Controller design for VSCs in distributed generation applications: An IDA-PBC approach
This paper presents an asymptotically stable global controller design for distributed energy integration in electrical distribution networks using a three-phase voltage source converter (VSC). An invariant Park's transformation is used to obtain the mathematical representation of the VSC in dq0...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9161
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9161
- Palabra clave:
- Active and reactive power control
Distributed generation applications
Interconnection and damping assignment passivity-based control
Stable global controller design
Voltage source converter
Asymptotic stability
Closed loop control systems
Computation theory
Control theory
Damping
Distributed power generation
Hamiltonians
Mathematical transformations
MATLAB
Power control
Power converters
Reactive power
Active and reactive power controls
Distributed generation application
Global controllers
Passivity based control
Voltage source converters
Controllers
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_f8555bebe4a7a452e7759202d7ac11ab |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9161 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Controller design for VSCs in distributed generation applications: An IDA-PBC approach |
title |
Controller design for VSCs in distributed generation applications: An IDA-PBC approach |
spellingShingle |
Controller design for VSCs in distributed generation applications: An IDA-PBC approach Active and reactive power control Distributed generation applications Interconnection and damping assignment passivity-based control Stable global controller design Voltage source converter Asymptotic stability Closed loop control systems Computation theory Control theory Damping Distributed power generation Hamiltonians Mathematical transformations MATLAB Power control Power converters Reactive power Active and reactive power controls Distributed generation application Global controllers Passivity based control Voltage source converters Controllers |
title_short |
Controller design for VSCs in distributed generation applications: An IDA-PBC approach |
title_full |
Controller design for VSCs in distributed generation applications: An IDA-PBC approach |
title_fullStr |
Controller design for VSCs in distributed generation applications: An IDA-PBC approach |
title_full_unstemmed |
Controller design for VSCs in distributed generation applications: An IDA-PBC approach |
title_sort |
Controller design for VSCs in distributed generation applications: An IDA-PBC approach |
dc.subject.keywords.none.fl_str_mv |
Active and reactive power control Distributed generation applications Interconnection and damping assignment passivity-based control Stable global controller design Voltage source converter Asymptotic stability Closed loop control systems Computation theory Control theory Damping Distributed power generation Hamiltonians Mathematical transformations MATLAB Power control Power converters Reactive power Active and reactive power controls Distributed generation application Global controllers Passivity based control Voltage source converters Controllers |
topic |
Active and reactive power control Distributed generation applications Interconnection and damping assignment passivity-based control Stable global controller design Voltage source converter Asymptotic stability Closed loop control systems Computation theory Control theory Damping Distributed power generation Hamiltonians Mathematical transformations MATLAB Power control Power converters Reactive power Active and reactive power controls Distributed generation application Global controllers Passivity based control Voltage source converters Controllers |
description |
This paper presents an asymptotically stable global controller design for distributed energy integration in electrical distribution networks using a three-phase voltage source converter (VSC). An invariant Park's transformation is used to obtain the mathematical representation of the VSC in dq0 reference frame. To design of the proposed controller, interconection and damping assignment passivity-based control (IDA-PBC) theory is applied via a Hamiltonian representation for the open-loop dynamic as well as the desired closed-loop dynamic of the system. The control law obtained allows guaranteeing asymptotic stability properties in the sense of Lyapunov for closed-loop operation. To verify the robustness and effectiveness of the proposed controller a classic connection of a distributed generator with a VSC converter using an ideal voltage source in its DC side is employed. Simulation results show the capability of the proposed controller to support active and reactive power independently under unbalance voltage conditions and harmonic distortion as well as the possibility of using the VSC as a dynamic power factor corrector. Additionally, all simulation scenarios are compared to classic PI controllers to show the good dynamic performance of the proposed controller using IDA-PBC theory. MATLAB/SIMULINK software is employed as simulation environment. © 2018 IEEE. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:05Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:05Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
2018 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2018 |
dc.identifier.isbn.none.fl_str_mv |
9781538659359 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9161 |
dc.identifier.doi.none.fl_str_mv |
10.1109/ROPEC.2018.8661360 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56919564100 57208126635 57191493648 36449223500 55791991200 |
identifier_str_mv |
2018 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2018 9781538659359 10.1109/ROPEC.2018.8661360 Universidad Tecnológica de Bolívar Repositorio UTB 56919564100 57208126635 57191493648 36449223500 55791991200 |
url |
https://hdl.handle.net/20.500.12585/9161 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
14 November 2018 through 16 November 2018 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063889164&doi=10.1109%2fROPEC.2018.8661360&partnerID=40&md5=f74800e7f1f93aecfa40984d8225291b |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
2018 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2018 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9161/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021638181617664 |
spelling |
2020-03-26T16:33:05Z2020-03-26T16:33:05Z20192018 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 20189781538659359https://hdl.handle.net/20.500.12585/916110.1109/ROPEC.2018.8661360Universidad Tecnológica de BolívarRepositorio UTB5691956410057208126635571914936483644922350055791991200This paper presents an asymptotically stable global controller design for distributed energy integration in electrical distribution networks using a three-phase voltage source converter (VSC). An invariant Park's transformation is used to obtain the mathematical representation of the VSC in dq0 reference frame. To design of the proposed controller, interconection and damping assignment passivity-based control (IDA-PBC) theory is applied via a Hamiltonian representation for the open-loop dynamic as well as the desired closed-loop dynamic of the system. The control law obtained allows guaranteeing asymptotic stability properties in the sense of Lyapunov for closed-loop operation. To verify the robustness and effectiveness of the proposed controller a classic connection of a distributed generator with a VSC converter using an ideal voltage source in its DC side is employed. Simulation results show the capability of the proposed controller to support active and reactive power independently under unbalance voltage conditions and harmonic distortion as well as the possibility of using the VSC as a dynamic power factor corrector. Additionally, all simulation scenarios are compared to classic PI controllers to show the good dynamic performance of the proposed controller using IDA-PBC theory. MATLAB/SIMULINK software is employed as simulation environment. © 2018 IEEE.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland GovernmentThis work was partially supported by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program, calling contest 727-2015, and the PhD program in Engineering of la Universidad Tecnológica de Pereira.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85063889164&doi=10.1109%2fROPEC.2018.8661360&partnerID=40&md5=f74800e7f1f93aecfa40984d8225291b2018 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2018Controller design for VSCs in distributed generation applications: An IDA-PBC approachinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fActive and reactive power controlDistributed generation applicationsInterconnection and damping assignment passivity-based controlStable global controller designVoltage source converterAsymptotic stabilityClosed loop control systemsComputation theoryControl theoryDampingDistributed power generationHamiltoniansMathematical transformationsMATLABPower controlPower convertersReactive powerActive and reactive power controlsDistributed generation applicationGlobal controllersPassivity based controlVoltage source convertersControllers14 November 2018 through 16 November 2018Montoya O.D.Garrido Arévalo, Víctor ManuelGil-González, WalterGarces A.Grisales-Noreña L.F.Ortega, A., Milano, F., Generalized model of vsc-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380. , SeptHasanien, H.M., Matar, M., A fuzzy logic controller for autonomous operation of a voltage source converter-based distributed generation system (2015) IEEE Trans. Smart Grid, 6 (1), pp. 158-165. , JanSerra, F., Angelo, C.D., Forchetti, D., Passivity based control of a three-phase front end converter (2013) IEEE Lat. Am. Trans., 11 (1), pp. 293-299. , FebGiraldo, O.D.M., Gonzlez, W.J.G., Ruiz, A.G., Meja, A.E., Norea, L.F.G., Nonlinear control for battery energy storage systems in power grids (2018) 2018 IEEE Green Technologies Conference (GreenTech), pp. 65-70. , AprilDiaz, G., Gonzalez-Moran, C., Gomez-Aleixandre, J., Diez, A., Scheduling of droop coefficients for frequency and voltage regulation in isolated microgrids (2010) IEEE Trans. Power Syst., 25 (1), pp. 489-496. , FebBevrani, H., Shokoohi, S., An intelligent droop control for simultaneous voltage and frequency regulation in islanded microgrids (2013) IEEE Trans. Smart Grid, 4 (3), pp. 1505-1513. , SeptCastro, L.M., Acha, E., On the provision of frequency regulation in low inertia ac grids using hvdc systems (2016) IEEE Trans. Smart Grid, 7 (6), pp. 2680-2690. , NovChen, Z., Mao, C., Wang, D., Lu, J., Zhou, Y., Design and implementation of voltage source converter excitation system to improve power system stability (2016) IEEE Trans. Ind. Appl., 52 (4), pp. 2778-2788. , JulyShi, J., Tang, Y., Yang, K., Chen, L., Ren, L., Li, J., Cheng, S., SMES based dynamic voltage restorer for voltage fluctuations compensation (2010) IEEE Trans. Appl. Supercond., 20 (3), pp. 1360-1364Montoya, O.D., Gil-Gonzalez, W., Garces, A., Espinosa-Perez, G., Indirect ida-pbc for active and reactive power support in distribution networks using smes systems with PWM-csc (2018) Journal of Energy Storage, 17, pp. 261-271Bayhan, S., Abu-Rub, H., Ellabban, O., Sensorless model predictive control scheme of wind-driven doubly fed induction generator in dc microgrid (2016) IET Renewable Power Generation, 10 (4), pp. 514-521Dos Santos, E., Da Silva, E.R., (2014) Power Switches and Overview of Basic Power Converters, p. 376. , http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7027320, Wiley-IEEE PressTeodorescu, R., Liserre, M., Rodriguez, P., (2011) Grid Converters for Photovoltaic and Wind Power Systems, , John Wiley &SonsPerez, M., Ortega, R., Espinoza, J.R., Passivity-based PI control of switched power converters (2004) IEEE Trans. Control Syst. Technol., 12 (6), pp. 881-890. , NovGil-Gonzalez, W., Montoya, O.D., Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach (2018) Journal of Energy Storage, 18, pp. 459-466Wang, P., Wang, J., Xu, Z., Passivity-based control of three phase voltage source PWM rectifiers based on pchd model (2008) 2008 International Conference on Electrical Machines and Systems, pp. 1126-1130. , OctTang, Y., Yu, H., Zou, Z., Hamiltonian modeling and energy-shaping control of three-phase ac/dc voltage-source converters (2008) 2008 IEEE International Conference on Automation and Logistics, pp. 591-595. , SeptLee, T.-S., Lagrangian modeling and passivity-based control of threephase ac/dc voltage-source converters (2004) IEEE Trans. Ind. Electron., 51 (4), pp. 892-902. , AugDel Puerto-Flores, D., Scherpen, J.M.A., Liserre, M., De Vries, M.M.J., Kransse, M.J., Monopoli, V.G., Passivity-based control by series/ parallel damping of single-phase PWM voltage source converter (2014) IEEE Trans. Control Syst. Technol., 22 (4), pp. 1310-1322. , JulyNageshrao, S.P., Lopes, G.A.D., Jeltsema, D., Babuska, R., Porthamiltonian systems in adaptive and learning control: A survey (2016) IEEE Trans. Autom. Control, 61 (5), pp. 1223-1238. , MayDonaire, A., Ortega, R., Romero, J., Simultaneous interconnection and damping assignment passivity-based control of mechanical systems using dissipative forces (2016) Systems &Control Letters, 94, pp. 118-126Martinez-Perez, I., Espinosa-Perez, G., Sandoval-Rodriguez, G., Doria-Cerezo, A., Ida passivity-based control of single phase back-toback converters (2008) 2008 IEEE International Symposium on Industrial Electronics, pp. 74-79. , JuneNunna, K., Sassano, M., Astolfi, A., Constructive interconnection and damping assignment for port-controlled hamiltonian systems (2015) IEEE Trans. Autom. Control, 60 (9), pp. 2350-2361http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9161/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9161oai:repositorio.utb.edu.co:20.500.12585/91612023-05-26 11:06:30.328Repositorio Institucional UTBrepositorioutb@utb.edu.co |