Programmable diffractive optical elements for extending the depth of focus in ophthalmic optics
The depth of focus (DOF) defines the axial range of high lateral resolution in the image space for object position. Optical devices with a traditional lens system typically have a limited DOF. However, there are applications such as in ophthalmology, which require a large DOF in comparison to a trad...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9030
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9030
- Palabra clave:
- Diffractive optical elements
Extended depth of focus
Ophthalmic optics
Spatial light modulator
Visual optics
Bioinformatics
Density (optical)
Diffractive optical elements
Diffractive optics
Information science
Lenses
Light
Light polarization
Optical systems
Optical transfer function
Photomasks
Alternative solutions
Extended depth of focus
High-lateral resolution
Light sword optical elements
Ophthalmic optics
Spatial light modulators
Visual impairment
Visual optics
Light modulators
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_f96bc99a465769ceac45004ea0faf595 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9030 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Programmable diffractive optical elements for extending the depth of focus in ophthalmic optics |
title |
Programmable diffractive optical elements for extending the depth of focus in ophthalmic optics |
spellingShingle |
Programmable diffractive optical elements for extending the depth of focus in ophthalmic optics Diffractive optical elements Extended depth of focus Ophthalmic optics Spatial light modulator Visual optics Bioinformatics Density (optical) Diffractive optical elements Diffractive optics Information science Lenses Light Light polarization Optical systems Optical transfer function Photomasks Alternative solutions Extended depth of focus High-lateral resolution Light sword optical elements Ophthalmic optics Spatial light modulators Visual impairment Visual optics Light modulators |
title_short |
Programmable diffractive optical elements for extending the depth of focus in ophthalmic optics |
title_full |
Programmable diffractive optical elements for extending the depth of focus in ophthalmic optics |
title_fullStr |
Programmable diffractive optical elements for extending the depth of focus in ophthalmic optics |
title_full_unstemmed |
Programmable diffractive optical elements for extending the depth of focus in ophthalmic optics |
title_sort |
Programmable diffractive optical elements for extending the depth of focus in ophthalmic optics |
dc.contributor.editor.none.fl_str_mv |
Romero E. Lepore N. |
dc.subject.keywords.none.fl_str_mv |
Diffractive optical elements Extended depth of focus Ophthalmic optics Spatial light modulator Visual optics Bioinformatics Density (optical) Diffractive optical elements Diffractive optics Information science Lenses Light Light polarization Optical systems Optical transfer function Photomasks Alternative solutions Extended depth of focus High-lateral resolution Light sword optical elements Ophthalmic optics Spatial light modulators Visual impairment Visual optics Light modulators |
topic |
Diffractive optical elements Extended depth of focus Ophthalmic optics Spatial light modulator Visual optics Bioinformatics Density (optical) Diffractive optical elements Diffractive optics Information science Lenses Light Light polarization Optical systems Optical transfer function Photomasks Alternative solutions Extended depth of focus High-lateral resolution Light sword optical elements Ophthalmic optics Spatial light modulators Visual impairment Visual optics Light modulators |
description |
The depth of focus (DOF) defines the axial range of high lateral resolution in the image space for object position. Optical devices with a traditional lens system typically have a limited DOF. However, there are applications such as in ophthalmology, which require a large DOF in comparison to a traditional optical system, this is commonly known as extended DOF (EDOF). In this paper we explore Programmable Diffractive Optical Elements (PDOEs), with EDOF, as an alternative solution to visual impairments, especially presbyopia. These DOEs were written onto a reflective liquid cystal on silicon (LCoS) spatial light modulator (SLM). Several designs of the elements are analyzed: the Forward Logarithmic Axicon (FLAX), the Axilens (AXL), the Light sword Optical Element (LSOE), the Peacock Eye Optical Element (PE) and Double Peacock Eye Optical Element (DPE). These elements focus an incident plane wave into a segment of the optical axis. The performances of the PDOEs are compared with those of multifocal lenses. In all cases, we obtained the point spread function and the image of an extended object. The results are presented and discussed. © 2015 SPIE. |
publishDate |
2015 |
dc.date.issued.none.fl_str_mv |
2015 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:48Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:48Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 9287 |
dc.identifier.isbn.none.fl_str_mv |
9781628413625 |
dc.identifier.issn.none.fl_str_mv |
16057422 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9030 |
dc.identifier.doi.none.fl_str_mv |
10.1117/12.2073866 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
36142156300 7201466399 7006308488 7004989645 |
identifier_str_mv |
Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 9287 9781628413625 16057422 10.1117/12.2073866 Universidad Tecnológica de Bolívar Repositorio UTB 36142156300 7201466399 7006308488 7004989645 |
url |
https://hdl.handle.net/20.500.12585/9030 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
14 October 2014 through 16 October 2014 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SPIE |
publisher.none.fl_str_mv |
SPIE |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84922983845&doi=10.1117%2f12.2073866&partnerID=40&md5=ff130095df34b6a4f568ec18069b3b38 Scopus2-s2.0-84922983845 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
10th International Symposium on Medical Information Processing and Analysis |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9030/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021663128289280 |
spelling |
Romero E.Lepore N.Romero L.A.Millán M.S.Jaroszewicz Z.Kołodziejczyk A.2020-03-26T16:32:48Z2020-03-26T16:32:48Z2015Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 9287978162841362516057422https://hdl.handle.net/20.500.12585/903010.1117/12.2073866Universidad Tecnológica de BolívarRepositorio UTB36142156300720146639970063084887004989645The depth of focus (DOF) defines the axial range of high lateral resolution in the image space for object position. Optical devices with a traditional lens system typically have a limited DOF. However, there are applications such as in ophthalmology, which require a large DOF in comparison to a traditional optical system, this is commonly known as extended DOF (EDOF). In this paper we explore Programmable Diffractive Optical Elements (PDOEs), with EDOF, as an alternative solution to visual impairments, especially presbyopia. These DOEs were written onto a reflective liquid cystal on silicon (LCoS) spatial light modulator (SLM). Several designs of the elements are analyzed: the Forward Logarithmic Axicon (FLAX), the Axilens (AXL), the Light sword Optical Element (LSOE), the Peacock Eye Optical Element (PE) and Double Peacock Eye Optical Element (DPE). These elements focus an incident plane wave into a segment of the optical axis. The performances of the PDOEs are compared with those of multifocal lenses. In all cases, we obtained the point spread function and the image of an extended object. The results are presented and discussed. © 2015 SPIE.Federación Española de Enfermedades Raras, FEDERPontificia Universidad Javeriana;Universidad Antonio Narino;Universidad de Cartagena;Universidad Nacional de ColombiaRecurso electrónicoapplication/pdfengSPIEhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84922983845&doi=10.1117%2f12.2073866&partnerID=40&md5=ff130095df34b6a4f568ec18069b3b38Scopus2-s2.0-8492298384510th International Symposium on Medical Information Processing and AnalysisProgrammable diffractive optical elements for extending the depth of focus in ophthalmic opticsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fDiffractive optical elementsExtended depth of focusOphthalmic opticsSpatial light modulatorVisual opticsBioinformaticsDensity (optical)Diffractive optical elementsDiffractive opticsInformation scienceLensesLightLight polarizationOptical systemsOptical transfer functionPhotomasksAlternative solutionsExtended depth of focusHigh-lateral resolutionLight sword optical elementsOphthalmic opticsSpatial light modulatorsVisual impairmentVisual opticsLight modulators14 October 2014 through 16 October 2014Davidson, N., Friesem, A.A., Hasman, E., Holographic axilens: High resolution and long focal depth (1991) Optics Letters, 16 (7), pp. 523-525Sochacki, J., Bara, S., Jaroszewicz, Z., Kolodziejczyk, A., Phase retardation of the uniform-intensity axilens (1992) Optics Letters, 17 (1), pp. 7-9Kolodziejczyk, A., Bará, S., Jaroszewicz, Z., Sypek, M., The light sword optical element - A new diffraction structure with extended depth of focus (1990) Journal of Modern Optics, 37 (8), pp. 1283-1286Jaroszewicz, Z., Kolodziejczyk, A., Mouriz, D., Sochacki, J., Generalized zone plates focusing light into arbitrary line segments (1993) Journal of Modern Optics, 40 (4), pp. 601-612Romero, L.A., Millán, M.S., Jaroszewicz, Z., Kolodziejczyk, A., Double peacock eye optical element for extended focal depth imaging with ophthalmic applications (2012) Journal of Biomedical Optics, 17 (4), pp. 0460131-0460138Otón, J., Ambs, P., Millán, M.S., Pérez-Cabré, E., Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel-aligned liquid crystal on silicon displays (2007) Applied Optics, 46 (23), pp. 5667-5679Romero, L., Millán, M., Pérez-Cabré, E., Multifocal programmable lens: Coaxial and multiaxis combination (2010) Opt. Pura Apl, 43 (2), pp. 101-112http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9030/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9030oai:repositorio.utb.edu.co:20.500.12585/90302021-02-02 15:26:16.146Repositorio Institucional UTBrepositorioutb@utb.edu.co |