Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air

This study examines the impact of sub-atmospheric pressures in water pipelines during emptying manoeuvres with air admitted. Previous research has looked at this issue but has not studied it in detail. This research presents a two-dimensional model using the OpenFOAM software to analyse different em...

Full description

Autores:
Paternina-Verona, Duban
Coronado-Hernandez, Oscar
Flórez-Acero, Luis
Espinoza-Román, Hector
Ramos M., Helena
Fuertes-Miquel, Vicente
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/11957
Acceso en línea:
https://hdl.handle.net/20.500.12585/11957
Palabra clave:
Air inflow
Computational fluid dynamics
Sub-atmospheric pressures
Emptying process
Inlet nozzle height
LEMB
Rights
restrictedAccess
License
http://purl.org/coar/access_right/c_16ec
id UTB2_f81ef3e653af0063b5f4abb2de9c4313
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/11957
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air
title Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air
spellingShingle Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air
Air inflow
Computational fluid dynamics
Sub-atmospheric pressures
Emptying process
Inlet nozzle height
LEMB
title_short Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air
title_full Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air
title_fullStr Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air
title_full_unstemmed Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air
title_sort Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air
dc.creator.fl_str_mv Paternina-Verona, Duban
Coronado-Hernandez, Oscar
Flórez-Acero, Luis
Espinoza-Román, Hector
Ramos M., Helena
Fuertes-Miquel, Vicente
dc.contributor.author.none.fl_str_mv Paternina-Verona, Duban
Coronado-Hernandez, Oscar
Flórez-Acero, Luis
Espinoza-Román, Hector
Ramos M., Helena
Fuertes-Miquel, Vicente
dc.subject.keywords.spa.fl_str_mv Air inflow
Computational fluid dynamics
Sub-atmospheric pressures
Emptying process
Inlet nozzle height
topic Air inflow
Computational fluid dynamics
Sub-atmospheric pressures
Emptying process
Inlet nozzle height
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description This study examines the impact of sub-atmospheric pressures in water pipelines during emptying manoeuvres with air admitted. Previous research has looked at this issue but has not studied it in detail. This research presents a two-dimensional model using the OpenFOAM software to analyse different emptying manoeuvres in a single pipeline with entrapped air. The results show the sensitivity of the ball valve opening percentage, which show that absolute pressure drop can reduce to 23% for each 5% of ball valve opening percentage. The influence of the size of the entrapped air pocket and different air-admission orifices was also analysed. The numerical model showed that the selection of the percentage and times of opening drainage valves in pipelines with air-admission orifices is crucial in controlling sub-atmospheric pressure conditions. Finally, this study demonstrates the ability of the two-dimensional model to show the sensitivity of hydraulic drainage parameters in pipelines with entrapped air.
publishDate 2022
dc.date.submitted.none.fl_str_mv 2022-12-12
dc.date.accessioned.none.fl_str_mv 2023-05-31T15:42:55Z
dc.date.available.none.fl_str_mv 2023-05-31T15:42:55Z
dc.date.issued.none.fl_str_mv 2023-05-09
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Paternina-Verona, D. A., Flórez-Acero, L. C., Coronado-Hernández, O. E., Espinoza-Román, H. G., Fuertes-Miquel, V. S., & Ramos, H. M. (2023). Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air. Urban Water Journal, 1-12.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/11957
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Paternina-Verona, D. A., Flórez-Acero, L. C., Coronado-Hernández, O. E., Espinoza-Román, H. G., Fuertes-Miquel, V. S., & Ramos, H. M. (2023). Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air. Urban Water Journal, 1-12.
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/11957
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv España, Valencia
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.publisher.discipline.spa.fl_str_mv Ingeniería Civil
dc.source.spa.fl_str_mv Urban Water Journal
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/11957/1/References_%20Two-dimensional%20simulation%20of%20emptying%20manoeuvres%20in%20water%20pipelines%20with%20admitted%20air.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/11957/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/11957/3/References_%20Two-dimensional%20simulation%20of%20emptying%20manoeuvres%20in%20water%20pipelines%20with%20admitted%20air.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/11957/4/References_%20Two-dimensional%20simulation%20of%20emptying%20manoeuvres%20in%20water%20pipelines%20with%20admitted%20air.pdf.jpg
bitstream.checksum.fl_str_mv d2da0dec25989c4d0036c715fee7c50e
e20ad307a1c5f3f25af9304a7a7c86b6
2b2c6004a8ecbe483e4d3991824ae7f6
c8597ced5092de14fc8bbc394789b11d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397609369337856
spelling Paternina-Verona, Duban926e143a-7611-4bf1-9398-7f6e588912e9Coronado-Hernandez, Oscarec1ec354-396f-498f-8589-69fb8b1c0e30Flórez-Acero, Luis9cc73780-e3be-41ed-9ba8-3e731cdeb213Espinoza-Román, Hector19527b6b-4c42-4b16-a288-333294140038Ramos M., Helena66e977bc-1096-4dcd-aff1-5328157d4b19Fuertes-Miquel, Vicentef682be4f-81f2-4a2c-b84a-347dbfe6756fEspaña, Valencia2023-05-31T15:42:55Z2023-05-31T15:42:55Z2023-05-092022-12-12Paternina-Verona, D. A., Flórez-Acero, L. C., Coronado-Hernández, O. E., Espinoza-Román, H. G., Fuertes-Miquel, V. S., & Ramos, H. M. (2023). Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air. Urban Water Journal, 1-12.https://hdl.handle.net/20.500.12585/11957Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis study examines the impact of sub-atmospheric pressures in water pipelines during emptying manoeuvres with air admitted. Previous research has looked at this issue but has not studied it in detail. This research presents a two-dimensional model using the OpenFOAM software to analyse different emptying manoeuvres in a single pipeline with entrapped air. The results show the sensitivity of the ball valve opening percentage, which show that absolute pressure drop can reduce to 23% for each 5% of ball valve opening percentage. The influence of the size of the entrapped air pocket and different air-admission orifices was also analysed. The numerical model showed that the selection of the percentage and times of opening drainage valves in pipelines with air-admission orifices is crucial in controlling sub-atmospheric pressure conditions. Finally, this study demonstrates the ability of the two-dimensional model to show the sensitivity of hydraulic drainage parameters in pipelines with entrapped air.application/pdfengUrban Water JournalTwo-dimensional simulation of emptying manoeuvres in water pipelines with admitted airinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/version/c_970fb48d4fbd8a85Air inflowComputational fluid dynamicsSub-atmospheric pressuresEmptying processInlet nozzle heightLEMBinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecCartagena de IndiasCampus TecnológicoIngeniería CivilPúblico generalAguirre-Mendoza, A. M., S. Oyuela, H. G. Espinoza-Román, O. E. Coronado-Hernández, V. S. Fuertes-Miquel, and D. A. Paternina-Verona. 2021. “2D CFD Modeling of Rapid Water Filling with Air Valves Using OpenFoam.” Water 13 (21): 3104. doi:10.3390/w13213104.Aguirre-Mendoza, A. M., D. A. Paternina-Verona, S. Oyuela, O. E. Coronado-Hernández, M. Besharat, V. S. Fuertes-Miquel, P. L. Iglesias-Rey, and H. M. Ramos. 2022. “Effects of Orifice Sizes for Uncontrolled Filling Processes in Water Pipelines.” Water 14 (6): 888. doi:10.3390/w14060888American Water Works Association (AWWA). 2016. Air Release, Air/Vacuum Valves and Combination Air Valves (M51). American Water Works Association.Besharat, M., O. E. Coronado-Hernández, V. S. Fuertes-Miquel, M. T. Viseu, and H. M. Ramos. 2018. “Backflow Air and Pressure Analysis in Emptying a Pipeline Containing an Entrapped Air Pocket.” Urban Water Journal 15 (8): 769–779.Besharat, M., O. E. Coronado-Hernández, V. S. Fuertes-Miquel, M. T. Viseu, and H. M. Ramos. 2019. “Computational Fluid Dynamics for Sub-Atmospheric Pressure Analysis in Pipe Drainage.” Journal of Hydraulic Research 58 (4): 553–565. doi:10.1080/00221686.2019.1625819Besharat, M., R. Tarinejad, M. T. Aalami, and H. M. Ramos. 2016. “Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: Cfd and Experimental Analysis.” Water Resources Management 30 (8): 2687–2702. doi:10.1007/s11269-016-1310-1Blazek, J. 2015. Computational Fluid Dynamics: Principles and Applications. Oxford: Butterworth-HeinemannChan, S. N., J. Cong, and J. H. Lee. 2018. “3d Numerical Modeling of Geyser Formation by Release of Entrapped Air from Horizontal Pipe into Vertical Shaft.” Journal of Hydraulic Engineering 144 (3): 04017071. doi:10.1061/(ASCE)HY.1943-7900.0001416.CollIns, R. P., J. B. BoxAll, B. W. KARneY, B. Brunone, and S. Meniconi. 2012. “How Severe Can Transients Be After a Sudden Depressurization?” Journal-American Water Works Association 104 (4): E243–251. doi:10.5942/jawwa.2012.104.0055.Coronado-Hernández, Ó. E. 2019. “Transient phenomena during the emptying process of water in pressurized pipelines.” Ph. D. thesis, Universitat Politècnica de València, Valencia, Spain.Coronado-Hernández, O. E., D. M. Bonilla-Correa, A. Lovo, V. S. Fuertes-Miquel, G. Gatica, R. Linfati, and J. R. Coronado-Hernández. 2022. “An Implicit Formulation for Calculating Final Conditions in Drainage Maneuvers in Pressurized Water Installations.” Water 14 (21): 3364. doi:10.3390/w14213364Coronado-Hernández, O. E., V. S. Fuertes-Miquel, M. Besharat, and H. M. Ramos. 2017. “Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves.” Water 9 (2): 98. doi:10.3390/w9020098Coronado-Hernández, O. E., V. S. Fuertes-Miquel, M. Besharat, and H. M. Ramos. 2018. “Subatmospheric Pressure in a Water Draining Pipeline with an Air Pocket.” Urban Water Journal 15 (4): 346–352. doi:10.1080/1573062X.2018.1475578.Fuertes-Miquel, V. S., O. E. Coronado-Hernández, P. L. Iglesias-Rey, and D. Mora-Meliá. 2019. “Transient Phenomena During the Emptying Process of a Single Pipe with Water–Air Interaction.” Journal of Hydraulic Research 57 (3): 318–326. doi:10.1080/00221686.2018.1492465.Greenshields, C., and H. Weller. 2022. Notes on Computational Fluid Dynamics: General Principles. Reading, UK: CFD Direct Ltd.Gullberg, R. 2017. Computational Fluid Dynamics in Openfoam. Report TKP 4555.Hirt, C. W., and B. D. Nichols. 1981. “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries.” Journal of Computational Physics 39 (1): 201–225. doi:10.1016/0021-9991(81)90145-5.Hurtado-Misal, A. D., D. Hernández-Sanjuan, O. E. Coronado-Hernández, H. Espinoza-Roman, and V. S. Fuertes-Miquel. 2021. “Analysis of Sub-Atmospheric Pressures During Emptying of an Irregular Pipeline Without an Air Valve Using a 2D CFD Model.” Water 13 (18): 2526. doi:10.3390/w13182526.zquierdo, J., V. Fuertes, E. Cabrera, P. Iglesias, and J. Garcia-Serra. 1999. “Pipeline Start-Up with Entrapped Air.” Journal of Hydraulic Research 37 (5): 579–590. doi:10.1080/00221689909498518.Jasak, H., and H. Weller. 1995. “Interface Tracking Capabilities of the Inter-Gamma Differencing Scheme.” In Department of Mechanical Engineering, 1–9. London: Imperial College of Science, Technology and Medicine.Laanearu, J., I. Annus, T. Koppel, A. Bergant, S. Vučković, Q. Hou, A. S. Tijsseling, A. Anderson, and J. M. Van’t Westende. 2012. “Emptying of Large-Scale Pipeline by Pressurized Air.” Journal of Hydraulic Engineering 138 (12): 1090–1100. doi:10.1061/(ASCE)HY.1943-7900.0000631.Laanearu, J., Q. Hou, I. Annus, and A. S. Tijsseling 2015. “Water-Column Mass Losses During the Emptying of a Large-Scale Pipeline by Pressurized Air.” Proceedings of the Estonian Academy of Sciences 64 (1): 8.Launder, B. E., and D. B. Spalding. 1974. “The numerical computation of turbulent flows.“ Computer Methods in Applied Mechanics and Engineering 3 (2): 269–289. doi:10.1016/0045-7825(74)90029-2.León, A. S., M. S. Ghidaoui, A. R. Schmidt, and M. H. García. 2010. “A Robust Two-Equation Model for Transient-Mixed Flows.” Journal of Hydraulic Research 48 (1): 44–56. doi:10.1080/00221680903565911Martin, C. S. 1976. “Entrapped Air in Pipelines.” In Proceedings of the Second International Conference on Pressure Surges. London, UK.Martins, Nuno M. C., J. N. Delgado, H. M. Ramos, and D. I. Covas. 2017. “Maximum Transient Pressures in a Rapidly Filling Pipeline with Entrapped Air Using a CFD Model.” Journal of Hydraulic Research 55 (4): 506–519. doi:10.1080/00221686.2016.1275046.Martins, Nuno M.C., A. K. Soares, H. M. Ramos, and D. I. Covas. 2016. “Cfd Modeling of Transient Flow in Pressurized Pipes.” Computers & Fluids 126: 129–140. doi:10.1016/j.compfluid.2015.12.002.Mavriplis, D. J. 1996. “Mesh Generation and Adaptivity for Complex Geometries and Flows.” In Handbook of Computational Fluid Mechanics, 417–459. London: Academic Press.Menter, F. R. 1994. “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications.” AIAA Journal 32 (8): 1598–1605. doi:10.2514/3.12149.Menter, F. R. 2009. “Review of the Shear-Stress Transport Turbulence Model Experience from an Industrial Perspective.” International Journal of Computational Fluid Dynamics 23 (4): 305–316. doi:10.1080/10618560902773387Menter, F., and T. Esch. 2001. “Elements of Industrial Heat Transfer Predictions.” In 16th Brazilian Congress of Mechanical Engineering (COBEM), Vol. 109, 650. Uberlândia: COBEM.Paternina-Verona, D. A., O. E. Coronado-Hernández, A. M. Aguirre-Mendoza, H. G. Espinoza-Román, and V. S. Fuertes-Miquel. 2023. “Three-Dimensional Simulation of Transient Flows During the Emptying of Pipes with Entrapped Air.” Journal of Hydraulic Engineering 149 (4): 04023007. doi:10.1061/JHEND8.HYENG-13302.Paternina-Verona, D. A., O. E. Coronado-Hernández, H. G. Espinoza-Román, M. Besharat, V. S. Fuertes-Miquel, and H. M. Ramos. 2022. “Three-Dimensional Analysis of Air-Admission Orifices in Pipelines During Hydraulic Drainage Events.” Sustainability 14 (21): 14600. doi:10.3390/su142114600Romero, G., V. S. Fuertes-Miquel, Ó. E. Coronado-Hernández, R. Ponz-Carcelén, and F. Biel-Sanchis. 2020. “Analysis of Hydraulic Transients During Pipeline Filling Processes with Air Valves in Large-Scale Installations.” Urban Water Journal 17 (6): 568–575. doi:10.1080/1573062X.2020.1800762Spalding, D. 1961. “A Single Formula for the “Law of the Wall”.” Journal of Applied Mechanics 28 (3): 455–458. doi:10.1115/1.3641728.Tijsseling, A. S., Q. Hou, Z. Bozkuş, and J. Laanearu. 2016. “Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines.” Journal of Pressure Vessel Technology 138 (3): 3. doi:10.1115/1.4031508Wang, J., and J. Vasconcelos. 2018. “Manhole Cover Displacement Caused by the Release of Entrapped Air Pockets.” Journal of Water Management Modeling. doi:10.14796/JWMM.C444Wang, H., L. Zhou, D. Liu, B. Karney, P. Wang, L. Xia, J. Ma, and C. Xu. 2016. “Cfd Approach for Column Separation in Water Pipelines.” Journal of Hydraulic Engineering 142 (10): 04016036. doi:10.1061/(ASCE)HY.1943-7900.0001171Wilcox, D. C. 1988. “Reassessment of the Scale-Determining Equation for Advanced Turbulence Models.” AIAA Journal 26 (11): 1299–1310. doi:10.2514/3.10041.Zhou, L., D. Liu, and B. Karney. 2013. “Investigation of Hydraulic Transients of Two Entrapped Air Pockets in a Water Pipeline.” Journal of Hydraulic Engineering 139 (9): 949–959. doi:10.1061/(ASCE)HY.1943-7900.0000750.Zhou, L., D.-Y. Liu, and C.-Q. Ou. 2011. “Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model.” Engineering Applications of Computational Fluid Mechanics 5 (1): 127–140. doi:10.1080/19942060.2011.11015357Zhou, L., H. Wang, B. Karney, D. Liu, P. Wang, and S. Guo. 2018. “Dynamic Behavior of Entrapped Air Pocket in a Water Filling Pipeline.” Journal of Hydraulic Engineering 144 (8): 04018045. doi:10.1061/(ASCE)HY.1943-7900.0001491http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALReferences_ Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air.pdfReferences_ Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air.pdfapplication/pdf538853https://repositorio.utb.edu.co/bitstream/20.500.12585/11957/1/References_%20Two-dimensional%20simulation%20of%20emptying%20manoeuvres%20in%20water%20pipelines%20with%20admitted%20air.pdfd2da0dec25989c4d0036c715fee7c50eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/11957/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXTReferences_ Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air.pdf.txtReferences_ Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air.pdf.txtExtracted texttext/plain16909https://repositorio.utb.edu.co/bitstream/20.500.12585/11957/3/References_%20Two-dimensional%20simulation%20of%20emptying%20manoeuvres%20in%20water%20pipelines%20with%20admitted%20air.pdf.txt2b2c6004a8ecbe483e4d3991824ae7f6MD53THUMBNAILReferences_ Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air.pdf.jpgReferences_ Two-dimensional simulation of emptying manoeuvres in water pipelines with admitted air.pdf.jpgGenerated Thumbnailimage/jpeg8122https://repositorio.utb.edu.co/bitstream/20.500.12585/11957/4/References_%20Two-dimensional%20simulation%20of%20emptying%20manoeuvres%20in%20water%20pipelines%20with%20admitted%20air.pdf.jpgc8597ced5092de14fc8bbc394789b11dMD5420.500.12585/11957oai:repositorio.utb.edu.co:20.500.12585/119572023-06-01 00:17:37.601Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=