Controller design for VSCs in distributed generation applications: An IDA-PBC approach

This paper presents an asymptotically stable global controller design for distributed energy integration in electrical distribution networks using a three-phase voltage source converter (VSC). An invariant Park's transformation is used to obtain the mathematical representation of the VSC in dq0...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9161
Acceso en línea:
https://hdl.handle.net/20.500.12585/9161
Palabra clave:
Active and reactive power control
Distributed generation applications
Interconnection and damping assignment passivity-based control
Stable global controller design
Voltage source converter
Asymptotic stability
Closed loop control systems
Computation theory
Control theory
Damping
Distributed power generation
Hamiltonians
Mathematical transformations
MATLAB
Power control
Power converters
Reactive power
Active and reactive power controls
Distributed generation application
Global controllers
Passivity based control
Voltage source converters
Controllers
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_f8555bebe4a7a452e7759202d7ac11ab
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9161
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Controller design for VSCs in distributed generation applications: An IDA-PBC approach
title Controller design for VSCs in distributed generation applications: An IDA-PBC approach
spellingShingle Controller design for VSCs in distributed generation applications: An IDA-PBC approach
Active and reactive power control
Distributed generation applications
Interconnection and damping assignment passivity-based control
Stable global controller design
Voltage source converter
Asymptotic stability
Closed loop control systems
Computation theory
Control theory
Damping
Distributed power generation
Hamiltonians
Mathematical transformations
MATLAB
Power control
Power converters
Reactive power
Active and reactive power controls
Distributed generation application
Global controllers
Passivity based control
Voltage source converters
Controllers
title_short Controller design for VSCs in distributed generation applications: An IDA-PBC approach
title_full Controller design for VSCs in distributed generation applications: An IDA-PBC approach
title_fullStr Controller design for VSCs in distributed generation applications: An IDA-PBC approach
title_full_unstemmed Controller design for VSCs in distributed generation applications: An IDA-PBC approach
title_sort Controller design for VSCs in distributed generation applications: An IDA-PBC approach
dc.subject.keywords.none.fl_str_mv Active and reactive power control
Distributed generation applications
Interconnection and damping assignment passivity-based control
Stable global controller design
Voltage source converter
Asymptotic stability
Closed loop control systems
Computation theory
Control theory
Damping
Distributed power generation
Hamiltonians
Mathematical transformations
MATLAB
Power control
Power converters
Reactive power
Active and reactive power controls
Distributed generation application
Global controllers
Passivity based control
Voltage source converters
Controllers
topic Active and reactive power control
Distributed generation applications
Interconnection and damping assignment passivity-based control
Stable global controller design
Voltage source converter
Asymptotic stability
Closed loop control systems
Computation theory
Control theory
Damping
Distributed power generation
Hamiltonians
Mathematical transformations
MATLAB
Power control
Power converters
Reactive power
Active and reactive power controls
Distributed generation application
Global controllers
Passivity based control
Voltage source converters
Controllers
description This paper presents an asymptotically stable global controller design for distributed energy integration in electrical distribution networks using a three-phase voltage source converter (VSC). An invariant Park's transformation is used to obtain the mathematical representation of the VSC in dq0 reference frame. To design of the proposed controller, interconection and damping assignment passivity-based control (IDA-PBC) theory is applied via a Hamiltonian representation for the open-loop dynamic as well as the desired closed-loop dynamic of the system. The control law obtained allows guaranteeing asymptotic stability properties in the sense of Lyapunov for closed-loop operation. To verify the robustness and effectiveness of the proposed controller a classic connection of a distributed generator with a VSC converter using an ideal voltage source in its DC side is employed. Simulation results show the capability of the proposed controller to support active and reactive power independently under unbalance voltage conditions and harmonic distortion as well as the possibility of using the VSC as a dynamic power factor corrector. Additionally, all simulation scenarios are compared to classic PI controllers to show the good dynamic performance of the proposed controller using IDA-PBC theory. MATLAB/SIMULINK software is employed as simulation environment. © 2018 IEEE.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:05Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:05Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv 2018 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2018
dc.identifier.isbn.none.fl_str_mv 9781538659359
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9161
dc.identifier.doi.none.fl_str_mv 10.1109/ROPEC.2018.8661360
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56919564100
57208126635
57191493648
36449223500
55791991200
identifier_str_mv 2018 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2018
9781538659359
10.1109/ROPEC.2018.8661360
Universidad Tecnológica de Bolívar
Repositorio UTB
56919564100
57208126635
57191493648
36449223500
55791991200
url https://hdl.handle.net/20.500.12585/9161
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 14 November 2018 through 16 November 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063889164&doi=10.1109%2fROPEC.2018.8661360&partnerID=40&md5=f74800e7f1f93aecfa40984d8225291b
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 2018 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2018
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9161/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021638181617664
spelling 2020-03-26T16:33:05Z2020-03-26T16:33:05Z20192018 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 20189781538659359https://hdl.handle.net/20.500.12585/916110.1109/ROPEC.2018.8661360Universidad Tecnológica de BolívarRepositorio UTB5691956410057208126635571914936483644922350055791991200This paper presents an asymptotically stable global controller design for distributed energy integration in electrical distribution networks using a three-phase voltage source converter (VSC). An invariant Park's transformation is used to obtain the mathematical representation of the VSC in dq0 reference frame. To design of the proposed controller, interconection and damping assignment passivity-based control (IDA-PBC) theory is applied via a Hamiltonian representation for the open-loop dynamic as well as the desired closed-loop dynamic of the system. The control law obtained allows guaranteeing asymptotic stability properties in the sense of Lyapunov for closed-loop operation. To verify the robustness and effectiveness of the proposed controller a classic connection of a distributed generator with a VSC converter using an ideal voltage source in its DC side is employed. Simulation results show the capability of the proposed controller to support active and reactive power independently under unbalance voltage conditions and harmonic distortion as well as the possibility of using the VSC as a dynamic power factor corrector. Additionally, all simulation scenarios are compared to classic PI controllers to show the good dynamic performance of the proposed controller using IDA-PBC theory. MATLAB/SIMULINK software is employed as simulation environment. © 2018 IEEE.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland GovernmentThis work was partially supported by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program, calling contest 727-2015, and the PhD program in Engineering of la Universidad Tecnológica de Pereira.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85063889164&doi=10.1109%2fROPEC.2018.8661360&partnerID=40&md5=f74800e7f1f93aecfa40984d8225291b2018 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2018Controller design for VSCs in distributed generation applications: An IDA-PBC approachinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fActive and reactive power controlDistributed generation applicationsInterconnection and damping assignment passivity-based controlStable global controller designVoltage source converterAsymptotic stabilityClosed loop control systemsComputation theoryControl theoryDampingDistributed power generationHamiltoniansMathematical transformationsMATLABPower controlPower convertersReactive powerActive and reactive power controlsDistributed generation applicationGlobal controllersPassivity based controlVoltage source convertersControllers14 November 2018 through 16 November 2018Montoya O.D.Garrido Arévalo, Víctor ManuelGil-González, WalterGarces A.Grisales-Noreña L.F.Ortega, A., Milano, F., Generalized model of vsc-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380. , SeptHasanien, H.M., Matar, M., A fuzzy logic controller for autonomous operation of a voltage source converter-based distributed generation system (2015) IEEE Trans. Smart Grid, 6 (1), pp. 158-165. , JanSerra, F., Angelo, C.D., Forchetti, D., Passivity based control of a three-phase front end converter (2013) IEEE Lat. Am. Trans., 11 (1), pp. 293-299. , FebGiraldo, O.D.M., Gonzlez, W.J.G., Ruiz, A.G., Meja, A.E., Norea, L.F.G., Nonlinear control for battery energy storage systems in power grids (2018) 2018 IEEE Green Technologies Conference (GreenTech), pp. 65-70. , AprilDiaz, G., Gonzalez-Moran, C., Gomez-Aleixandre, J., Diez, A., Scheduling of droop coefficients for frequency and voltage regulation in isolated microgrids (2010) IEEE Trans. Power Syst., 25 (1), pp. 489-496. , FebBevrani, H., Shokoohi, S., An intelligent droop control for simultaneous voltage and frequency regulation in islanded microgrids (2013) IEEE Trans. Smart Grid, 4 (3), pp. 1505-1513. , SeptCastro, L.M., Acha, E., On the provision of frequency regulation in low inertia ac grids using hvdc systems (2016) IEEE Trans. Smart Grid, 7 (6), pp. 2680-2690. , NovChen, Z., Mao, C., Wang, D., Lu, J., Zhou, Y., Design and implementation of voltage source converter excitation system to improve power system stability (2016) IEEE Trans. Ind. Appl., 52 (4), pp. 2778-2788. , JulyShi, J., Tang, Y., Yang, K., Chen, L., Ren, L., Li, J., Cheng, S., SMES based dynamic voltage restorer for voltage fluctuations compensation (2010) IEEE Trans. Appl. Supercond., 20 (3), pp. 1360-1364Montoya, O.D., Gil-Gonzalez, W., Garces, A., Espinosa-Perez, G., Indirect ida-pbc for active and reactive power support in distribution networks using smes systems with PWM-csc (2018) Journal of Energy Storage, 17, pp. 261-271Bayhan, S., Abu-Rub, H., Ellabban, O., Sensorless model predictive control scheme of wind-driven doubly fed induction generator in dc microgrid (2016) IET Renewable Power Generation, 10 (4), pp. 514-521Dos Santos, E., Da Silva, E.R., (2014) Power Switches and Overview of Basic Power Converters, p. 376. , http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7027320, Wiley-IEEE PressTeodorescu, R., Liserre, M., Rodriguez, P., (2011) Grid Converters for Photovoltaic and Wind Power Systems, , John Wiley &SonsPerez, M., Ortega, R., Espinoza, J.R., Passivity-based PI control of switched power converters (2004) IEEE Trans. Control Syst. Technol., 12 (6), pp. 881-890. , NovGil-Gonzalez, W., Montoya, O.D., Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach (2018) Journal of Energy Storage, 18, pp. 459-466Wang, P., Wang, J., Xu, Z., Passivity-based control of three phase voltage source PWM rectifiers based on pchd model (2008) 2008 International Conference on Electrical Machines and Systems, pp. 1126-1130. , OctTang, Y., Yu, H., Zou, Z., Hamiltonian modeling and energy-shaping control of three-phase ac/dc voltage-source converters (2008) 2008 IEEE International Conference on Automation and Logistics, pp. 591-595. , SeptLee, T.-S., Lagrangian modeling and passivity-based control of threephase ac/dc voltage-source converters (2004) IEEE Trans. Ind. Electron., 51 (4), pp. 892-902. , AugDel Puerto-Flores, D., Scherpen, J.M.A., Liserre, M., De Vries, M.M.J., Kransse, M.J., Monopoli, V.G., Passivity-based control by series/ parallel damping of single-phase PWM voltage source converter (2014) IEEE Trans. Control Syst. Technol., 22 (4), pp. 1310-1322. , JulyNageshrao, S.P., Lopes, G.A.D., Jeltsema, D., Babuska, R., Porthamiltonian systems in adaptive and learning control: A survey (2016) IEEE Trans. Autom. Control, 61 (5), pp. 1223-1238. , MayDonaire, A., Ortega, R., Romero, J., Simultaneous interconnection and damping assignment passivity-based control of mechanical systems using dissipative forces (2016) Systems &Control Letters, 94, pp. 118-126Martinez-Perez, I., Espinosa-Perez, G., Sandoval-Rodriguez, G., Doria-Cerezo, A., Ida passivity-based control of single phase back-toback converters (2008) 2008 IEEE International Symposium on Industrial Electronics, pp. 74-79. , JuneNunna, K., Sassano, M., Astolfi, A., Constructive interconnection and damping assignment for port-controlled hamiltonian systems (2015) IEEE Trans. Autom. Control, 60 (9), pp. 2350-2361http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9161/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9161oai:repositorio.utb.edu.co:20.500.12585/91612023-05-26 11:06:30.328Repositorio Institucional UTBrepositorioutb@utb.edu.co