Parts per Million of Propanol and Arsine as Responsible for the Poisoning of the Propylene Polymerization Reactio

Polypropylene synthesis is a critical process in the plastics industry, where control of catalytic activity is essential to ensure the quality and performance of the final product. In this study, the effect of two inhibitors, propanol and arsine, on the properties of synthesized polypropylene was in...

Full description

Autores:
Hernández Fernández, Joaquin
Ortega-Toro, Rodrigo
González-Cuello, Rafael
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12470
Acceso en línea:
https://hdl.handle.net/20.500.12585/12470
Palabra clave:
Polypropylene
Inhibitors
Catalyst productivity
Melt Flow Index (MFI)
Computational chemistry
Propanol
Arsine
LEMB
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UTB2_f812dcc3b9e96bdefb3be40a04c08d2e
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12470
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Parts per Million of Propanol and Arsine as Responsible for the Poisoning of the Propylene Polymerization Reactio
title Parts per Million of Propanol and Arsine as Responsible for the Poisoning of the Propylene Polymerization Reactio
spellingShingle Parts per Million of Propanol and Arsine as Responsible for the Poisoning of the Propylene Polymerization Reactio
Polypropylene
Inhibitors
Catalyst productivity
Melt Flow Index (MFI)
Computational chemistry
Propanol
Arsine
LEMB
title_short Parts per Million of Propanol and Arsine as Responsible for the Poisoning of the Propylene Polymerization Reactio
title_full Parts per Million of Propanol and Arsine as Responsible for the Poisoning of the Propylene Polymerization Reactio
title_fullStr Parts per Million of Propanol and Arsine as Responsible for the Poisoning of the Propylene Polymerization Reactio
title_full_unstemmed Parts per Million of Propanol and Arsine as Responsible for the Poisoning of the Propylene Polymerization Reactio
title_sort Parts per Million of Propanol and Arsine as Responsible for the Poisoning of the Propylene Polymerization Reactio
dc.creator.fl_str_mv Hernández Fernández, Joaquin
Ortega-Toro, Rodrigo
González-Cuello, Rafael
dc.contributor.author.none.fl_str_mv Hernández Fernández, Joaquin
Ortega-Toro, Rodrigo
González-Cuello, Rafael
dc.subject.keywords.spa.fl_str_mv Polypropylene
Inhibitors
Catalyst productivity
Melt Flow Index (MFI)
Computational chemistry
Propanol
Arsine
topic Polypropylene
Inhibitors
Catalyst productivity
Melt Flow Index (MFI)
Computational chemistry
Propanol
Arsine
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Polypropylene synthesis is a critical process in the plastics industry, where control of catalytic activity is essential to ensure the quality and performance of the final product. In this study, the effect of two inhibitors, propanol and arsine, on the properties of synthesized polypropylene was investigated. Experiments were conducted using a conventional catalyst to polymerize propylene, and different concentrations of propanol and arsine were incorporated into the process. The results revealed that the addition of propanol led to a significant decrease in the Melt Flow Index (MFI) of the resulting polypropylene. The reduction in the MFI was most notable at a concentration of 62.33 ppm propanol, suggesting that propanol acts as an effective inhibitor by slowing down the polymerization rate and thus reducing the fluidity of the molten polypropylene. On the other hand, introducing arsine as an inhibitor increased the MFI of polypropylene. The maximum increase in the MFI was observed at a concentration of 0.035 ppm arsine. This suggests that small amounts of arsine affect the MFI and Mw of the produced PP. Regarding the catalyst productivity, it was found that as the concentration of propanol in the sample increased (approximately seven ppm), there was a decrease in productivity from 45 TM/kg to 44 TM/kg. Starting from 10 ppm, productivity continued to decline, reaching its lowest point at 52 ppm, with only 35 MT/kg. In the case of arsine, changes in catalyst productivity were observed at lower concentrations than with propanol. Starting from about 0.006 ppm, productivity decreased, reaching 39 MT/kg at a concentration of 0.024 ppm and further decreasing to 36 TM/kg with 0.0036 ppm. Computational analysis supported the experimental findings, indicating that arsine adsorbs more stably to the catalyst with an energy of −60.8 Kcal/mol, compared to propanol (−46.17 Kcal/mol) and isobutyl (−33.13 Kcal/mol). Analyses of HOMO and LUMO orbitals, as well as reactivity descriptors, such as electronegativity, chemical potential, and nucleophilicity, shed light on the potential interactions and chemical reactions involving inhibitors. Generated maps of molecular electrostatic potential (MEP) illustrated the charge distribution within the studied molecules, further contributing to the understanding of their reactivity. The computational results supported the experimental findings and provided additional information on the molecular interactions between the inhibitors and the catalyst, shedding light on the possible modes of inhibition. Solubles in xylene values indicate that both propanol and arsine affect the polymer’s morphology, which may have significant implications for its properties and final applications.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-05T19:17:35Z
dc.date.available.none.fl_str_mv 2023-09-05T19:17:35Z
dc.date.issued.none.fl_str_mv 2023-09-01
dc.date.submitted.none.fl_str_mv 2023-09-02
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Hernández-Fernández, J.; González-Cuello, R.; Ortega-Toro, R. Parts per Million of Propanol and Arsine as Responsible for the Poisoning of the Propylene Polymerization Reaction. Polymers 2023, 15, 3619. https://doi.org/10.3390/polym15173619
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12470
dc.identifier.doi.none.fl_str_mv 10.3390/polym15173619
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Hernández-Fernández, J.; González-Cuello, R.; Ortega-Toro, R. Parts per Million of Propanol and Arsine as Responsible for the Poisoning of the Propylene Polymerization Reaction. Polymers 2023, 15, 3619. https://doi.org/10.3390/polym15173619
10.3390/polym15173619
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12470
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.none.fl_str_mv 25 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Polymers, Vol. 15 N° 17 (2023)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12470/1/polymers-15-03619.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12470/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12470/3/polymers-15-03619.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12470/4/polymers-15-03619.pdf.jpg
bitstream.checksum.fl_str_mv 27d7b4e46ce28cc4da8f36da85bf4364
e20ad307a1c5f3f25af9304a7a7c86b6
6f2c861eccfc9d52c1808748c2f3dcaf
fb4f32cf0eab36e7438c422d2bf54acd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397621719465984
spelling Hernández Fernández, Joaquinc9c120ef-5174-40a7-b55e-d858079b16ceOrtega-Toro, Rodrigod594d4c1-6ec9-4782-a84b-cee2853ea359González-Cuello, Rafael095663a6-3ad0-4976-b75b-0805d4de1e3b2023-09-05T19:17:35Z2023-09-05T19:17:35Z2023-09-012023-09-02Hernández-Fernández, J.; González-Cuello, R.; Ortega-Toro, R. Parts per Million of Propanol and Arsine as Responsible for the Poisoning of the Propylene Polymerization Reaction. Polymers 2023, 15, 3619. https://doi.org/10.3390/polym15173619https://hdl.handle.net/20.500.12585/1247010.3390/polym15173619Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarPolypropylene synthesis is a critical process in the plastics industry, where control of catalytic activity is essential to ensure the quality and performance of the final product. In this study, the effect of two inhibitors, propanol and arsine, on the properties of synthesized polypropylene was investigated. Experiments were conducted using a conventional catalyst to polymerize propylene, and different concentrations of propanol and arsine were incorporated into the process. The results revealed that the addition of propanol led to a significant decrease in the Melt Flow Index (MFI) of the resulting polypropylene. The reduction in the MFI was most notable at a concentration of 62.33 ppm propanol, suggesting that propanol acts as an effective inhibitor by slowing down the polymerization rate and thus reducing the fluidity of the molten polypropylene. On the other hand, introducing arsine as an inhibitor increased the MFI of polypropylene. The maximum increase in the MFI was observed at a concentration of 0.035 ppm arsine. This suggests that small amounts of arsine affect the MFI and Mw of the produced PP. Regarding the catalyst productivity, it was found that as the concentration of propanol in the sample increased (approximately seven ppm), there was a decrease in productivity from 45 TM/kg to 44 TM/kg. Starting from 10 ppm, productivity continued to decline, reaching its lowest point at 52 ppm, with only 35 MT/kg. In the case of arsine, changes in catalyst productivity were observed at lower concentrations than with propanol. Starting from about 0.006 ppm, productivity decreased, reaching 39 MT/kg at a concentration of 0.024 ppm and further decreasing to 36 TM/kg with 0.0036 ppm. Computational analysis supported the experimental findings, indicating that arsine adsorbs more stably to the catalyst with an energy of −60.8 Kcal/mol, compared to propanol (−46.17 Kcal/mol) and isobutyl (−33.13 Kcal/mol). Analyses of HOMO and LUMO orbitals, as well as reactivity descriptors, such as electronegativity, chemical potential, and nucleophilicity, shed light on the potential interactions and chemical reactions involving inhibitors. Generated maps of molecular electrostatic potential (MEP) illustrated the charge distribution within the studied molecules, further contributing to the understanding of their reactivity. The computational results supported the experimental findings and provided additional information on the molecular interactions between the inhibitors and the catalyst, shedding light on the possible modes of inhibition. Solubles in xylene values indicate that both propanol and arsine affect the polymer’s morphology, which may have significant implications for its properties and final applications.25 páginasapplication/pdfengPolymers, Vol. 15 N° 17 (2023)Parts per Million of Propanol and Arsine as Responsible for the Poisoning of the Propylene Polymerization Reactioinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1PolypropyleneInhibitorsCatalyst productivityMelt Flow Index (MFI)Computational chemistryPropanolArsineLEMBinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cartagena de IndiasShamiri, A.; Chakrabarti, M.H.; Jahan, S.; Hussain, M.A.; Kaminsky, W.; Aravind, P.V.; Yehye, W.A. The Influence of Ziegler-Natta and Metallocene Catalysts on Polyolefin Structure, Properties, and Processing Ability. Materials 2014, 7, 5069–5108.. Igin, K.J.; Rooney, J.J.; Stewart, C.D.; Green, M.L.; Mahtab, R. Mecanismo para la polimerización estereoespecífica de olefinas por catalizadores Ziegler—Natta. Revista de la Sociedad Química. Comun. Químicas 1978, 14, 604–606Mulhaupt, R. Catálisis de polimerización catalítica y post polimerización cincuenta años después del descubrimiento de los catalizadores de Ziegler. Macromol. Chem. Phys. 2003, 204, 289–327Tangjituabun, K.; Kim, S.Y.; Hiraoka, Y.; Taniike, T.; Terano, M.; Jongsomjit, B.; Praserthdam, P. Effects of various poisoning compounds on the activity and stereospecificity of heterogeneous Ziegler–Natta catalyst. Sci. Technol. Adv. Mater. 2008, 9, 024402Soga, K.; Sano, T.; Yamamoto, K.; Shiono, T. The role of additives on the im-provement of the isotacticity of polypropylene—A possible interpretation. Chem. Lett. 2006, 11, 425–428.Quirk, R.P. Transition metal catalyzed polymerizations: Alkenes and dienes. In Proceedings of the Eleventh Midland Macromolecular Meeting, Midland, MI, USA, 17–21 August 1981; Quirk, R.P., Ed.; MMI Press by Harwood Academic Publishers: Chur, Switzerland, 1900.Sacchi, M.; Tritto, I.; Locatelli, P. The function of amines in conventional and supported Ziegler-Natta catalysts. Eur. Polym. J. 1988, 24, 137–140Tritto, I.; Sacchi, M.C.; Locatelli, P.; Zannoni, G. 13C NMR Investigation of the Interactions between Amines and Ziegler-Natta Catalysts for α-Olefin Polymerization. Macromolecules 1988, 21, 384–387Hernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910Joaquin, H.-F.; Juan, L. Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization. J. Chromatogr. A 2019, 1614, 460736Hernández-Fernández, J.; Castro-Suarez, J.R.; Toloza, C.A.T. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708.Hernández-Fernández, J.; Vivas-Reyes, R.; Toloza, C.A.T. Experimental Study of the Impact of Trace Amounts of Acetylene and Methylacetylene on the Synthesis, Mechanical and Thermal Properties of Polypropylene. Int. J. Mol. Sci. 2022, 23, 12148Kratochvíla, J.; Mejzlík, J. Retardation of the TiCl3 ·1/3 AlCl3/AlEt2Cl catalyzed propylene polymerization by allene and its relevance to the determination of the number of active centers. Die Makromol. Chem. 1987, 188, 1781–1794.Variation in the Isospecific Active Sites of Internal Donor-Free MgCl2 -Supported Ziegler Catalysts: Effect of External Electron Donors—Matsuoka—2001—Macromolecular Rapid Communications—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/1521-3927%2820010301%2922%3A5%3C326%3A%3AAID-MARC326%3E3 .0.CO%3B2-G (accessed on 24 July 2023).Hernández-Fernández, J.; López-Martínez, J. Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis. J. Anal. Appl. Pyrolysis 2021, 155, 105052Hernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale. J. Chromatogr. A 2020, 1628, 461478.Hernández-Fernandez, J.; Rodríguez, E. Determination of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography. J. Chromatogr. A 2019, 1607, 460442.Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and elimination of substituted synthetic phenols and volatile organic compounds in the wastewater treatment plant during the production of industrial scale polypropylene. Chemosphere 2021, 263, 128027.Kaminsky, W. (Ed.) Metalorganic Catalysts for Synthesis and Polymerization, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1999Kissin, Y.V. Olefin Polymers, Introduction. In Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed.; Mobil Chemical Company: Edison, NJ, USA, 2005; Volume 17, pp. 702–707.Propene Polymerization in the Presence of MgCl2 -Supported Ziegler-Natta Catalysts, 4. Effects of Lewis Bases on Polymer Stereochemistry. Available online: https://www.researchgate.net/publication/230354125_Propene_polymerization_in_the_ presence_of_MgCl2-supported_Ziegler-Natta_catalysts_4_Effects_of_Lewis_bases_on_polymer_stereochemistry (accessed on 24 July 2023).Oro, L.A.; Carmona, D. “1 Rhodium.” The Handbook of Homogeneous Hydrogenation, Part I, Introduction, Organometallic Aspects and Mechanism of Homogeneous Hydrogenation. 2007. Available online: https://www.wiley.com/en-us/Handbook+ of+Homogeneous+Hydrogenation%2C+3+Volume+Set-p-9783527311613 (accessed on 24 July 2023).Kissin, Y.V.; Ohnishi, R.; Konakazawa, T. Propylene Polymerization with Titanium-Based Ziegler-Natta Catalysts: Effects of Temperature and Modifiers on Molecular Weight, Molecular Weight Distribution and Stereospecificity. Macromol. Chem. Phys. 2004, 205, 284–301.Zhang, Z.; Jiang, B.; He, F.; Fu, Z.; Xu, J.; Fan, Z. Comparative Study on Kinetics of Ethylene and Propylene Polymerizations with Supported Ziegler–Natta Catalyst: Catalyst Fragmentation Promoted by Polymer Crystalline Lamellae. Polymers 2019, 11, 358.Historical and Philosophical Remarks on Ziegler-Natta Catalysts a Discourse on Industrial Catalysis. Available online: https://www.researchgate.net/publication/282406813_Historical_and_philosophical_remarks_on_Ziegler-Natta_catalysts_a_ discourse_on_industrial_catalysis (accessed on 24 July 2023).Puhakka, E.; Pakkanen, T.T.; Pakkanen, T.A. Theoretical Investigations on Heterogeneous Ziegler−Natta Catalyst Supports: Stability of the Electron Donors at Different Coordination Sites of MgCl2 . J. Phys. Chem. A 1997, 101, 6063–6068.. Joaquin, H.-F.; Juan, L.-M. Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene. J. Anal. Appl. Pyrolysis 2022, 161, 105385.Hernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123.Hernández-Fernández, J. Quantification of arsine and phosphine in industrial atmospheric emissions in Spain and Colombia. Implementation of modified zeolites to reduce the environmental impact of emissions. Atmos. Pollut. Res. 2021, 12, 167–176.Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Development and validation of a methodology for quantifying partsper-billion levels of arsine and phosphine in nitrogen, hydrogen and liquefied petroleum gas using a variable pressure sampler coupled to gas chromatography-mass spectrometry. J. Chromatogr. A 2021, 1637, 461833.Hernández-Fernández, J.; Ortega-Toro, R.; Castro-Suarez, J.R. Theoretical–Experimental Study of the Action of Trace Amounts of Formaldehyde, Propionaldehyde, and Butyraldehyde as Inhibitors of the Ziegler–Natta Catalyst and the Synthesis of an Ethylene–Propylene Copolymer. Polymers 2023, 15, 1098.Hernández-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale. J. Polym. Environ. 2022, 30, 4800–4808Hernández-Fernández, J.; Puello-Polo, E.; Márquez, E. Furan as Impurity in Green Ethylene and Its Effects on the Productivity of Random Ethylene–Propylene Copolymer Synthesis and Its Thermal and Mechanical Properties. Polymers 2023, 15, 2264.Alejandro, J.; Fernandez, H. Process of Extraction, Quantification and Recovery of Additives in Polypropylene with Natural Biodegradable Solvents and Use of the Polypropylene Resulting from the Multiple Extractions. U.S. Patent 17/630,296, 25 August 2022Hernández Fernández, J.; Cano, H.; Guerra, Y.; Puello Polo, E.; Ríos-Rojas, J.F.; Vivas-Reyes, R.; Oviedo, J. Identification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC). Sustainability 2022, 14, 4920.D’Anna, V.; Norsic, S.; Gajan, D.; Sanders, K.; Pell, A.J.; Lesage, A.; Monteil, V.; Copéret, C.; Pintacuda, G.; Sautet, P. Structural Characterization of the EtOH-TiCl4 -MgCl2 Ziegler-Natta Precatalyst. J. Phys. Chem. C 2016, 120, 18075–18087. Bahri-Laleh, N. Interaction of different poisons with MgCl2/TiCl4 based Ziegler-Natta catalysts. Appl. Surf. Sci. 2016, 379, 395–401.ISO 16152:2005; Plastics—Determination of Xylene-Soluble Matter in Polypropylene. Available online: https://www.iso.org/ standard/32127.html (accessed on 24 July 2023).Bremner, T.; Rudin, A.; Cook, D.G. Melt flow index values and molecular weight distributions of commercial thermoplastics. J. Appl. Polym. Sci. 1990, 41, 1617–1627Shafiq-ur-Rehman; Ghafoor, S.; BiBi, S.; Kausar, A.; Ali, S.; Asim, S.; Mansha, A.; Shehzadi, S.A.; Jia, R. DFT and TDDFT Studies of Non-Fullerene Organometallic Based Acceptors for Organic Photovoltaics. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1676–1687Sundaram, S.; Vijayakumar, V.; Balasubramanian, V. Electronic and structure conformational analysis (HOMO-LUMO, MEP, NBO, ELF, LOL, AIM) of hydrogen bond binary liquid crystal mixture: DFT/TD-DFT approach. Comput. Theor. Chem. 2022, 1217, 113920Khemalapure, S.S.; Katti, V.S.; Hiremath, C.S.; Hiremath, S.M.; Basanagouda, M.; Radder, S.B. Spectroscopic (FT-IR, FT-Raman, NMR and UV-Vis), ELF, LOL, NBO, and Fukui function investigations on (5-bromo-benzofuran-3-yl)-acetic acid hydrazide (5BBAH): Experimental and theoretical approach. J. Mol. Struct. 2019, 1196, 280–290.Bharathy, G.; Prasana, J.C.; Muthu, S.; Irfan, A.; Asif, F.B.; Saral, A.; Aayisha, S.; Devi, R.N. Evaluation of electronic and biological interactions between N-[4-(Ethylsulfamoyl)phenyl]acetamide and some polar liquids (IEFPCM solvation model) with Fukui function and molecular docking analysis. J. Mol. Liq. 2021, 340, 117271. [Pandey, A.K.; Baboo, V.; Mishra, V.N.; Singh, V.K.; Dwivedi, A. Comparative Study of Molecular Docking, Structural, Electronic, Vibrational Spectra and Fukui Function Studies of Thiadiazole Containing Schiff Base—A Complete Density Functional Study. Polycycl. Aromat. Compd. 2020, 42, 13–39.Zülfikaro ˘glu, A.; Batı, H.; Dege, N. A theoretical and experimental study on isonitrosoacetophenone nicotinoyl hydrazone: Crystal structure, spectroscopic properties, NBO, NPA and NLMO analyses and the investigation of interaction with some transition metals. J. Mol. Struct. 2018, 1162, 125–139Shukla, B.K.; Yadava, U. DFT calculations on molecular structure, MEP and HOMO-LUMO study of 3-phenyl-1-(methyl-sulfonyl)- 1H-pyrazolo[3,4-d]pyrimidine-4-amine. Mater. Today Proc. 2022, 49, 3056–3060Fradi, T.; Noureddine, O.; Ben Taheur, F.; Guergueb, M.; Nasri, S.; Amiri, N.; Almahri, A.; Roisnel, T.; Guerineau, V.; Issoui, N.; et al. New DMAP meso-arylporphyrin Magnesium(II) complex. Spectroscopic, Cyclic voltammetry and X-ray molecular structure characterization. DFT, DOS and MEP calculations and Antioxidant and Antifungal activities. J. Mol. Struct. 2021, 1236, 130299.Taniike, T.; Terano, M. The Use of Donors to Increase the Isotacticity of Polypropylene. In Polyolefins: 50 years after Ziegler and Natta I; Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 257, pp. 81–98.Correa, A.; Piemontesi, F.; Morini, G.; Cavallo, L. Key elements in the structure and function relationship of the MgCl2/TiCl4/Lewis base Ziegler-Natta catalytic system. Macromolecules 2007, 40, 9181–9189.Handbook of Polymer Science and Technology—Google Libros. Available online: https://books.google.es/books?hl=es&lr=&id= 35PLEAAAQBAJ&oi=fnd&pg=PP1&dq=Handbook+of+Polymer+Science+and+Technology:+Synthesis+and+Properties&ots= sWBW6JFbvV&sig=Ku8akKkH3NjR0IYO1r7ttdOsyTk#v=onepage&q=Handbook%20of%20Polymer%20Science%20and%20 Technology%3A%20Synthesis%20and%20Properties&f=false (accessed on 17 August 2023).Hernández-Fernández, J.; Rayón, E.; López, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379.http://purl.org/coar/resource_type/c_6501ORIGINALpolymers-15-03619.pdfpolymers-15-03619.pdfapplication/pdf5966182https://repositorio.utb.edu.co/bitstream/20.500.12585/12470/1/polymers-15-03619.pdf27d7b4e46ce28cc4da8f36da85bf4364MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12470/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXTpolymers-15-03619.pdf.txtpolymers-15-03619.pdf.txtExtracted texttext/plain108914https://repositorio.utb.edu.co/bitstream/20.500.12585/12470/3/polymers-15-03619.pdf.txt6f2c861eccfc9d52c1808748c2f3dcafMD53THUMBNAILpolymers-15-03619.pdf.jpgpolymers-15-03619.pdf.jpgGenerated Thumbnailimage/jpeg7865https://repositorio.utb.edu.co/bitstream/20.500.12585/12470/4/polymers-15-03619.pdf.jpgfb4f32cf0eab36e7438c422d2bf54acdMD5420.500.12585/12470oai:repositorio.utb.edu.co:20.500.12585/124702023-09-06 00:17:47.083Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=