In-situ imaging and electrochemical monitoring of damaged thermal spray aluminium coating in synthetic seawater
This paper presents the results of a study that combined electrochemical monitoring with in-situ imaging of Thermal Spray Aluminium (TSA) coating in synthetic seawater at room temperature in quiescent condition. The coatings were obtained by twin-wire arc spraying of 1050 aluminium alloy on S355 car...
- Autores:
-
Castro Vargas, Adriana
Paul, Shiladitya
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12444
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12444
- Palabra clave:
- Thermal spray aluminium
Synthetic seawater
In-situ Opical Analysis
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_fa9f9e28c1a192a72628d2c4af5f505a |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12444 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
In-situ imaging and electrochemical monitoring of damaged thermal spray aluminium coating in synthetic seawater |
title |
In-situ imaging and electrochemical monitoring of damaged thermal spray aluminium coating in synthetic seawater |
spellingShingle |
In-situ imaging and electrochemical monitoring of damaged thermal spray aluminium coating in synthetic seawater Thermal spray aluminium Synthetic seawater In-situ Opical Analysis LEMB |
title_short |
In-situ imaging and electrochemical monitoring of damaged thermal spray aluminium coating in synthetic seawater |
title_full |
In-situ imaging and electrochemical monitoring of damaged thermal spray aluminium coating in synthetic seawater |
title_fullStr |
In-situ imaging and electrochemical monitoring of damaged thermal spray aluminium coating in synthetic seawater |
title_full_unstemmed |
In-situ imaging and electrochemical monitoring of damaged thermal spray aluminium coating in synthetic seawater |
title_sort |
In-situ imaging and electrochemical monitoring of damaged thermal spray aluminium coating in synthetic seawater |
dc.creator.fl_str_mv |
Castro Vargas, Adriana Paul, Shiladitya |
dc.contributor.author.none.fl_str_mv |
Castro Vargas, Adriana Paul, Shiladitya |
dc.subject.keywords.spa.fl_str_mv |
Thermal spray aluminium Synthetic seawater In-situ Opical Analysis |
topic |
Thermal spray aluminium Synthetic seawater In-situ Opical Analysis LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
This paper presents the results of a study that combined electrochemical monitoring with in-situ imaging of Thermal Spray Aluminium (TSA) coating in synthetic seawater at room temperature in quiescent condition. The coatings were obtained by twin-wire arc spraying of 1050 aluminium alloy on S355 carbon steel substrate. TSA-coated steel samples were evaluated by analysing sequential images of the surface: (i) without defect; (ii) with defects machined before immersion (5% and 30% of exposed steel surface); (iii) with a defect machined after 35 d of immersion (10% of exposed steel surface); and (iv) after the removal of calcareous deposits formed on top of the exposed steel surface. Variations in the coating and the defect were captured and correlated with the evolution of Open Circuit Potential (OCP) during 35 days of full immersion. Determination of calcareous deposit formation time on the top of exposed steel was also carried out. The defect created before immersion impacted the cathodic reactions, resulting in a faster formation of corrosion products and calcareous deposits compared to the defect machined after exposure to synthetic seawater. The penetration time of the electrolyte in the coating and the activation of the surface are key in the protection mechanism and the kinetics of corrosion. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-31T16:28:48Z |
dc.date.available.none.fl_str_mv |
2023-07-31T16:28:48Z |
dc.date.issued.none.fl_str_mv |
2023-07-14 |
dc.date.submitted.none.fl_str_mv |
2023-07-31 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Adriana Castro-Vargas and Shiladitya Paul, 'In-situ imaging and electrochemical monitoring of damaged thermal spray aluminium coating in synthetic seawater'. Electrochimica Acta, Vol. 464, October 2023, 142847. https://doi.org/10.1016/j.electacta.2023.142847 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12444 |
dc.identifier.doi.none.fl_str_mv |
doi.org/10.1016/j.electacta.2023.142847 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Adriana Castro-Vargas and Shiladitya Paul, 'In-situ imaging and electrochemical monitoring of damaged thermal spray aluminium coating in synthetic seawater'. Electrochimica Acta, Vol. 464, October 2023, 142847. https://doi.org/10.1016/j.electacta.2023.142847 doi.org/10.1016/j.electacta.2023.142847 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12444 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
10 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.none.fl_str_mv |
United Kingdom & Colombia |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.publisher.sede.spa.fl_str_mv |
Campus Tecnológico |
dc.publisher.discipline.spa.fl_str_mv |
Ingeniería Mecánica |
dc.source.spa.fl_str_mv |
Electrochimica Acta - vol. 464 (2023) |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12444/1/4.%20In-situ%20imagining%20and%20electrochemical%20monitoring%20of%20damaged%20TSA.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12444/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12444/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12444/4/4.%20In-situ%20imagining%20and%20electrochemical%20monitoring%20of%20damaged%20TSA.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12444/5/4.%20In-situ%20imagining%20and%20electrochemical%20monitoring%20of%20damaged%20TSA.pdf.jpg |
bitstream.checksum.fl_str_mv |
302f82f4088e2be5837c6a522dd0a4c8 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 c512ffcdb85fd2c1ae6a9244bdda147a af4dbf3d62f6db191338d90dabd38c55 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021629904158720 |
spelling |
Castro Vargas, Adrianae57512bc-a9d2-432f-9f4f-0616cc70020d600Paul, Shiladityaac90670f-2c89-49c0-8589-46336bb2d48cUnited Kingdom & Colombia2023-07-31T16:28:48Z2023-07-31T16:28:48Z2023-07-142023-07-31Adriana Castro-Vargas and Shiladitya Paul, 'In-situ imaging and electrochemical monitoring of damaged thermal spray aluminium coating in synthetic seawater'. Electrochimica Acta, Vol. 464, October 2023, 142847. https://doi.org/10.1016/j.electacta.2023.142847https://hdl.handle.net/20.500.12585/12444doi.org/10.1016/j.electacta.2023.142847Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper presents the results of a study that combined electrochemical monitoring with in-situ imaging of Thermal Spray Aluminium (TSA) coating in synthetic seawater at room temperature in quiescent condition. The coatings were obtained by twin-wire arc spraying of 1050 aluminium alloy on S355 carbon steel substrate. TSA-coated steel samples were evaluated by analysing sequential images of the surface: (i) without defect; (ii) with defects machined before immersion (5% and 30% of exposed steel surface); (iii) with a defect machined after 35 d of immersion (10% of exposed steel surface); and (iv) after the removal of calcareous deposits formed on top of the exposed steel surface. Variations in the coating and the defect were captured and correlated with the evolution of Open Circuit Potential (OCP) during 35 days of full immersion. Determination of calcareous deposit formation time on the top of exposed steel was also carried out. The defect created before immersion impacted the cathodic reactions, resulting in a faster formation of corrosion products and calcareous deposits compared to the defect machined after exposure to synthetic seawater. The penetration time of the electrolyte in the coating and the activation of the surface are key in the protection mechanism and the kinetics of corrosion.UTB, MInciencias, Lloy's Register Foundation10 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Electrochimica Acta - vol. 464 (2023)In-situ imaging and electrochemical monitoring of damaged thermal spray aluminium coating in synthetic seawaterinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Thermal spray aluminiumSynthetic seawaterIn-situ Opical AnalysisLEMBCartagena de IndiasCampus TecnológicoIngeniería MecánicaPúblico general[1] W.H. Thomason, Offshore Corrosion Protection With Thermal-Sprayed Aluminum, Offshore Technology Conference Houston, Texas, 1985, https://doi.org/10.4043/4971-MS.[2] D.K.-K. Tiong, H. Pit, Experiences on Thermal Spray Aluminum (TSA) Coating on Offshore Structures, CORROSION 2004, OnePetro, 2004.[3] K.P. Fischer, W.H. Thomason, T. Rosbrook, J. Murali, Performance history of thermal-sprayed aluminum coatings in offshore service, Materials performance, 34 (1995) 27-35.[4] D.N. Veritas, DNV-RP-B401 Cathodic Protection Design, Recommended Practice, Norway: Det Norske Veritas, 2005[5] A. Castro-Vargas, S. Gill, S. Paul, Effect of Corrosion Products and Deposits on the Damage Tolerance of TSA-Coated Steel in Artificial Seawater, Surfaces, 5 (2022) 113-126, https://doi.org/10.3390/surfaces5010005.[6] R. Grinon-Echaniz, P. Refait, M. Jeannin, R. Sabot, S. Paul, R. Thornton, Study of cathodic reactions in defects of thermal spray aluminium coatings on steel in artificial seawater, Corrosion Science, 187 (2021) 109514, https://doi.org/10.1016/j.corsci.2021.109514.[7] R. Grinon-Echaniz, S. Paul, R. Thornton, P. Refait, M. Jeannin, A. Rodriguez, Prediction of thermal spray coatings performance in marine environments by combination of laboratory and field tests, Coatings, 11 (2021) 320, https://doi.org/10.3390/coatings11030320[8] R.G. Echaniz, S. Paul, R. Thornton, Effect of seawater constituents on the performance of thermal spray aluminum in marine environments, Materials and Corrosion, 70 (2019) 996-1004, https://doi.org/10.1002/maco.201810764[9] S. Paul, Cathodic protection of offshore structures by extreme damage tolerant sacrificial coatings, CORROSION 2018, OnePetro, 2018[10] S. Paul, Behavior of damaged thermally sprayed aluminum (TSA) in aerated and deaerated seawater, CORROSION 2019, OnePetro, 2019.[11] B. Syrek-Gerstenkorn, S. Paul, A.J. Davenport, Sacrificial thermally sprayed aluminium coatings for marine environments: A review, Coatings, 10 (2020) 267, https://doi.org/10.3390/coatings10030267.[12] Y. Yang, J.D. Scantlebury, E.V. Koroleva, A study of calcareous deposits on cathodically protected mild steel in artificial seawater, Metals, 5 (2015) 439-456, https://doi.org/10.3390/met5010439.[13] J.F. Yan, R.E. White, R. Griffin, Parametric studies of the formation of calcareous deposits on cathodically protected steel in seawater, Journal of the Electrochemical Society, 140 (1993) 1275.[14] W.R. Smith, S. Paul, Natural deposit coatings on steel during cathodic protection and hydrogen ingress, Coatings, 5 (2015) 816-829, https://doi.org/10.3390/coatings5040816.[15] C. Barchiche, C. Deslouis, D. Festy, O. Gil, P. Refait, S. Touzain, B. Tribollet, Characterization of calcareous deposits in artificial seawater by impedance techniques: 3—Deposit of CaCO3 in the presence of Mg (II), Electrochimica Acta, 48 (2003) 1645-1654, https://doi.org/10.1016/S0013-4686(03)00075-6.[16] N. Ce, S. Paul, The effect of temperature and local pH on calcareous deposit formation in damaged thermal spray aluminum (TSA) coatings and its implication on corrosion mitigation of offshore steel structures, Coatings, 7 (2017) 52, https://doi.org/10.3390/coatings7040052.[17] B. Syrek-Gerstenkorn, S. Paul, A.J. Davenport, Use of thermally sprayed aluminium (TSA) coatings to protect offshore structures in submerged and splash zones, Surface and Coatings Technology, 374 (2019) 124-133, https://doi.org/10.1016/j.surfcoat.2019.04.048.[18] H.-S. Lee, J.K. Singh, J.H. Park, Pore blocking characteristics of corrosion products formed on Aluminum coating produced by arc thermal metal spray process in 3.5 wt.% NaCl solution, Construction and Building Materials, 113 (2016) 905-916, https://doi.org/10.1016/j.conbuildmat.2016.03.135.[19] S. Paul, Hydrogen in aluminium-coated steels exposed to synthetic seawater, Surfaces, 3 (2020) 282-300, https://doi.org/10.3390/surfaces3030021.[20] S. Pedersen, J. Liniger, F.F. Sørensen, M. von Benzon, On Marine Growth Removal on Offshore Structures, OCEANS 2022-Chennai, IEEE, 2022, pp. 1-6, 10.1109/OCEANSChennai45887.2022.9775498.[21] E. Abedi Esfahani, H. Salimijazi, M.A. Golozar, J. Mostaghimi, L. Pershin, Study of corrosion behavior of arc sprayed aluminum coating on mild steel, Journal of thermal spray technology, 21 (2012) 1195-1202, https://doi.org/10.1007/s11666-012-9810-x.[22] A. Gericke, M. Hauer, B. Ripsch, M. Irmer, J. Nehlsen, K.-M. Henkel, Fatigue Strength of Structural Steel-Welded Connections with Arc-Sprayed Aluminum Coatings and Corrosion Behavior of the Corresponding Coatings in Sea Water, Journal of Marine Science and Engineering, 10 (2022) 1731, https://doi.org/10.3390/jmse10111731.[23] A. López-Ortega, R. Bayón, J. Arana, Evaluation of protective coatings for offshore applications. Corrosion and tribocorrosion behavior in synthetic seawater, Surface and Coatings Technology, 349 (2018) 1083-1097, https://doi.org/10.1016/j.surfcoat.2018.06.089.[24] S. Paul, D. Harvey, Determination of the Corrosion Rate of Thermally Spayed Aluminum (TSA) in Simulated Marine Service, CORROSION 2020, OnePetro, 2020.[25] ISO, 8501-1, Preparation of steel substrates before application of paints and related products—Visual assessment of surface cleanliness—Part 1: Rust grades and preparation grades of uncoated steel substrates and of steel substrates after overall removal of previous coatings, 2007.[26] ASTM D1141-98, Standard practice for the preparation of substitute ocean water, ASTM International, 2013.[27] D. Tejero-Martin, M. Rezvani Rad, A. McDonald, T. Hussain, Beyond traditional coatings: a review on thermal-sprayed functional and smart coatings, Journal of Thermal Spray Technology, 28 (2019) 598-644.[28] M. Smith, Comparing cold spray with thermal spray coating technologies, The cold spray materials deposition process, Elsevier2007, pp. 43-61, https://doi.org/10.1533/9781845693787.1.43.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL4. In-situ imagining and electrochemical monitoring of damaged TSA.pdf4. In-situ imagining and electrochemical monitoring of damaged TSA.pdfMain Articleapplication/pdf10406662https://repositorio.utb.edu.co/bitstream/20.500.12585/12444/1/4.%20In-situ%20imagining%20and%20electrochemical%20monitoring%20of%20damaged%20TSA.pdf302f82f4088e2be5837c6a522dd0a4c8MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12444/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12444/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT4. In-situ imagining and electrochemical monitoring of damaged TSA.pdf.txt4. In-situ imagining and electrochemical monitoring of damaged TSA.pdf.txtExtracted texttext/plain49292https://repositorio.utb.edu.co/bitstream/20.500.12585/12444/4/4.%20In-situ%20imagining%20and%20electrochemical%20monitoring%20of%20damaged%20TSA.pdf.txtc512ffcdb85fd2c1ae6a9244bdda147aMD54THUMBNAIL4. In-situ imagining and electrochemical monitoring of damaged TSA.pdf.jpg4. In-situ imagining and electrochemical monitoring of damaged TSA.pdf.jpgGenerated Thumbnailimage/jpeg8164https://repositorio.utb.edu.co/bitstream/20.500.12585/12444/5/4.%20In-situ%20imagining%20and%20electrochemical%20monitoring%20of%20damaged%20TSA.pdf.jpgaf4dbf3d62f6db191338d90dabd38c55MD5520.500.12585/12444oai:repositorio.utb.edu.co:20.500.12585/124442023-08-01 00:17:39.673Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |