Control of Photovoltaic Plants Interconnected via VSC to Improve Power Oscillations in a Power System

This paper presents an integrated methodology applied to photovoltaic (PV) plants for improving the dynamic performance of electric power systems. The proposed methodology is based on primary frequency control, which adds an ancillary signal to the voltage reference of the DC-link for the voltage so...

Full description

Autores:
Medina-Quesada, Ángeles
Gil-González, Walter
Montoya, Oscar Danilo
Molina-Cabrera, Alexander
Hernández, Jesus C.
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12345
Acceso en línea:
https://hdl.handle.net/20.500.12585/12345
https://doi.org/10.3390/electronics11111744
Palabra clave:
Inertia;
Asynchronous Generators;
Wind Farms
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_f9a4b449c754a2f530b1c276d6b66cc2
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12345
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Control of Photovoltaic Plants Interconnected via VSC to Improve Power Oscillations in a Power System
title Control of Photovoltaic Plants Interconnected via VSC to Improve Power Oscillations in a Power System
spellingShingle Control of Photovoltaic Plants Interconnected via VSC to Improve Power Oscillations in a Power System
Inertia;
Asynchronous Generators;
Wind Farms
LEMB
title_short Control of Photovoltaic Plants Interconnected via VSC to Improve Power Oscillations in a Power System
title_full Control of Photovoltaic Plants Interconnected via VSC to Improve Power Oscillations in a Power System
title_fullStr Control of Photovoltaic Plants Interconnected via VSC to Improve Power Oscillations in a Power System
title_full_unstemmed Control of Photovoltaic Plants Interconnected via VSC to Improve Power Oscillations in a Power System
title_sort Control of Photovoltaic Plants Interconnected via VSC to Improve Power Oscillations in a Power System
dc.creator.fl_str_mv Medina-Quesada, Ángeles
Gil-González, Walter
Montoya, Oscar Danilo
Molina-Cabrera, Alexander
Hernández, Jesus C.
dc.contributor.author.none.fl_str_mv Medina-Quesada, Ángeles
Gil-González, Walter
Montoya, Oscar Danilo
Molina-Cabrera, Alexander
Hernández, Jesus C.
dc.subject.keywords.spa.fl_str_mv Inertia;
Asynchronous Generators;
Wind Farms
topic Inertia;
Asynchronous Generators;
Wind Farms
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description This paper presents an integrated methodology applied to photovoltaic (PV) plants for improving the dynamic performance of electric power systems. The proposed methodology is based on primary frequency control, which adds an ancillary signal to the voltage reference of the DC-link for the voltage source converter (VSC) in order to reduce power oscillations. This ancillary signal is computed by relating the energy stored in the VSC of the DC-link and the energy stored in the synchronous machine’s shaft. In addition, the methodology considers the operating limits of the VSC, which prioritizes active power over reactive power. Furthermore, the VSC control is assessed with interconnection and damping assignment passivity-based control (IDA-PBC), as well as compared to conventional PI control. IDA-PBC is employed to design a Lyapunov asymptotically stable controller using the Hamiltonian structural properties of the open-loop model of the VSC. A 12-bus test system that considers PV plants is employed to compare the proposed IDA-PBC control with a classical proportional-integral control approach. The impact of the proposed methodology is analyzed in four scenarios with different PV penetration levels (10%, 30%, 50%, and 80%) and four large disturbances in the test power system. In addition, a decrease in the inertia of the synchronous machines from 100 to 25% is analyzed. The time-domain simulation results show that the frequency oscillations are reduced by 16.8%, 38.43%, 37.53%, and 76.94% in comparison with the case where the proposed methodology was not implemented. The simulations were conducted using the SimPowerSystems toolbox of the MATLAB/Simulink software. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-21T16:25:23Z
dc.date.available.none.fl_str_mv 2023-07-21T16:25:23Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Medina-Quesada, Á., Gil-González, W., Montoya, O. D., Molina-Cabrera, A., & Hernández, J. C. (2022). Control of photovoltaic plants interconnected via VSC to improve power oscillations in a power system. Electronics, 11(11), 1744.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12345
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/electronics11111744
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Medina-Quesada, Á., Gil-González, W., Montoya, O. D., Molina-Cabrera, A., & Hernández, J. C. (2022). Control of photovoltaic plants interconnected via VSC to improve power oscillations in a power system. Electronics, 11(11), 1744.
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12345
https://doi.org/10.3390/electronics11111744
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 19 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Electronics (Switzerland)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12345/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12345/1/electronics-11-01744.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12345/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12345/4/electronics-11-01744.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12345/5/electronics-11-01744.pdf.jpg
bitstream.checksum.fl_str_mv e20ad307a1c5f3f25af9304a7a7c86b6
6e8354b96f16b854acf8eedfae57a514
4460e5956bc1d1639be9ae6146a50347
6a0fbd9c1c8c0bd0c7fe21e7e05ef886
efc517ce395cafb88b81710fb04cf041
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397617758994432
spelling Medina-Quesada, Ángelesc4945c01-b7fc-40f7-af40-bc8515e102d8Gil-González, Walter327d969f-24fd-44c9-9d9b-14591e6c7d38Montoya, Oscar Danilo9fa8a75a-58fa-436d-a6e2-d80f718a4ea8Molina-Cabrera, Alexander01b29f76-a1f3-4151-a070-ce883ba39849Hernández, Jesus C.349b3120-388b-42be-8bea-32156f0dc09d2023-07-21T16:25:23Z2023-07-21T16:25:23Z20222023Medina-Quesada, Á., Gil-González, W., Montoya, O. D., Molina-Cabrera, A., & Hernández, J. C. (2022). Control of photovoltaic plants interconnected via VSC to improve power oscillations in a power system. Electronics, 11(11), 1744.https://hdl.handle.net/20.500.12585/12345https://doi.org/10.3390/electronics11111744Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper presents an integrated methodology applied to photovoltaic (PV) plants for improving the dynamic performance of electric power systems. The proposed methodology is based on primary frequency control, which adds an ancillary signal to the voltage reference of the DC-link for the voltage source converter (VSC) in order to reduce power oscillations. This ancillary signal is computed by relating the energy stored in the VSC of the DC-link and the energy stored in the synchronous machine’s shaft. In addition, the methodology considers the operating limits of the VSC, which prioritizes active power over reactive power. Furthermore, the VSC control is assessed with interconnection and damping assignment passivity-based control (IDA-PBC), as well as compared to conventional PI control. IDA-PBC is employed to design a Lyapunov asymptotically stable controller using the Hamiltonian structural properties of the open-loop model of the VSC. A 12-bus test system that considers PV plants is employed to compare the proposed IDA-PBC control with a classical proportional-integral control approach. The impact of the proposed methodology is analyzed in four scenarios with different PV penetration levels (10%, 30%, 50%, and 80%) and four large disturbances in the test power system. In addition, a decrease in the inertia of the synchronous machines from 100 to 25% is analyzed. The time-domain simulation results show that the frequency oscillations are reduced by 16.8%, 38.43%, 37.53%, and 76.94% in comparison with the case where the proposed methodology was not implemented. The simulations were conducted using the SimPowerSystems toolbox of the MATLAB/Simulink software. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.19 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Electronics (Switzerland)Control of Photovoltaic Plants Interconnected via VSC to Improve Power Oscillations in a Power Systeminfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Inertia;Asynchronous Generators;Wind FarmsLEMBCartagena de IndiasGil-Gonzalez, W.J., Garces, A., Fosso, O.B., Escobar-Mejia, A. Passivity-Based Control of Power Systems Considering Hydro-Turbine with Surge Tank (2020) IEEE Transactions on Power Systems, 35 (3), art. no. 8877767, pp. 2002-2011. Cited 29 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2019.2948360Ruiz, X. Role of the European Union in the climate change negotiations (2015) UNISCI Discussion Papers, 2015 (39), pp. 105-126. Cited 3 times. http://www.ucm.es/data/cont/media/www/pag-74789/UNISCIDP39-4XIRA.pdfKabir, E., Kumar, P., Kumar, S., Adelodun, A.A., Kim, K.-H. Solar energy: Potential and future prospects (2018) Renewable and Sustainable Energy Reviews, Part 1 82, pp. 894-900. Cited 1229 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2017.09.094Jäger-Waldau, A., Kougias, I., Taylor, N., Thiel, C. How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030 (2020) Renewable and Sustainable Energy Reviews, 126, art. no. 109836. Cited 88 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2020.109836Milano, F., Manjavacas, A.O. (2020) Frequency Variations in Power Systems: Modeling, State Estimation, and Control. Cited 16 times. John Wiley & Sons: Hoboken, NJ, USAEftekharnejad, S., Vittal, V., Heydt, G.T., Keel, B., Loehr, J. Impact of increased penetration of photovoltaic generation on power systems (2013) IEEE Transactions on Power Systems, 28 (2), pp. 893-901. Cited 641 times. doi: 10.1109/TPWRS.2012.2216294Eftekharnejad, S., Vittal, V., Heydt, G.T., Keel, B., Loehr, J. Small signal stability assessment of power systems with increased penetration of photovoltaic generation: A case study (2013) IEEE Transactions on Sustainable Energy, 4 (4), art. no. 6513320, pp. 960-967. Cited 196 times. doi: 10.1109/TSTE.2013.2259602Harnefors, L., Yepes, A.G., Vidal, A., Doval-Gandoy, J. Passivity-based controller design of grid-connected VSCs for prevention of electrical resonance instability (2015) IEEE Transactions on Industrial Electronics, 62 (2), art. no. 6850036, pp. 702-710. Cited 305 times. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5410131 doi: 10.1109/TIE.2014.2336632Golkhandan, R.K., Aghaebrahimi, M.R., Farshad, M. Control strategies for enhancing frequency stability by DFIGs in a power system with high percentage of wind power penetration (2017) Applied Sciences (Switzerland), 7 (11), art. no. 1140. Cited 13 times. http://www.mdpi.com/2076-3417/7/11/1140/pdf doi: 10.3390/app7111140Delille, G., François, B., Malarange, G. Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system's inertia (2012) IEEE Transactions on Sustainable Energy, 3 (4), pp. 931-939. Cited 605 times. doi: 10.1109/TSTE.2012.2205025Tamimi, B., Canizares, C., Bhattacharya, K. System stability impact of large-scale and distributed solar photovoltaic generation: The case of Ontario, Canada (2013) IEEE Transactions on Sustainable Energy, 4 (3), art. no. 6463473, pp. 680-688. Cited 235 times. doi: 10.1109/TSTE.2012.2235151Wang, Y., Silva, V., Lopez-Botet-zulueta, M. Impact of high penetration of variable renewable generation on frequency dynamics in the continental Europe interconnected system (2016) IET Renewable Power Generation, 10 (1), pp. 10-16. Cited 98 times. http://www.theiet.org/ doi: 10.1049/iet-rpg.2015.0141Edrah, M., Lo, K.L., Anaya-Lara, O. Impacts of high penetration of DFIG wind turbines on rotor angle stability of power systems (2015) IEEE Transactions on Sustainable Energy, 6 (3), art. no. 7079521, pp. 759-766. Cited 192 times. doi: 10.1109/TSTE.2015.2412176Gevorgian, V., Zhang, Y., Ela, E. Investigating the Impacts of Wind Generation Participation in Interconnection Frequency Response (2015) IEEE Transactions on Sustainable Energy, 6 (3), art. no. 6888510, pp. 1004-1012. Cited 187 times. doi: 10.1109/TSTE.2014.2343836Korai, A.W., Erlich, I. Frequency dependent voltage control by der units to improve power system frequency stability (2015) 2015 IEEE Eindhoven PowerTech, PowerTech 2015, art. no. 7232349. Cited 7 times. ISBN: 978-147997693-5 doi: 10.1109/PTC.2015.7232349Silva-Saravia, H., Pulgar-Painemal, H., Tolbert, L.M., Schoenwald, D.A., Ju, W. Enabling utility-scale solar PV plants for electromechanical oscillation damping (2021) IEEE Transactions on Sustainable Energy, 12 (1), art. no. 9066873, pp. 138-147. Cited 24 times. https://ieeexplore.ieee.org/servlet/opac?punumber=5165391 doi: 10.1109/TSTE.2020.2985999Jamsheed, F., Iqbal, S.J. An Adaptive Neural Network-Based Controller to Stabilize Power Oscillations in Wind-integrated Power Systems (Open Access) (2022) IFAC-PapersOnLine, 55 (1), pp. 740-745. Cited 3 times. http://www.journals.elsevier.com/ifac-papersonline/ doi: 10.1016/j.ifacol.2022.04.121Zenelis, I., Wang, X. A model-free sparse wide-area damping controller for inter-area oscillations (Open Access) (2022) International Journal of Electrical Power and Energy Systems, 136, art. no. 107609. Cited 7 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2021.107609Alsakati, A.A., Vaithilingam, C.A., Naidu, K., Rajendran, G., Alnasseir, J., Jagadeeshwaran, A. Particle Swarm Optimization for Tuning Power System Stabilizer towards Transient Stability Improvement in Power System Network (2021) 3rd IEEE International Conference on Artificial Intelligence in Engineering and Technology, IICAIET 2021. Cited 6 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9573499 ISBN: 978-166542899-6 doi: 10.1109/IICAIET51634.2021.9573534Eladany, M.M., Eldesouky, A.A., Sallam, A.A. Power System Transient Stability: An Algorithm for Assessment and Enhancement Based on Catastrophe Theory and FACTS Devices (Open Access) (2018) IEEE Access, 6, pp. 26424-26437. Cited 38 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2018.2834906Penchalaiah, G., Ramya, R. Investigation on Power System Stability Improvement Using Facts Controllers (Open Access) (2022) Lecture Notes in Electrical Engineering, 795, pp. 499-506. http://www.springer.com/series/7818 ISBN: 978-981164942-4 doi: 10.1007/978-981-16-4943-1_46Naeem, A., Atif, A. Transient Stability of Power System by Static VAR Compensator (SVC) and Power System Stabilizers (PSS) using MATLAB/Simulink (2018) SSRG Int. J. Electr. Electron. Eng. (SSRG-IJEEE), 5, pp. 16-20. Cited 2 times.He, P., Fang, Q., Jin, H., Ji, Y., Gong, Z., Dong, J. Coordinated design of PSS and STATCOM-POD based on the GA-PSO algorithm to improve the stability of wind-PV-thermal-bundled power system (2022) International Journal of Electrical Power and Energy Systems, 141, art. no. 108208. Cited 7 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2022.108208Suul, J.A., D'Arco, S., Guidi, G. Virtual Synchronous Machine-Based Control of a Single-Phase Bi-Directional Battery Charger for Providing Vehicle-to-Grid Services (Open Access) (2016) IEEE Transactions on Industry Applications, 52 (4), art. no. 7447747, pp. 3234-3244. Cited 136 times. doi: 10.1109/TIA.2016.2550588Mo, O., Darco, S., Suul, J.A. Evaluation of Virtual Synchronous Machines with Dynamic or Quasi-Stationary Machine Models (2017) IEEE Transactions on Industrial Electronics, 64 (7), art. no. 7781612, pp. 5952-5962. Cited 148 times. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5410131 doi: 10.1109/TIE.2016.2638810Hou, X., Sun, Y., Zhang, X., Lu, J., Wang, P., Guerrero, J.M. Improvement of Frequency Regulation in VSG-Based AC Microgrid Via Adaptive Virtual Inertia (2020) IEEE Transactions on Power Electronics, 35 (2), art. no. 8741094, pp. 1589-1602. Cited 128 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=63 doi: 10.1109/TPEL.2019.2923734Remon, D., Cantarellas, A.M., Mauricio, J.M., Rodriguez, P. Power system stability analysis under increasing penetration of photovoltaic power plants with synchronous power controllers (Open Access) (2017) IET Renewable Power Generation, 11 (6), pp. 733-741. Cited 107 times. http://www.theiet.org/ doi: 10.1049/iet-rpg.2016.0904Remon, D., Cañizares, C.A., Rodriguez, P. Impact of 100-MW-scale PV plants with synchronous power controllers on power system stability in northern Chile (Open Access) (2017) IET Generation, Transmission and Distribution, 11 (11), pp. 2958-2964. Cited 39 times. www.ietdl.org/IET-GTD doi: 10.1049/iet-gtd.2017.0203Markovic, U., Chu, Z., Aristidou, P., Hug, G. LQR-Based Adaptive Virtual Synchronous Machine for Power Systems With High Inverter Penetration (Open Access) (2019) IEEE Transactions on Sustainable Energy, 10 (3), art. no. 8579100, pp. 1501-1512. Cited 95 times. doi: 10.1109/TSTE.2018.2887147Markovic, U., Stanojev, O., Aristidou, P., Vrettos, E., Callaway, D., Hug, G. Understanding Small-Signal Stability of Low-Inertia Systems (Open Access) (2021) IEEE Transactions on Power Systems, 36 (5), art. no. 9361257, pp. 3997-4017. Cited 84 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2021.3061434Milano, F., Manjavacas, Á.O. Converter-interfaced energy storage systems: Context, modelling and dynamic analysis (Open Access) (2019) Converter-Interfaced Energy Storage Systems: Context, Modelling and Dynamic Analysis, pp. 1-368. Cited 17 times. https://www.cambridge.org/core/books/converterinterfaced-energy-storage-systems/46097C9A940D7C7D5128E46D37FF2F0F#fndtn-information ISBN: 978-110836326-6; 978-110842106-5 doi: 10.1017/9781108363266Gil–-González, W., Montoya, O.D., Garces, A. Direct power control of electrical energy storage systems: A passivity-based PI approach (2019) Electric Power Systems Research, 175, art. no. 105885. Cited 21 times. doi: 10.1016/j.epsr.2019.105885Machowski, J., Lubosny, Z., Bialek, J.W., Bumby, J.R. (2020) Power System Dynamics: Stability and Control. Cited 1704 times. 3rd ed.; John Wily & Sons: Hoboken, NJ, USAOrtega, A., Milano, F. Generalized model of vsc-based energy storage systems for transient stability analysis (2016) IEEE Transactions on Power Systems, 31 (5), art. no. 7332987, pp. 3369-3380. Cited 138 times. doi: 10.1109/TPWRS.2015.2496217Bhatt, G., Affljulla, S. Analysis of large scale PV penetration impact on IEEE 39-Bus power system (2017) 58th Annual International Scientific Confererence on Power and Electrical Engineering of Riga Technical University, RTUCON 2017 - Proceedings, 2017-November, pp. 1-6. Cited 20 times. ISBN: 978-153863846-0 doi: 10.1109/RTUCON.2017.8124840Montoya, O.D. (2019) Passivity-Based Analysis and Control of AC Microgrids: Integration, Operation and Control of Energy Storage Systems Ph.D. Thesis, Universidad Tecnológica de Pereira, Pereira, ColombiaSerra, F.M., De Angelo, C.H. IDA-PBC controller design for grid connected Front End Converters under non-ideal grid conditions (Open Access) (2017) Electric Power Systems Research, 142, pp. 12-19. Cited 35 times. doi: 10.1016/j.epsr.2016.08.041Gupta, Y., Chatterjee, K., Doolla, S. Controller design, analysis and testing of a three-phase VSI using IDA-PBC approach (Open Access) (2020) IET Power Electronics, 13 (2), pp. 346-355. Cited 6 times. http://digital-library.theiet.org/content/journals/iet-pel doi: 10.1049/iet-pel.2019.0553Ortega, R., Van der Schaft, A., Maschke, B., Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems (Open Access) (2002) Automatica, 38 (4), pp. 585-596. Cited 1304 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/270/description#description doi: 10.1016/S0005-1098(01)00278-3Gil-González, W., Serra, F.M., Montoya, O.D., Ramírez, C.A., Orozco-Henao, C. Direct power compensation in AC distribution networks with SCES systems via PI-PBC approach (2020) Symmetry, 12 (4), art. no. 666. Cited 8 times. https://www.mdpi.com/2073-8994/12/4/666 doi: 10.3390/SYM12040666Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M. Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters (2015) Control Engineering Practice, 43, pp. 109-119. Cited 65 times. www.elsevier.com/inca/publications/store/1/2/3/ doi: 10.1016/j.conengprac.2015.07.002Perko, L. (2013) Differential Equations and Dynamical Systems, 7. Cited 3061 times. Springer Science & Business Media: Berlin/Heidelberg, GermanyGil-González, W. (2019) Passivity–Based Control and Stability Analysis for Hydro–Solar Power Systems. Cited 4 times. Ph.D. Thesis, Universidad Tecnológica de Pereira, Pereira, Colombiahttp://purl.org/coar/resource_type/c_6501LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12345/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINALelectronics-11-01744.pdfelectronics-11-01744.pdfapplication/pdf1215112https://repositorio.utb.edu.co/bitstream/20.500.12585/12345/1/electronics-11-01744.pdf6e8354b96f16b854acf8eedfae57a514MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12345/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52TEXTelectronics-11-01744.pdf.txtelectronics-11-01744.pdf.txtExtracted texttext/plain56459https://repositorio.utb.edu.co/bitstream/20.500.12585/12345/4/electronics-11-01744.pdf.txt6a0fbd9c1c8c0bd0c7fe21e7e05ef886MD54THUMBNAILelectronics-11-01744.pdf.jpgelectronics-11-01744.pdf.jpgGenerated Thumbnailimage/jpeg7965https://repositorio.utb.edu.co/bitstream/20.500.12585/12345/5/electronics-11-01744.pdf.jpgefc517ce395cafb88b81710fb04cf041MD5520.500.12585/12345oai:repositorio.utb.edu.co:20.500.12585/123452023-07-22 00:18:02.781Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=