The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations

Plant parasitic nematodes are generally soilborne pathogens that attack plants and cause economic losses in many crops. The infested plants show nonspecific symptoms or, often, are symptomless; therefore, diagnosis is performed by taking soil and root tissue samples. Here, we show that a combination...

Full description

Autores:
San‐Blas, Ernesto
Paba, Gabriel
Cubillán, Néstor
Portillo, Edgar
Casassa-Padrón, Ana M.
González‐González, César
Guerra, Mayamarú
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9555
Acceso en línea:
https://hdl.handle.net/20.500.12585/9555
https://bsppjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/ppa.13246
Palabra clave:
Artificial intelligence
Fourier transformed infrared spectroscopy – attenuated total reflectance (FTIR‐ATR)
Genetic algorithms
Genetic algorithms
Meloidogyne enterolobii
Plant parasitic nematodes
Support vector machine
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id UTB2_fb8d300ec9fce616b931101bfab2487a
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9555
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations
title The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations
spellingShingle The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations
Artificial intelligence
Fourier transformed infrared spectroscopy – attenuated total reflectance (FTIR‐ATR)
Genetic algorithms
Genetic algorithms
Meloidogyne enterolobii
Plant parasitic nematodes
Support vector machine
title_short The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations
title_full The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations
title_fullStr The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations
title_full_unstemmed The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations
title_sort The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations
dc.creator.fl_str_mv San‐Blas, Ernesto
Paba, Gabriel
Cubillán, Néstor
Portillo, Edgar
Casassa-Padrón, Ana M.
González‐González, César
Guerra, Mayamarú
dc.contributor.author.none.fl_str_mv San‐Blas, Ernesto
Paba, Gabriel
Cubillán, Néstor
Portillo, Edgar
Casassa-Padrón, Ana M.
González‐González, César
Guerra, Mayamarú
dc.subject.keywords.spa.fl_str_mv Artificial intelligence
Fourier transformed infrared spectroscopy – attenuated total reflectance (FTIR‐ATR)
Genetic algorithms
Genetic algorithms
Meloidogyne enterolobii
Plant parasitic nematodes
Support vector machine
topic Artificial intelligence
Fourier transformed infrared spectroscopy – attenuated total reflectance (FTIR‐ATR)
Genetic algorithms
Genetic algorithms
Meloidogyne enterolobii
Plant parasitic nematodes
Support vector machine
description Plant parasitic nematodes are generally soilborne pathogens that attack plants and cause economic losses in many crops. The infested plants show nonspecific symptoms or, often, are symptomless; therefore, diagnosis is performed by taking soil and root tissue samples. Here, we show that a combination of different infrared spectra analysis and machine learning algorithms can be used to detect plant parasitic nematode infestations before symptoms become visible, using leaves instead of roots and soil as samples. We found that tomato and guava plants infested with Meloidogyne enterorlobii produced different spectral patterns compared to uninfested plants. Using partial spectra from 1,450 to 900/cm as the "fingerprint region", principal component analyses indicated that after 5 (tomatoes) or 8 weeks (guava), plants with no visible symptoms of infestations were positively diagnosed. To improve the early detection response, we used machine learning modelling. A support vector machine (SVM) was used to obtain more robust, accurate models. The SVM model contained 34 support vectors, 17 for each level. The overall performance of the model was >97% and the total accuracy was significantly higher, demonstrating the absence of chance prediction. The best prediction of infestation was obtained at the second and fourth weeks for tomatoes and guavas, respectively, reducing the diagnostic time by half. The combined application of these techniques reduces the processing time from field to laboratory and shows enormous advantages by avoiding root and soil sampling.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-05T20:59:51Z
dc.date.available.none.fl_str_mv 2020-11-05T20:59:51Z
dc.date.issued.none.fl_str_mv 2020-08-01
dc.date.submitted.none.fl_str_mv 2020-10-30
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv San‐Blas, E., Paba, G., Cubillán, N., Portillo, E., Casassa‐Padrón, A. M., González‐González, C., & Guerra, M. (2020). The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations. Plant Pathology, 69(8), 1589-1600. https://doi.org/10.1111/ppa.13246
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9555
dc.identifier.url.none.fl_str_mv https://bsppjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/ppa.13246
dc.identifier.doi.none.fl_str_mv 10.1111/ppa.13246
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv San‐Blas, E., Paba, G., Cubillán, N., Portillo, E., Casassa‐Padrón, A. M., González‐González, C., & Guerra, M. (2020). The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations. Plant Pathology, 69(8), 1589-1600. https://doi.org/10.1111/ppa.13246
10.1111/ppa.13246
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9555
https://bsppjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/ppa.13246
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Plant Pathology Volume 69, Issue 8
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9555/1/69.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9555/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9555/3/69.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9555/4/69.pdf.jpg
bitstream.checksum.fl_str_mv dfa76c4cab53dd6197f58224f0bc7a93
e20ad307a1c5f3f25af9304a7a7c86b6
967920bfdac7e1e3734ec2081b6e4d68
761f601a3ab588e82e954119c5eea0eb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021676670648320
spelling San‐Blas, Ernesto5d6dc354-48b4-4ff2-a0ad-897da18495cePaba, Gabriel9fe9e218-18f8-4446-a08c-366c9ade2fbeCubillán, Néstor81ec06c5-9433-4b0c-9e60-ef40644183c8Portillo, Edgar3a29420e-087c-46ad-a4c6-e7c3aa3f7953Casassa-Padrón, Ana M.8697cdf1-10c4-420e-a7ed-f54bceb248c0González‐González, César049fa485-5971-4b2d-840f-37a4f2a22cdcGuerra, Mayamarú5af72308-bd11-495a-86d4-0817f8961b6c2020-11-05T20:59:51Z2020-11-05T20:59:51Z2020-08-012020-10-30San‐Blas, E., Paba, G., Cubillán, N., Portillo, E., Casassa‐Padrón, A. M., González‐González, C., & Guerra, M. (2020). The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations. Plant Pathology, 69(8), 1589-1600. https://doi.org/10.1111/ppa.13246https://hdl.handle.net/20.500.12585/9555https://bsppjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/ppa.1324610.1111/ppa.13246Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarPlant parasitic nematodes are generally soilborne pathogens that attack plants and cause economic losses in many crops. The infested plants show nonspecific symptoms or, often, are symptomless; therefore, diagnosis is performed by taking soil and root tissue samples. Here, we show that a combination of different infrared spectra analysis and machine learning algorithms can be used to detect plant parasitic nematode infestations before symptoms become visible, using leaves instead of roots and soil as samples. We found that tomato and guava plants infested with Meloidogyne enterorlobii produced different spectral patterns compared to uninfested plants. Using partial spectra from 1,450 to 900/cm as the "fingerprint region", principal component analyses indicated that after 5 (tomatoes) or 8 weeks (guava), plants with no visible symptoms of infestations were positively diagnosed. To improve the early detection response, we used machine learning modelling. A support vector machine (SVM) was used to obtain more robust, accurate models. The SVM model contained 34 support vectors, 17 for each level. The overall performance of the model was >97% and the total accuracy was significantly higher, demonstrating the absence of chance prediction. The best prediction of infestation was obtained at the second and fourth weeks for tomatoes and guavas, respectively, reducing the diagnostic time by half. The combined application of these techniques reduces the processing time from field to laboratory and shows enormous advantages by avoiding root and soil sampling.application/pdfengPlant Pathology Volume 69, Issue 8The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestationsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Artificial intelligenceFourier transformed infrared spectroscopy – attenuated total reflectance (FTIR‐ATR)Genetic algorithmsGenetic algorithmsMeloidogyne enterolobiiPlant parasitic nematodesSupport vector machineinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasInvestigadoreshttp://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL69.pdf69.pdfapplication/pdf84550https://repositorio.utb.edu.co/bitstream/20.500.12585/9555/1/69.pdfdfa76c4cab53dd6197f58224f0bc7a93MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9555/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT69.pdf.txt69.pdf.txtExtracted texttext/plain1709https://repositorio.utb.edu.co/bitstream/20.500.12585/9555/3/69.pdf.txt967920bfdac7e1e3734ec2081b6e4d68MD53THUMBNAIL69.pdf.jpg69.pdf.jpgGenerated Thumbnailimage/jpeg66303https://repositorio.utb.edu.co/bitstream/20.500.12585/9555/4/69.pdf.jpg761f601a3ab588e82e954119c5eea0ebMD5420.500.12585/9555oai:repositorio.utb.edu.co:20.500.12585/95552023-05-25 15:20:10.568Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=