Decontamination: A Novel Solar Rotary Photoreactor
title_sort Heterogeneous Photocatalytic Pilot Plant for Cyanide Decontamination: A Novel Solar Rotary Photoreactor
dc.creator.fl_str_mv Tirado-Munõz, Omar
Tirado-Ballestas, Irina
Barbosa Lopez, Aida Liliana
Colina-Marquez, Jose
dc.contributor.author.none.fl_str_mv Tirado-Munõz, Omar
Tirado-Ballestas, Irina
Barbosa Lopez, Aida Liliana
Colina-Marquez, Jose
dc.subject.keywords.spa.fl_str_mv Titanium Dioxide;
Tio2;
Reactors
topic Titanium Dioxide;
Tio2;
Reactors
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description During the gold extraction in opencast mining, many hazardous substances, such as cyanide, are spilled into the water bodies. This study’s aim was to develop a novel rotary photocatalytic TiO2-based reactor to remove cyanide from polluted water using a rotary concentrator photoreactor (RCPR). This pilot-scale reactor was tested with synthetic cyanide water at concentrations from 0.05 to 50 ppm, varying the pH and commercial TiO2 load. The optimal conditions from experimental data were 87.4% of cyanide removal and catalyst load of 0.30 g/L at pH 9.5. Further, samples of cyanide water from an opencast gold mine were treated, achieving removal of 68.7% after 240 min. Our value-added is the rotary motion of the set of four glass tubes, achieving satisfactory performance, which is promising for cyanide wastewater treatment with a more compact footprint than a standard compound parabolic collector (CPC) solar photoreactor. Thus, it was possible to reduce mass and heat transfer limitations with a simple design by considering this photoreactor as a photocatalytic process intensifier. Copyright © 2022 by ASME.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-19T21:23:00Z
dc.date.available.none.fl_str_mv 2023-07-19T21:23:00Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Tirado-Muñoz, O., Tirado-Ballestas, I., Barbosa Lopez, A. L., & Colina-Marquez, J. (2022). Heterogeneous Photocatalytic Pilot Plant for Cyanide decontamination: A novel solar rotary photoreactor. Journal of Solar Energy Engineering, 144(5), 051005.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12219
dc.identifier.doi.none.fl_str_mv 10.1115/1.4054030
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Tirado-Muñoz, O., Tirado-Ballestas, I., Barbosa Lopez, A. L., & Colina-Marquez, J. (2022). Heterogeneous Photocatalytic Pilot Plant for Cyanide decontamination: A novel solar rotary photoreactor. Journal of Solar Energy Engineering, 144(5), 051005.
10.1115/1.4054030
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12219
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Journal of Solar Energy Engineering, Transactions of the ASME
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12219/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12219/1/Scopus%20-%20Document%20details%20-%20Heterogeneous%20Photocatalytic%20Pilot%20Plant%20for%20Cyanide%20Decontamination_%20A%20Novel%20Solar%20Rotary%20Photoreactor.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12219/3/Scopus%20-%20Document%20details%20-%20Heterogeneous%20Photocatalytic%20Pilot%20Plant%20for%20Cyanide%20Decontamination_%20A%20Novel%20Solar%20Rotary%20Photoreactor.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12219/4/Scopus%20-%20Document%20details%20-%20Heterogeneous%20Photocatalytic%20Pilot%20Plant%20for%20Cyanide%20Decontamination_%20A%20Novel%20Solar%20Rotary%20Photoreactor.pdf.jpg
bitstream.checksum.fl_str_mv e20ad307a1c5f3f25af9304a7a7c86b6
86663175475aeea59ceda8cfc6aefda4
7cdd4406ae5bebaaeca3b9ebc6011bd8
86eae7aa55202b4a59cf51c72540cff4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021602532130816
spelling Tirado-Munõz, Omar74208f06-4687-4170-8bcd-ace55c2f2436Tirado-Ballestas, Irinaa64c07a4-58a6-4d8b-86f8-0230ba696d16Barbosa Lopez, Aida Liliana43695e96-e539-4cee-94fb-7c6352130fa1Colina-Marquez, Jose3d768575-34b7-4bf0-89e7-aeed09ddf5e72023-07-19T21:23:00Z2023-07-19T21:23:00Z20222023Tirado-Muñoz, O., Tirado-Ballestas, I., Barbosa Lopez, A. L., & Colina-Marquez, J. (2022). Heterogeneous Photocatalytic Pilot Plant for Cyanide decontamination: A novel solar rotary photoreactor. Journal of Solar Energy Engineering, 144(5), 051005.https://hdl.handle.net/20.500.12585/1221910.1115/1.4054030Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarDuring the gold extraction in opencast mining, many hazardous substances, such as cyanide, are spilled into the water bodies. This study’s aim was to develop a novel rotary photocatalytic TiO2-based reactor to remove cyanide from polluted water using a rotary concentrator photoreactor (RCPR). This pilot-scale reactor was tested with synthetic cyanide water at concentrations from 0.05 to 50 ppm, varying the pH and commercial TiO2 load. The optimal conditions from experimental data were 87.4% of cyanide removal and catalyst load of 0.30 g/L at pH 9.5. Further, samples of cyanide water from an opencast gold mine were treated, achieving removal of 68.7% after 240 min. Our value-added is the rotary motion of the set of four glass tubes, achieving satisfactory performance, which is promising for cyanide wastewater treatment with a more compact footprint than a standard compound parabolic collector (CPC) solar photoreactor. Thus, it was possible to reduce mass and heat transfer limitations with a simple design by considering this photoreactor as a photocatalytic process intensifier. Copyright © 2022 by ASME.application/pdfengJournal of Solar Energy Engineering, Transactions of the ASMEHeterogeneous Photocatalytic Pilot Plant for Cyanide Decontamination: A Novel Solar Rotary Photoreactorinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Titanium Dioxide;Tio2;ReactorsLEMBinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cartagena de IndiasDurán, A., Monteagudo, J.M., San Martín, I., Aguirre, M. Decontamination of industrial cyanide-containing water in a solar CPC pilot plant (2010) Solar Energy, 84 (7), pp. 1193-1200. Cited 17 times. doi: 10.1016/j.solener.2010.03.025Betancur-Corredor, B., Loaiza-Usuga, J.C., Denich, M., Borgemeister, C. Gold mining as a potential driver of development in Colombia: Challenges and opportunities (2018) Journal of Cleaner Production, 199, pp. 538-553. Cited 45 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2018.07.142Palacios-Torres, Y., Caballero-Gallardo, K., Olivero-Verbel, J. Mercury pollution by gold mining in a global biodiversity hotspot, the Choco biogeographic region, Colombia (2018) Chemosphere, 193, pp. 421-430. Cited 63 times. www.elsevier.com/locate/chemosphere doi: 10.1016/j.chemosphere.2017.10.160Brüger, A., Fafilek, G., Restrepo B., O.J., Rojas-Mendoza, L. On the volatilisation and decomposition of cyanide contaminations from gold mining (2018) Science of the Total Environment, 627, pp. 1167-1173. Cited 47 times. www.elsevier.com/locate/scitotenv doi: 10.1016/j.scitotenv.2018.01.320Kuyucak, N., Akcil, A. Cyanide and removal options from effluents in gold mining and metallurgical processes (2013) Minerals Engineering, 50-51, pp. 13-29. Cited 233 times. doi: 10.1016/j.mineng.2013.05.027Gupta, P., Ahammad, S.Z., Sreekrishnan, T.R. Improving the cyanide toxicity tolerance of anaerobic reactor: Microbial interactions and toxin reduction (2016) Journal of Hazardous Materials, 315, pp. 52-60. Cited 17 times. www.elsevier.com/locate/jhazmat doi: 10.1016/j.jhazmat.2016.04.028Rochlin, J. Informal gold miners, security and development in Colombia: Charting the way forward (2018) Extractive Industries and Society, 5 (3), pp. 330-339. Cited 20 times. http://www.journals.elsevier.com/the-extractive-industries-and-society/ doi: 10.1016/j.exis.2018.03.008Motegh, M., Van Ommen, J.R., Appel, P.W., Kreutzer, M.T. Scale-up study of a multiphase photocatalytic reactor - Degradation of cyanide in water over TiO2 (2014) Environmental Science and Technology, 48 (3), pp. 1574-1581. Cited 45 times. doi: 10.1021/es403378eAugugliaro, V., Blanco Gálvez, J., Cáceres Vázquez, J., García López, E., Loddo, V., López Muñoz, M.J., Malato Rodríguez, S., (...), Soria Ruiz, J. Photocatalytic oxidation of cyanide in aqueous TiO2 suspensions irradiated by sunlight in mild and strong oxidant conditions (1999) Catalysis Today, 54 (2-3), pp. 245-253. Cited 67 times. http://www.sciencedirect.com/science/journal/09205861 doi: 10.1016/S0920-5861(99)00186-8Osathaphan, K., Chucherdwatanasak, B., Rachdawong, P., Sharma, V.K. Photocatalytic oxidation of cyanide in aqueous titanium dioxide suspensions: Effect of ethylenediaminetetraacetate (2008) Solar Energy, 82 (11), pp. 1031-1036. Cited 34 times. doi: 10.1016/j.solener.2008.04.007Zhang, Y., Zhou, J., Chen, X., Wang, L., Cai, W. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: Synergistic effect and degradation pathway (2019) Chemical Engineering Journal, 369, pp. 745-757. Cited 339 times. www.elsevier.com/inca/publications/store/6/0/1/2/7/3/index.htt doi: 10.1016/j.cej.2019.03.108Díez, A.M., Moreira, F.C., Marinho, B.A., Espíndola, J.C.A., Paulista, L.O., Sanromán, M.A., Pazos, M., (...), Vilar, V.J.P. A step forward in heterogeneous photocatalysis: Process intensification by using a static mixer as catalyst support (Open Access) (2018) Chemical Engineering Journal, 343, pp. 597-606. Cited 50 times. www.elsevier.com/inca/publications/store/6/0/1/2/7/3/index.htt doi: 10.1016/j.cej.2018.03.041Rodríguez-Chueca, J., García-Cañibano, C., Lepistö, R.-J., Encinas, Á., Pellinen, J., Marugán, J. Intensification of UV-C tertiary treatment: Disinfection and removal of micropollutants by sulfate radical based Advanced Oxidation Processes (2019) Journal of Hazardous Materials, pp. 94-102. Cited 75 times. www.elsevier.com/locate/jhazmat doi: 10.1016/j.jhazmat.2018.04.044Pacheco, J.E., Prairie, M.R., Yellowhorse, L. Photocatalytic destruction of chlorinated solwents in water with solar energy (1993) Journal of Solar Energy Engineering, Transactions of the ASME, 115 (3), pp. 123-129. Cited 37 times. doi: 10.1115/1.2930038Colina-Márquez, J., MacHuca-Martínez, F., Puma, G.L. Radiation absorption and optimization of solar photocatalytic reactors for environmental applications (2010) Environmental Science and Technology, 44 (13), pp. 5112-5120. Cited 141 times. doi: 10.1021/es100130hMalato, S., Blanco, J., Richter, C., Curcó, D., Giménez, J. Low-concentration CPC collectors for photocatalytic water detoxification: Comparison with a medium concentrating solar collector (Open Access) (1997) Water Science and Technology, 35 (4), pp. 157-164. Cited 107 times. doi: 10.1016/S0273-1223(97)00021-8Ajona, J.I., Vidal, A. The use of CPC collectors for detoxification of contaminated water: Design, construction and preliminary results (2000) Solar Energy, 68 (1), pp. 109-120. Cited 58 times. doi: 10.1016/S0038-092X(99)00047-XArce-Sarria, A., Machuca-Martínez, F., Bustillo-Lecompte, C., Hernández-Ramírez, A., Colina-Márquez, J. Degradation and loss of antibacterial activity of commercial amoxicillin with TiO2/WO3-assisted solar photocatalysis (2018) Catalysts, 8 (6), art. no. 222. Cited 30 times. http://www.mdpi.com/2073-4344/8/6/222/pdf doi: 10.3390/catal8060222Betancourt-Buitrago, L.A., Ossa-Echeverry, O.E., Rodriguez-Vallejo, J.C., Barraza, J.M., Marriaga, N., Machuca-Martínez, F. Anoxic photocatalytic treatment of synthetic mining wastewater using TiO2 and scavengers for complexed cyanide recovery (2019) Photochemical and Photobiological Sciences, 18 (4), pp. 853-862. Cited 16 times. http://pubs.rsc.org/en/journals/journal/pp doi: 10.1039/c8pp00281aCastilla-Caballero, D., Machuca-Martínez, F., Bustillo-Lecompte, C., Colina-Márquez, J. Photocatalytic degradation of commercial acetaminophen: Evaluation, modeling, and scaling-up of photoreactors (2018) Catalysts, 8 (5), art. no. 179. Cited 11 times. http://www.mdpi.com/2073-4344/8/5/179/pdf doi: 10.3390/catal8050179Colina-Márquez, J., Machuca-Martínez, F., Li Puma, G. Photocatalytic mineralization of commercial herbicides in a pilot-scale solar CPC reactor: Photoreactor modeling and reaction kinetics constants independent of radiation field (2009) Environmental Science and Technology, 43 (23), pp. 8953-8960. Cited 82 times. http://pubs.acs.org/doi/pdfplus/10.1021/es902004b doi: 10.1021/es902004bBlanco, J., Malato, S., Fernández, P., Vidal, A., Morales, A., Trincado, P., Oliveira, J.C., (...), Rangel, C.M. Compound parabolic concentrator technology development to commercial solar detoxification applications (Open Access) (1999) Solar Energy, 67 (4-6), pp. 317-330. Cited 127 times. www.elsevier.com/inca/publications/store/3/2/9/index.htt doi: 10.1016/s0038-092x(00)00078-5Colina-Márquez, J.A., Lópezvásquez, A.F., Machuca-martínez, F. Modeling of direct solar radiation in a compound parabolic collector (CPC) with the ray tracing technique (2010) DYNA (Colombia), 77 (163), pp. 132-140. Cited 15 times. http://www.scielo.org.co/pdf/dyna/v77n163/a14v77n163.pdfOchoa-Gutiérrez, K.S., Tabares-Aguilar, E., Mueses, M.Á., Machuca-Martínez, F., Li Puma, G. A Novel Prototype Offset Multi Tubular Photoreactor (OMTP) for solar photocatalytic degradation of water contaminants (2018) Chemical Engineering Journal, 341, pp. 628-638. Cited 42 times. www.elsevier.com/inca/publications/store/6/0/1/2/7/3/index.htt doi: 10.1016/j.cej.2018.02.068Mueses, M.A., Machuca-Martinez, F., Hernández-Ramirez, A., Li Puma, G. Effective radiation field model to scattering - Absorption applied in heterogeneous photocatalytic reactors (Open Access) (2015) Chemical Engineering Journal, 279, pp. 442-451. Cited 25 times. www.elsevier.com/inca/publications/store/6/0/1/2/7/3/index.htt doi: 10.1016/j.cej.2015.05.056Araña, J., Doña Rodríguez, J.M., González Díaz, O., Herrera Melián, J.A., Pérez Peña, J. The effect of modifying TiO2 on catechol and resorcinol photocatalytic degradation (Open Access) (2007) Journal of Solar Energy Engineering, Transactions of the ASME, 129 (1), pp. 80-86. Cited 8 times. doi: 10.1115/1.2391225García-Ripoll, A., Arques, A., Vicente, R., Domenech, A., Amat, A.M. Treatment of aqueous solutions containing four commercial pesticides by means of TiO2 solar photocatalysis (Open Access) (2008) Journal of Solar Energy Engineering, Transactions of the ASME, 130 (4), pp. 0410111-0410115. Cited 19 times. doi: 10.1115/1.2969810Arellano, C.A.P., Martínez, S.S. Effects of pH on the degradation of aqueous ferricyanide by photolysis and photocatalysis under solar radiation (2010) Solar Energy Materials and Solar Cells, 94 (2), pp. 327-332. Cited 38 times. doi: 10.1016/j.solmat.2009.10.008Betancourt-Buitrago, L.A., Hernandez-Ramirez, A., Colina-Marquez, J.A., Bustillo-Lecompte, C.F., Rehmann, L., Machuca-Martinez, F. Recent developments in the photocatalytic treatment of cyanide wastewater: An approach to remediation and recovery of metals (2019) Processes, 7 (4), art. no. 225. Cited 25 times. https://res.mdpi.com/processes/processes-07-00225/article_deploy/processes-07-00225.pdf?filename=&attachment=1 doi: 10.3390/pr7040225Marugán, J., van Grieken, R., Cassano, A.E., Alfano, O.M. Intrinsic kinetic modeling with explicit radiation absorption effects of the photocatalytic oxidation of cyanide with TiO2 and silica-supported TiO2 suspensions (2008) Applied Catalysis B: Environmental, 85 (1-2), pp. 48-60. Cited 81 times. doi: 10.1016/j.apcatb.2008.06.026Ahmed, S., Rasul, M.G., Brown, R., Hashib, M.A. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review (2011) Journal of Environmental Management, 92 (3), pp. 311-330. Cited 708 times. doi: 10.1016/j.jenvman.2010.08.028Mueses, M.A., MacHuca-Martínez, F. Mathematical model for non-intrinsic photonic yields in heterogeneous photocatalytic reactions (Open Access) (2012) Informacion Tecnologica, 23 (3), pp. 43-50. Cited 5 times. http://www.scielo.cl/pdf/infotec/v23n3/art06.pdf doi: 10.4067/S0718-07642012000300006Hernández-García, H., Löpez-Arjona, H., Rodríguez, J.F., Enríquez, R. Preliminary study of the disinfection of secondary wastewater using a solar photolytic-photocatalytic reactor (Open Access) (2008) Journal of Solar Energy Engineering, Transactions of the ASME, 130 (4), pp. 0410041-0410045. Cited 4 times. doi: 10.1115/1.2969801Wang, D., Mueses, M.A., Márquez, J.A.C., Machuca-Martínez, F., Grčić, I., Peralta Muniz Moreira, R., Li Puma, G. Engineering and modeling perspectives on photocatalytic reactors for water treatment (2021) Water Research, 202, art. no. 117421. Cited 61 times. www.elsevier.com/locate/watres doi: 10.1016/j.watres.2021.117421San Vicente, G., Morales, A., Germn, N., Suarez, S., Sánchez, B. SiO 2/TiO 2 antireflective coatings with photocatalytic properties prepared by sol-gel for solar glass covers (Open Access) (2012) Journal of Solar Energy Engineering, Transactions of the ASME, 134 (4), art. no. 041011. Cited 11 times. doi: 10.1115/1.4007298http://purl.org/coar/resource_type/c_6501LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12219/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52ORIGINALScopus - Document details - Heterogeneous Photocatalytic Pilot Plant for Cyanide Decontamination_ A Novel Solar Rotary Photoreactor.pdfScopus - Document details - Heterogeneous Photocatalytic Pilot Plant for Cyanide Decontamination_ A Novel Solar Rotary Photoreactor.pdfapplication/pdf180261https://repositorio.utb.edu.co/bitstream/20.500.12585/12219/1/Scopus%20-%20Document%20details%20-%20Heterogeneous%20Photocatalytic%20Pilot%20Plant%20for%20Cyanide%20Decontamination_%20A%20Novel%20Solar%20Rotary%20Photoreactor.pdf86663175475aeea59ceda8cfc6aefda4MD51TEXTScopus - Document details - Heterogeneous Photocatalytic Pilot Plant for Cyanide Decontamination_ A Novel Solar Rotary Photoreactor.pdf.txtScopus - Document details - Heterogeneous Photocatalytic Pilot Plant for Cyanide Decontamination_ A Novel Solar Rotary Photoreactor.pdf.txtExtracted texttext/plain2984https://repositorio.utb.edu.co/bitstream/20.500.12585/12219/3/Scopus%20-%20Document%20details%20-%20Heterogeneous%20Photocatalytic%20Pilot%20Plant%20for%20Cyanide%20Decontamination_%20A%20Novel%20Solar%20Rotary%20Photoreactor.pdf.txt7cdd4406ae5bebaaeca3b9ebc6011bd8MD53THUMBNAILScopus - Document details - Heterogeneous Photocatalytic Pilot Plant for Cyanide Decontamination_ A Novel Solar Rotary Photoreactor.pdf.jpgScopus - Document details - Heterogeneous Photocatalytic Pilot Plant for Cyanide Decontamination_ A Novel Solar Rotary Photoreactor.pdf.jpgGenerated Thumbnailimage/jpeg6652https://repositorio.utb.edu.co/bitstream/20.500.12585/12219/4/Scopus%20-%20Document%20details%20-%20Heterogeneous%20Photocatalytic%20Pilot%20Plant%20for%20Cyanide%20Decontamination_%20A%20Novel%20Solar%20Rotary%20Photoreactor.pdf.jpg86eae7aa55202b4a59cf51c72540cff4MD5420.500.12585/12219oai:repositorio.utb.edu.co:20.500.12585/122192023-07-20 00:18:14.588Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=