The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations
Plant parasitic nematodes are generally soilborne pathogens that attack plants and cause economic losses in many crops. The infested plants show nonspecific symptoms or, often, are symptomless; therefore, diagnosis is performed by taking soil and root tissue samples. Here, we show that a combination...
- Autores:
-
San‐Blas, Ernesto
Paba, Gabriel
Cubillán, Néstor
Portillo, Edgar
Casassa-Padrón, Ana M.
González‐González, César
Guerra, Mayamarú
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9555
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9555
https://bsppjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/ppa.13246
- Palabra clave:
- Artificial intelligence
Fourier transformed infrared spectroscopy – attenuated total reflectance (FTIR‐ATR)
Genetic algorithms
Genetic algorithms
Meloidogyne enterolobii
Plant parasitic nematodes
Support vector machine
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
UTB2_fb8d300ec9fce616b931101bfab2487a |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9555 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations |
title |
The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations |
spellingShingle |
The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations Artificial intelligence Fourier transformed infrared spectroscopy – attenuated total reflectance (FTIR‐ATR) Genetic algorithms Genetic algorithms Meloidogyne enterolobii Plant parasitic nematodes Support vector machine |
title_short |
The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations |
title_full |
The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations |
title_fullStr |
The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations |
title_full_unstemmed |
The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations |
title_sort |
The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations |
dc.creator.fl_str_mv |
San‐Blas, Ernesto Paba, Gabriel Cubillán, Néstor Portillo, Edgar Casassa-Padrón, Ana M. González‐González, César Guerra, Mayamarú |
dc.contributor.author.none.fl_str_mv |
San‐Blas, Ernesto Paba, Gabriel Cubillán, Néstor Portillo, Edgar Casassa-Padrón, Ana M. González‐González, César Guerra, Mayamarú |
dc.subject.keywords.spa.fl_str_mv |
Artificial intelligence Fourier transformed infrared spectroscopy – attenuated total reflectance (FTIR‐ATR) Genetic algorithms Genetic algorithms Meloidogyne enterolobii Plant parasitic nematodes Support vector machine |
topic |
Artificial intelligence Fourier transformed infrared spectroscopy – attenuated total reflectance (FTIR‐ATR) Genetic algorithms Genetic algorithms Meloidogyne enterolobii Plant parasitic nematodes Support vector machine |
description |
Plant parasitic nematodes are generally soilborne pathogens that attack plants and cause economic losses in many crops. The infested plants show nonspecific symptoms or, often, are symptomless; therefore, diagnosis is performed by taking soil and root tissue samples. Here, we show that a combination of different infrared spectra analysis and machine learning algorithms can be used to detect plant parasitic nematode infestations before symptoms become visible, using leaves instead of roots and soil as samples. We found that tomato and guava plants infested with Meloidogyne enterorlobii produced different spectral patterns compared to uninfested plants. Using partial spectra from 1,450 to 900/cm as the "fingerprint region", principal component analyses indicated that after 5 (tomatoes) or 8 weeks (guava), plants with no visible symptoms of infestations were positively diagnosed. To improve the early detection response, we used machine learning modelling. A support vector machine (SVM) was used to obtain more robust, accurate models. The SVM model contained 34 support vectors, 17 for each level. The overall performance of the model was >97% and the total accuracy was significantly higher, demonstrating the absence of chance prediction. The best prediction of infestation was obtained at the second and fourth weeks for tomatoes and guavas, respectively, reducing the diagnostic time by half. The combined application of these techniques reduces the processing time from field to laboratory and shows enormous advantages by avoiding root and soil sampling. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-11-05T20:59:51Z |
dc.date.available.none.fl_str_mv |
2020-11-05T20:59:51Z |
dc.date.issued.none.fl_str_mv |
2020-08-01 |
dc.date.submitted.none.fl_str_mv |
2020-10-30 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
San‐Blas, E., Paba, G., Cubillán, N., Portillo, E., Casassa‐Padrón, A. M., González‐González, C., & Guerra, M. (2020). The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations. Plant Pathology, 69(8), 1589-1600. https://doi.org/10.1111/ppa.13246 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9555 |
dc.identifier.url.none.fl_str_mv |
https://bsppjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/ppa.13246 |
dc.identifier.doi.none.fl_str_mv |
10.1111/ppa.13246 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
San‐Blas, E., Paba, G., Cubillán, N., Portillo, E., Casassa‐Padrón, A. M., González‐González, C., & Guerra, M. (2020). The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations. Plant Pathology, 69(8), 1589-1600. https://doi.org/10.1111/ppa.13246 10.1111/ppa.13246 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/9555 https://bsppjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/ppa.13246 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Plant Pathology Volume 69, Issue 8 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9555/1/69.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9555/2/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9555/3/69.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9555/4/69.pdf.jpg |
bitstream.checksum.fl_str_mv |
dfa76c4cab53dd6197f58224f0bc7a93 e20ad307a1c5f3f25af9304a7a7c86b6 967920bfdac7e1e3734ec2081b6e4d68 761f601a3ab588e82e954119c5eea0eb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021676670648320 |
spelling |
San‐Blas, Ernesto5d6dc354-48b4-4ff2-a0ad-897da18495cePaba, Gabriel9fe9e218-18f8-4446-a08c-366c9ade2fbeCubillán, Néstor81ec06c5-9433-4b0c-9e60-ef40644183c8Portillo, Edgar3a29420e-087c-46ad-a4c6-e7c3aa3f7953Casassa-Padrón, Ana M.8697cdf1-10c4-420e-a7ed-f54bceb248c0González‐González, César049fa485-5971-4b2d-840f-37a4f2a22cdcGuerra, Mayamarú5af72308-bd11-495a-86d4-0817f8961b6c2020-11-05T20:59:51Z2020-11-05T20:59:51Z2020-08-012020-10-30San‐Blas, E., Paba, G., Cubillán, N., Portillo, E., Casassa‐Padrón, A. M., González‐González, C., & Guerra, M. (2020). The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations. Plant Pathology, 69(8), 1589-1600. https://doi.org/10.1111/ppa.13246https://hdl.handle.net/20.500.12585/9555https://bsppjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/ppa.1324610.1111/ppa.13246Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarPlant parasitic nematodes are generally soilborne pathogens that attack plants and cause economic losses in many crops. The infested plants show nonspecific symptoms or, often, are symptomless; therefore, diagnosis is performed by taking soil and root tissue samples. Here, we show that a combination of different infrared spectra analysis and machine learning algorithms can be used to detect plant parasitic nematode infestations before symptoms become visible, using leaves instead of roots and soil as samples. We found that tomato and guava plants infested with Meloidogyne enterorlobii produced different spectral patterns compared to uninfested plants. Using partial spectra from 1,450 to 900/cm as the "fingerprint region", principal component analyses indicated that after 5 (tomatoes) or 8 weeks (guava), plants with no visible symptoms of infestations were positively diagnosed. To improve the early detection response, we used machine learning modelling. A support vector machine (SVM) was used to obtain more robust, accurate models. The SVM model contained 34 support vectors, 17 for each level. The overall performance of the model was >97% and the total accuracy was significantly higher, demonstrating the absence of chance prediction. The best prediction of infestation was obtained at the second and fourth weeks for tomatoes and guavas, respectively, reducing the diagnostic time by half. The combined application of these techniques reduces the processing time from field to laboratory and shows enormous advantages by avoiding root and soil sampling.application/pdfengPlant Pathology Volume 69, Issue 8The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestationsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Artificial intelligenceFourier transformed infrared spectroscopy – attenuated total reflectance (FTIR‐ATR)Genetic algorithmsGenetic algorithmsMeloidogyne enterolobiiPlant parasitic nematodesSupport vector machineinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasInvestigadoreshttp://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL69.pdf69.pdfapplication/pdf84550https://repositorio.utb.edu.co/bitstream/20.500.12585/9555/1/69.pdfdfa76c4cab53dd6197f58224f0bc7a93MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9555/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT69.pdf.txt69.pdf.txtExtracted texttext/plain1709https://repositorio.utb.edu.co/bitstream/20.500.12585/9555/3/69.pdf.txt967920bfdac7e1e3734ec2081b6e4d68MD53THUMBNAIL69.pdf.jpg69.pdf.jpgGenerated Thumbnailimage/jpeg66303https://repositorio.utb.edu.co/bitstream/20.500.12585/9555/4/69.pdf.jpg761f601a3ab588e82e954119c5eea0ebMD5420.500.12585/9555oai:repositorio.utb.edu.co:20.500.12585/95552023-05-25 15:20:10.568Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |