Derivative-Free Power Flow Solution for Bipolar DC Networks with Multiple Constant Power Terminals

This paper analyzes the power flow solution in bipolar direct current networks with radial structures considering multiple monopolar and bipolar constant power loads. The electrical configuration of the bipolar DC grid considers that the reference pole is non-grounded along the feeder, which produce...

Full description

Autores:
Medina-Quesada, Ángeles
Montoya, Oscar Danilo
Hernández, Jesus C.
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12332
Acceso en línea:
https://hdl.handle.net/20.500.12585/12332
Palabra clave:
Microgrid;
DC-DC Converter;
Electric Potential
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_f80d17501ff88e975d06d59dc1450f21
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12332
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Derivative-Free Power Flow Solution for Bipolar DC Networks with Multiple Constant Power Terminals
title Derivative-Free Power Flow Solution for Bipolar DC Networks with Multiple Constant Power Terminals
spellingShingle Derivative-Free Power Flow Solution for Bipolar DC Networks with Multiple Constant Power Terminals
Microgrid;
DC-DC Converter;
Electric Potential
LEMB
title_short Derivative-Free Power Flow Solution for Bipolar DC Networks with Multiple Constant Power Terminals
title_full Derivative-Free Power Flow Solution for Bipolar DC Networks with Multiple Constant Power Terminals
title_fullStr Derivative-Free Power Flow Solution for Bipolar DC Networks with Multiple Constant Power Terminals
title_full_unstemmed Derivative-Free Power Flow Solution for Bipolar DC Networks with Multiple Constant Power Terminals
title_sort Derivative-Free Power Flow Solution for Bipolar DC Networks with Multiple Constant Power Terminals
dc.creator.fl_str_mv Medina-Quesada, Ángeles
Montoya, Oscar Danilo
Hernández, Jesus C.
dc.contributor.author.none.fl_str_mv Medina-Quesada, Ángeles
Montoya, Oscar Danilo
Hernández, Jesus C.
dc.subject.keywords.spa.fl_str_mv Microgrid;
DC-DC Converter;
Electric Potential
topic Microgrid;
DC-DC Converter;
Electric Potential
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description This paper analyzes the power flow solution in bipolar direct current networks with radial structures considering multiple monopolar and bipolar constant power loads. The electrical configuration of the bipolar DC grid considers that the reference pole is non-grounded along the feeder, which produces important neutral currents and voltage imbalances along the DC grid. The power flow problem is formulated through the triangular-based representation of the grid topology, which generates a recursive formulation that allows determining the voltage values in the demand nodes through an iterative procedure. The linear convergence of the triangular-based power flow method is tested through multiple load variations with respect to the nominal grid operative condition. Numerical results in the 21-and the 85-bus grids reveal the relevant variations in the voltage profiles and total grid power losses when the neutral cable is solidly grounded or not. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-21T16:23:12Z
dc.date.available.none.fl_str_mv 2023-07-21T16:23:12Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Medina-Quesada, Á., Montoya, O. D., & Hernández, J. C. (2022). Derivative-free power flow solution for bipolar DC networks with multiple constant power terminals. Sensors, 22(8), 2914.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12332
dc.identifier.doi.none.fl_str_mv 10.3390/s22082914
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Medina-Quesada, Á., Montoya, O. D., & Hernández, J. C. (2022). Derivative-free power flow solution for bipolar DC networks with multiple constant power terminals. Sensors, 22(8), 2914.
10.3390/s22082914
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12332
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 13 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Sensors
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12332/1/sensors-22-02914.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12332/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12332/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12332/4/sensors-22-02914.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12332/5/sensors-22-02914.pdf.jpg
bitstream.checksum.fl_str_mv 6f2aca6ef126c25f609b365d74779de2
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
03910577f558e3a2eb2fcddc80af9f46
bfbd502c1921790bc423bb2ef25c9a09
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021778978111488
spelling Medina-Quesada, Ángelesc4945c01-b7fc-40f7-af40-bc8515e102d8Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Hernández, Jesus C.349b3120-388b-42be-8bea-32156f0dc09d2023-07-21T16:23:12Z2023-07-21T16:23:12Z20222023Medina-Quesada, Á., Montoya, O. D., & Hernández, J. C. (2022). Derivative-free power flow solution for bipolar DC networks with multiple constant power terminals. Sensors, 22(8), 2914.https://hdl.handle.net/20.500.12585/1233210.3390/s22082914Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper analyzes the power flow solution in bipolar direct current networks with radial structures considering multiple monopolar and bipolar constant power loads. The electrical configuration of the bipolar DC grid considers that the reference pole is non-grounded along the feeder, which produces important neutral currents and voltage imbalances along the DC grid. The power flow problem is formulated through the triangular-based representation of the grid topology, which generates a recursive formulation that allows determining the voltage values in the demand nodes through an iterative procedure. The linear convergence of the triangular-based power flow method is tested through multiple load variations with respect to the nominal grid operative condition. Numerical results in the 21-and the 85-bus grids reveal the relevant variations in the voltage profiles and total grid power losses when the neutral cable is solidly grounded or not. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.13 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2SensorsDerivative-Free Power Flow Solution for Bipolar DC Networks with Multiple Constant Power Terminalsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Microgrid;DC-DC Converter;Electric PotentialLEMBCartagena de IndiasMackay, L., Blij, N.H.V.D., Ramirez-Elizondo, L., Bauer, P. Toward the Universal DC Distribution System (2017) Electric Power Components and Systems, 45 (10), pp. 1032-1042. Cited 61 times. www.tandf.co.uk/journals/titles/15325008.asp doi: 10.1080/15325008.2017.1318977Montoya, O.D. Numerical Approximation of the Maximum Power Consumption in DC-MGs with CPLs via an SDP Model (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (4), art. no. 8443095, pp. 642-646. Cited 28 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2018.2866447Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S. State of the art in research on microgrids: A review (Open Access) (2015) IEEE Access, 3, art. no. 07120901, pp. 890-925. Cited 759 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2015.2443119Siraj, K., Khan, H.A. DC distribution for residential power networks—A framework to analyze the impact of voltage levels on energy efficiency (Open Access) (2020) Energy Reports, 6, pp. 944-951. Cited 43 times. http://www.journals.elsevier.com/energy-reports/ doi: 10.1016/j.egyr.2020.04.018Li, B., Wang, W., Liu, Y., Li, B., Wen, W. Research on power flow calculation method of true bipolar VSC-HVDC grids with different operation modes and control strategies (Open Access) (2021) International Journal of Electrical Power and Energy Systems, Part A 126, art. no. 106558. Cited 18 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2020.106558Zhu, H., Zhu, M., Zhang, J., Cai, X., Dai, N. Topology and operation mechanism of monopolarto-bipolar DC-DC converter interface for DC grid (Open Access) (2016) 2016 IEEE 8th International Power Electronics and Motion Control Conference, IPEMC-ECCE Asia 2016, art. no. 7512892, pp. 3728-3733. Cited 9 times. ISBN: 978-150901210-7 doi: 10.1109/IPEMC.2016.7512892Guo, C., Wang, Y., Liao, J. Coordinated Control of Voltage Balancers for the Regulation of Unbalanced Voltage in a Multi‐Node Bipolar DC Distribution Network (Open Access) (2022) Electronics (Switzerland), 11 (1), art. no. 166. Cited 12 times. https://www.mdpi.com/2079-9292/11/1/166/pdf doi: 10.3390/electronics11010166Garces, A. Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electric Power Systems Research, 151, pp. 149-153. Cited 92 times. doi: 10.1016/j.epsr.2017.05.031Chew, B.S.H., Xu, Y., Wu, Q. Voltage Balancing for Bipolar DC Distribution Grids: A Power Flow Based Binary Integer Multi-Objective Optimization Approach (Open Access) (2019) IEEE Transactions on Power Systems, 34 (1), art. no. 8444703, pp. 28-39. Cited 48 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2018.2866817Lee, J.-O., Kim, Y.-S., Moon, S.-I. Current Injection Power Flow Analysis and Optimal Generation Dispatch for Bipolar DC Microgrids (Open Access) (2021) IEEE Transactions on Smart Grid, 12 (3), art. no. 9308969, pp. 1918-1928. Cited 23 times. https://ieeexplore.ieee.org/servlet/opac?punumber=5165411 doi: 10.1109/TSG.2020.3046733Rivera, S., Lizana F., R., Kouro, S., Dragicevic, T., Wu, B. Bipolar DC Power Conversion: State-of-the-Art and Emerging Technologies (2021) IEEE Journal of Emerging and Selected Topics in Power Electronics, 9 (2), art. no. 9036877, pp. 1192-1204. Cited 56 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245517 doi: 10.1109/JESTPE.2020.2980994Litrán, S.P., Durán, E., Semião, J., Barroso, R.S. Single-switch bipolar output dc-dc converter for photovoltaic application (2020) Electronics (Switzerland), 9 (7), art. no. 1171, pp. 1-14. Cited 8 times. https://www.mdpi.com/2079-9292/9/7/1171/pdf doi: 10.3390/electronics9071171Javid, Z., Karaagac, U., Kocar, I., Chan, K.W. Laplacian matrix-based power flow formulation for LVDC grids with radial and meshed configurations (Open Access) (2021) Energies, 14 (7), art. no. 1866. Cited 7 times. https://www.mdpi.com/1996-1073/14/7/1866/pdf doi: 10.3390/en14071866Simpson-Porco, J.W., Dörfler, F., Bullo, F. On Resistive Networks of Constant-Power Devices (2015) IEEE Transactions on Circuits and Systems II: Express Briefs, 62 (8), art. no. 7108029, pp. 811-815. Cited 60 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2015.2433537Montoya, O.D., Gil-González, W., Garces, A. Numerical methods for power flow analysis in DC networks: State of the art, methods and challenges (Open Access) (2020) International Journal of Electrical Power and Energy Systems, 123, art. no. 106299. Cited 28 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2020.106299Montoya, O.D., Grisales-Norena, L.F., Gil-Gonzalez, W. Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids with CPLs (Open Access) (2020) IEEE Transactions on Circuits and Systems II: Express Briefs, 67 (6), art. no. 8756198, pp. 1094-1098. Cited 13 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2927290Kim, J., Cho, J., Kim, H., Cho, Y., Lee, H. Power Flow Calculation Method of DC Distribution Network for Actual Power System (2020) KEPCO J. Electr. Power Energy, 6, pp. 419-425. Cited 7 times. [CrossRef]MacKay, L., Guarnotta, R., Dimou, A., Morales-España, G., Ramirez-Elizondo, L., Bauer, P. Optimal power flow for unbalanced bipolar DC distribution grids (2018) IEEE Access, 6, pp. 5199-5207. Cited 27 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2018.2789522Garces, A. On the convergence of Newton's method in power flow studies for dc microgrids (Open Access) (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8327530, pp. 5770-5777. Cited 119 times. doi: 10.1109/TPWRS.2018.2820430Tamilselvan, V., Jayabarathi, T., Raghunathan, T., Yang, X.-S. Optimal capacitor placement in radial distribution systems using flower pollination algorithm (Open Access) (2018) Alexandria Engineering Journal, 57 (4), pp. 2775-2786. Cited 90 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724292/description#description doi: 10.1016/j.aej.2018.01.004http://purl.org/coar/resource_type/c_6501ORIGINALsensors-22-02914.pdfsensors-22-02914.pdfapplication/pdf758984https://repositorio.utb.edu.co/bitstream/20.500.12585/12332/1/sensors-22-02914.pdf6f2aca6ef126c25f609b365d74779de2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12332/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12332/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTsensors-22-02914.pdf.txtsensors-22-02914.pdf.txtExtracted texttext/plain38646https://repositorio.utb.edu.co/bitstream/20.500.12585/12332/4/sensors-22-02914.pdf.txt03910577f558e3a2eb2fcddc80af9f46MD54THUMBNAILsensors-22-02914.pdf.jpgsensors-22-02914.pdf.jpgGenerated Thumbnailimage/jpeg7980https://repositorio.utb.edu.co/bitstream/20.500.12585/12332/5/sensors-22-02914.pdf.jpgbfbd502c1921790bc423bb2ef25c9a09MD5520.500.12585/12332oai:repositorio.utb.edu.co:20.500.12585/123322023-07-22 00:18:03.574Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=