PBC Approach for SMES Devices in Electric Distribution Networks

This express brief presents a nonlinear active and reactive power control for a superconducting magnetic energy storage (SMES) system connected in three-phase distribution networks using pulse-width modulated current-source converter (PWM-CSC). The passivity-based control (PBC) theory is selected as...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8853
Acceso en línea:
https://hdl.handle.net/20.500.12585/8853
Palabra clave:
Distribution networks
Passivity-based control (PBC)
Pulse-width modulated current-source converter (PWM-CSC)
Superconducting energy storage system (SMES)
Damping
Dynamical systems
Electric energy storage
Electric power distribution
Energy storage
Integrated circuit interconnects
Magnetic storage
Mathematical models
MATLAB
Pulse width modulation
Reactive power
Superconducting coils
Superconducting magnets
Active and reactive power controls
Energy storage systems
Globally asymptotically stability
Integrated circuit interconnections
Passivity based control
Pwm-csc
Radial distribution networks
Superconducting magnetic energy storage system
Power control
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_f9cb24bf4d293a0593126068505c0e28
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8853
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv PBC Approach for SMES Devices in Electric Distribution Networks
title PBC Approach for SMES Devices in Electric Distribution Networks
spellingShingle PBC Approach for SMES Devices in Electric Distribution Networks
Distribution networks
Passivity-based control (PBC)
Pulse-width modulated current-source converter (PWM-CSC)
Superconducting energy storage system (SMES)
Damping
Dynamical systems
Electric energy storage
Electric power distribution
Energy storage
Integrated circuit interconnects
Magnetic storage
Mathematical models
MATLAB
Pulse width modulation
Reactive power
Superconducting coils
Superconducting magnets
Active and reactive power controls
Energy storage systems
Globally asymptotically stability
Integrated circuit interconnections
Passivity based control
Pwm-csc
Radial distribution networks
Superconducting magnetic energy storage system
Power control
title_short PBC Approach for SMES Devices in Electric Distribution Networks
title_full PBC Approach for SMES Devices in Electric Distribution Networks
title_fullStr PBC Approach for SMES Devices in Electric Distribution Networks
title_full_unstemmed PBC Approach for SMES Devices in Electric Distribution Networks
title_sort PBC Approach for SMES Devices in Electric Distribution Networks
dc.subject.keywords.none.fl_str_mv Distribution networks
Passivity-based control (PBC)
Pulse-width modulated current-source converter (PWM-CSC)
Superconducting energy storage system (SMES)
Damping
Dynamical systems
Electric energy storage
Electric power distribution
Energy storage
Integrated circuit interconnects
Magnetic storage
Mathematical models
MATLAB
Pulse width modulation
Reactive power
Superconducting coils
Superconducting magnets
Active and reactive power controls
Energy storage systems
Globally asymptotically stability
Integrated circuit interconnections
Passivity based control
Pwm-csc
Radial distribution networks
Superconducting magnetic energy storage system
Power control
topic Distribution networks
Passivity-based control (PBC)
Pulse-width modulated current-source converter (PWM-CSC)
Superconducting energy storage system (SMES)
Damping
Dynamical systems
Electric energy storage
Electric power distribution
Energy storage
Integrated circuit interconnects
Magnetic storage
Mathematical models
MATLAB
Pulse width modulation
Reactive power
Superconducting coils
Superconducting magnets
Active and reactive power controls
Energy storage systems
Globally asymptotically stability
Integrated circuit interconnections
Passivity based control
Pwm-csc
Radial distribution networks
Superconducting magnetic energy storage system
Power control
description This express brief presents a nonlinear active and reactive power control for a superconducting magnetic energy storage (SMES) system connected in three-phase distribution networks using pulse-width modulated current-source converter (PWM-CSC). The passivity-based control (PBC) theory is selected as a nonlinear control technique, since the open-loop dynamical model exhibits a port-Hamiltonian (pH) structure. The PBC theory exploits the pH structure of the open-loop dynamical system to design a general control law, which preserves the passive structure in closed-loop via interconnection and damping reassignment. Additionally, the PBC theory guarantees globally asymptotically stability in the sense of Lyapunov for the closed-loop dynamical system. Simulation results in a three-phase radial distribution network show the possibility to control the active and reactive power independently as well as the possibility to use the SMES system connected through a PWM-CSC as a dynamic power factor compensator for time-varying loads. All simulations are conducted in a MATLAB/ODE package. © 2004-2012 IEEE.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:30Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:30Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 65, Núm. 12; pp. 2003-2007
dc.identifier.issn.none.fl_str_mv 15497747
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8853
dc.identifier.doi.none.fl_str_mv 10.1109/TCSII.2018.2805774
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56919564100
57191493648
37104976300
identifier_str_mv IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 65, Núm. 12; pp. 2003-2007
15497747
10.1109/TCSII.2018.2805774
Universidad Tecnológica de Bolívar
Repositorio UTB
56919564100
57191493648
37104976300
url https://hdl.handle.net/20.500.12585/8853
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042104395&doi=10.1109%2fTCSII.2018.2805774&partnerID=40&md5=a0701d8cb7f8428b5d63ba0478d8f4af
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8853/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397570638086144
spelling 2020-03-26T16:32:30Z2020-03-26T16:32:30Z2018IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 65, Núm. 12; pp. 2003-200715497747https://hdl.handle.net/20.500.12585/885310.1109/TCSII.2018.2805774Universidad Tecnológica de BolívarRepositorio UTB569195641005719149364837104976300This express brief presents a nonlinear active and reactive power control for a superconducting magnetic energy storage (SMES) system connected in three-phase distribution networks using pulse-width modulated current-source converter (PWM-CSC). The passivity-based control (PBC) theory is selected as a nonlinear control technique, since the open-loop dynamical model exhibits a port-Hamiltonian (pH) structure. The PBC theory exploits the pH structure of the open-loop dynamical system to design a general control law, which preserves the passive structure in closed-loop via interconnection and damping reassignment. Additionally, the PBC theory guarantees globally asymptotically stability in the sense of Lyapunov for the closed-loop dynamical system. Simulation results in a three-phase radial distribution network show the possibility to control the active and reactive power independently as well as the possibility to use the SMES system connected through a PWM-CSC as a dynamic power factor compensator for time-varying loads. All simulations are conducted in a MATLAB/ODE package. © 2004-2012 IEEE.Consejo Nacional de Investigaciones Científicas y Técnicas Universidad Nacional de San Luis Department of Science, Information Technology and Innovation, Queensland Government: 727-2015Manuscript received December 29, 2017; accepted February 9, 2018. Date of publication February 13, 2018; date of current version November 23, 2018. This work was supported in part by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia under Grant 727-2015, in part by Ph.D. Program in Engineering of Universidad Tecnológica de Pereira, Colombia, and in part by Universidad Nacional de San Luis, Argentina, and Consejo Nacional de Investigaciones Cientficas y Técnicas, Argentina. This brief was recommended by Associate Editor T. Fernando. (Corresponding author: O. D. Montoya.) O. D. Montoya is with the Programa de Ingeniería Eléctrica y Electrónica, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia (e-mail: o.d.montoyagiraldo@ieee.org).Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85042104395&doi=10.1109%2fTCSII.2018.2805774&partnerID=40&md5=a0701d8cb7f8428b5d63ba0478d8f4afPBC Approach for SMES Devices in Electric Distribution Networksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Distribution networksPassivity-based control (PBC)Pulse-width modulated current-source converter (PWM-CSC)Superconducting energy storage system (SMES)DampingDynamical systemsElectric energy storageElectric power distributionEnergy storageIntegrated circuit interconnectsMagnetic storageMathematical modelsMATLABPulse width modulationReactive powerSuperconducting coilsSuperconducting magnetsActive and reactive power controlsEnergy storage systemsGlobally asymptotically stabilityIntegrated circuit interconnectionsPassivity based controlPwm-cscRadial distribution networksSuperconducting magnetic energy storage systemPower controlMontoya O.D.Gil-González, WalterSerra F.M.Zakeri, B., Syri, S., Electrical energy storage systems: A comparative life cycle cost analysis (2015) Renew. Sustain. Energy Rev, 42, pp. 569-596. , FebAli, M.H., Wu, B., Dougal, R.A., An overview of SMES applications in power and energy systems (2010) IEEE Trans. Sustain. Energy, 1 (1), pp. 38-47. , AprZobaa, A., (2013) Energy Storage-Technologies and Applications, , Rijeka, Croatia: InTechShi, J., SMES based dynamic voltage restorer for voltage fluctuations compensation (2010) IEEE Trans. Appl. Supercond, 20 (3), pp. 1360-1364. , JunGil-González, W., Montoya, O.D., Garcés, A., Escobar-Mejía, A., Supervisory LMI-based state-feedback control for current source power conditioning of SMES (2017) Proc. 9th Annu. IEEE Green Technol. Conf. (GreenTech), pp. 145-150. , Denver, CO, USA, MarOrtega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst, 31 (5), pp. 3369-3380. , SepHayashi, H., Test results of power system control by experimental SMES (2006) IEEE Trans. Appl. Supercond, 16 (2), pp. 598-601. , JunShi, J., Tang, Y., Ren, L., Li, J., Cheng, S., Discretization-based decoupled state-feedback control for current source power conditioning system of SMES (2008) IEEE Trans. Power Del, 23 (4), pp. 2097-2104. , OctNgamroo, I., Simultaneous optimization of SMES coil size and control parameters for robust power system stabilization (2011) IEEE Trans. Appl. Supercond, 21 (3), pp. 1358-1361. , JunWang, Z., Zou, Z., Zheng, Y., Design and control of a photovoltaic energy and SMES hybrid system with current-source grid inverter (2013) IEEE Trans. Appl. Supercond, 23 (3), p. 5701505. , JunNguyen, T.-T., Yoo, H.-J., Kim, H.-M., Applying model predictive control to SMES system in microgrids for eddy current losses reduction (2016) IEEE Trans. Appl. Supercond, 26 (4), pp. 1-5. , JunWang, S., Jin, J., Design and analysis of a fuzzy logic controlled SMES system (2014) IEEE Trans. Appl. Supercond, 24 (5), pp. 1-5. , OctHemeida, A.M., A fuzzy logic controlled superconducting magnetic energy storage, SMES frequency stabilizer (2010) Elect. Power Syst. Res, 80 (6), pp. 651-656. , JunAli, M.H., Wu, B., Tamura, J., Dougal, R.A., Minimization of shaft oscillations by fuzzy controlled SMES considering time delay (2010) Elect. Power Syst. Res, 80 (7), pp. 770-777. , JulLiu, F., Experimental evaluation of nonlinear robust control for SMES to improve the transient stability of power systems (2004) IEEE Trans. Energy Convers, 19 (4), pp. 774-782. , DecMahmud, M.A., Hossain, M.J., Pota, H.R., Dynamical modeling and nonlinear control of superconducting magnetic energy systems: Applications in power systems (2014) Proc. Aust. Universities Power Eng. Conf. (AUPEC), pp. 1-6. , Perth, WA, Australia, Sep./OctGil-González, W., Montoya, O.D., Garcés, A., Espinosa-Pérez, G., IDA-passivity-based control for superconducting magnetic energy storage with PWM-CSC (2017) Proc. 9th Annu. IEEE Green Technol. Conf. (GreenTech), pp. 89-95. , Denver, CO, USA, MarGao, Y., Sun, B., Lu, G., Passivity-based integral sliding-mode control of uncertain singularly perturbed systems (2011) IEEE Trans. Circuits Syst. II, Exp. Briefs, 58 (6), pp. 386-390. , JunGao, Y., Lu, G., Wang, Z., Passivity analysis of uncertain singularly perturbed systems (2010) IEEE Trans. Circuits Syst. II, Exp. Briefs, 57 (6), pp. 486-490. , JunSanchez, S., Ortega, R., Griño, R., Bergna, G., Molinas, M., Conditions for existence of equilibria of systems with constant power loads (2014) IEEE Trans. Circuits Syst. I, Reg. Papers, 61 (7), pp. 2204-2211. , JulNageshrao, S.P., Lopes, G.A.D., Jeltsema, D., Babuska, R., Port-Hamiltonian systems in adaptive and learning control: A survey (2016) IEEE Trans. Autom. Control, 61 (5), pp. 1223-1238. , MayLi, J., Liu, Y., Li, C., Chu, B., Passivity-based nonlinear excitation control of power systems with structure matrix reassignment (2013) Information, 4 (3), pp. 342-350. , AugOrtega, R., Perez, J., Nicklasson, P., Sira-Ramirez, H., (1998) Passivity- Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications, , 1st ed. London, U.K.: SpringerOrtega, R., Van der Schaft, A., Maschke, B., Escobar, G., Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems (2002) Automatica, 38 (4), pp. 585-596. , AprSerra, F.M., Angelo, C.H.D., IDA-PBC controller design for grid connected front end converters under non-ideal grid conditions (2017) Elect. Power Syst. Res, 142, pp. 12-19. , JanGaviria, C., Fossas, E., Grino, R., Robust controller for a full-bridge rectifier using the IDA approach and GSSA modeling (2005) IEEE Trans. Circuits Syst. I, Reg. Papers, 52 (3), pp. 609-616. , MarChapman, S., (2005) Electric Machinery Fundamentals, , 5th ed. New York, NY, USA: McGraw-Hillhttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8853/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8853oai:repositorio.utb.edu.co:20.500.12585/88532023-05-26 10:23:38.507Repositorio Institucional UTBrepositorioutb@utb.edu.co