A Recommender System for Digital Newspaper Readers Based on Random Forest

In this research, the potential of machine learning methods based on decision trees (DT) and Random Forest (RF) models developed in the context of classifying readers of a digital newspaper. For this purpose, the number of visits of users to each section of the newspaper in a 3-month interval has be...

Full description

Autores:
Delahoz-Dominguez, Enrique
Zuluaga Ortiz, Rohemi Alfredo
Mendoza-Mendoza, Adel
Escorcia, Jey
Moreira-Villegas, Francisco
Oliveros-Eusse, Pedro
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12106
Acceso en línea:
https://hdl.handle.net/20.500.12585/12106
Palabra clave:
Customer Churn;
Sales;
Customer Relationship Management
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_f7eb090ef449a6a8001dd266c3ba80bc
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12106
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv A Recommender System for Digital Newspaper Readers Based on Random Forest
title A Recommender System for Digital Newspaper Readers Based on Random Forest
spellingShingle A Recommender System for Digital Newspaper Readers Based on Random Forest
Customer Churn;
Sales;
Customer Relationship Management
LEMB
title_short A Recommender System for Digital Newspaper Readers Based on Random Forest
title_full A Recommender System for Digital Newspaper Readers Based on Random Forest
title_fullStr A Recommender System for Digital Newspaper Readers Based on Random Forest
title_full_unstemmed A Recommender System for Digital Newspaper Readers Based on Random Forest
title_sort A Recommender System for Digital Newspaper Readers Based on Random Forest
dc.creator.fl_str_mv Delahoz-Dominguez, Enrique
Zuluaga Ortiz, Rohemi Alfredo
Mendoza-Mendoza, Adel
Escorcia, Jey
Moreira-Villegas, Francisco
Oliveros-Eusse, Pedro
dc.contributor.author.none.fl_str_mv Delahoz-Dominguez, Enrique
Zuluaga Ortiz, Rohemi Alfredo
Mendoza-Mendoza, Adel
Escorcia, Jey
Moreira-Villegas, Francisco
Oliveros-Eusse, Pedro
dc.subject.keywords.spa.fl_str_mv Customer Churn;
Sales;
Customer Relationship Management
topic Customer Churn;
Sales;
Customer Relationship Management
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description In this research, the potential of machine learning methods based on decision trees (DT) and Random Forest (RF) models developed in the context of classifying readers of a digital newspaper. For this purpose, the number of visits of users to each section of the newspaper in a 3-month interval has been taken into account. The models of DT and RF developed in this paper classify the profiles of readers who access the journal with an accuracy of 98.07% and AUC value of 99.27%, thus demonstrating that it serves as a valid tool for making strategic and operational decisions when creating, manage and present content in the user – website interaction. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-14T13:53:26Z
dc.date.available.none.fl_str_mv 2023-07-14T13:53:26Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Delahoz-Dominguez, E., Zuluaga-Ortiz, R., Mendoza-Mendoza, A., Escorcia, J., Moreira-Villegas, F., & Oliveros-Eusse, P. (2022). A recommender system for digital newspaper readers based on random forest. En Computer Information Systems and Industrial Management (pp. 191–201). Springer International Publishing.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12106
dc.identifier.doi.none.fl_str_mv DOI 10.1007/978-3-031-10539-5_14
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Delahoz-Dominguez, E., Zuluaga-Ortiz, R., Mendoza-Mendoza, A., Escorcia, J., Moreira-Villegas, F., & Oliveros-Eusse, P. (2022). A recommender system for digital newspaper readers based on random forest. En Computer Information Systems and Industrial Management (pp. 191–201). Springer International Publishing.
DOI 10.1007/978-3-031-10539-5_14
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12106
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 10 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Computer Information Systems and Industrial Management (pp. 191–201). Springer International Publishing.
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12106/1/g.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12106/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12106/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12106/4/g.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12106/5/g.pdf.jpg
bitstream.checksum.fl_str_mv fd87a64bc1d4078128caf7b5fbcb77a1
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
ce17bbb4d4f1cbe9a2413e4ea88bb0b2
ec90c94ec84476132f3852dbcebfbee9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021581183123456
spelling Delahoz-Dominguez, Enrique1845b064-8f16-48b4-8210-4a40985833e2Zuluaga Ortiz, Rohemi Alfredo182b4086-4094-4784-9843-4be10643fb58Mendoza-Mendoza, Adeld6f952c6-8a50-46a1-a2e9-6920562be222Escorcia, Jey2dcb7aab-5c50-4d03-911c-1c90124828d7Moreira-Villegas, Francisco137ce9a7-036f-4dee-86af-3d12c327d1caOliveros-Eusse, Pedrofde1ee07-4f59-4233-993c-cc497ec530f42023-07-14T13:53:26Z2023-07-14T13:53:26Z20222023Delahoz-Dominguez, E., Zuluaga-Ortiz, R., Mendoza-Mendoza, A., Escorcia, J., Moreira-Villegas, F., & Oliveros-Eusse, P. (2022). A recommender system for digital newspaper readers based on random forest. En Computer Information Systems and Industrial Management (pp. 191–201). Springer International Publishing.https://hdl.handle.net/20.500.12585/12106DOI 10.1007/978-3-031-10539-5_14Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarIn this research, the potential of machine learning methods based on decision trees (DT) and Random Forest (RF) models developed in the context of classifying readers of a digital newspaper. For this purpose, the number of visits of users to each section of the newspaper in a 3-month interval has been taken into account. The models of DT and RF developed in this paper classify the profiles of readers who access the journal with an accuracy of 98.07% and AUC value of 99.27%, thus demonstrating that it serves as a valid tool for making strategic and operational decisions when creating, manage and present content in the user – website interaction. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.10 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Computer Information Systems and Industrial Management (pp. 191–201). Springer International Publishing.A Recommender System for Digital Newspaper Readers Based on Random Forestinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Customer Churn;Sales;Customer Relationship ManagementLEMBCartagena de IndiasEl Naqa, I., Murphy, M.J. What is machine learning? (2015) Machine Learning in Radiation Oncology, pp. 3-11. Cited 319 times. El Naqa, I., Li, R., Murphy, M.J. (eds.), Springer, Cham https://doi.org/10.1007/978-3-319-18305-3_1Hoz, E.D.L., Zuluaga, R., Mendoza, A. Assessing and classification of academic efficiency in engineering teaching programs (2021) Journal on Efficiency and Responsibility in Education and Science, 14 (1), pp. 41-52. Cited 13 times. https://www.eriesjournal.com/index.php/eries/article/view/375 doi: 10.7160/ERIESJ.2021.140104Escorcia Guzman, J.H., Zuluaga-Ortiz, R.A., Barrios-Miranda, D.A., Delahoz-Dominguez, E.J. Information and Communication Technologies (ICT) in the processes of distribution and use of knowledge in Higher Education Institutions (HEIs) (2021) Procedia Computer Science, 198, pp. 644-649. Cited 6 times. http://www.sciencedirect.com/science/journal/18770509 doi: 10.1016/j.procs.2021.12.300Suthaharan, S. Big data classification: Problems and challenges in network intrusion prediction with machine learning (2014) Performance Evaluation Review, 41 (4), pp. 70-73. Cited 273 times. http://portal.acm.org/browse_dl.cfm?linked=1&part=newsletter&idx=J618&coll=portal&dl=ACM&CFID=57809500&CFTOKEN=27978298 doi: 10.1145/2627534.2627557Nayak, A., Dutta, K. Impacts of machine learning and artificial intelligence on mankind (2018) Proceedings of 2017 International Conference on Intelligent Computing and Control, I2C2 2017, 2018-January, pp. 1-3. Cited 27 times. ISBN: 978-153860374-1 doi: 10.1109/I2C2.2017.8321908Obermeyer, Z., Emanuel, E.J. Predicting the future-big data, machine learning, and clinical medicine (2016) New England Journal of Medicine, 375 (13), pp. 1216-1219. Cited 1519 times. http://www.nejm.org/doi/pdf/10.1056/NEJMp1606181 doi: 10.1056/NEJMp1606181Yu, Q., Miche, Y., Séverin, E., Lendasse, A. Bankruptcy prediction using Extreme Learning Machine and financial expertise (2014) Neurocomputing, 128, pp. 296-302. Cited 100 times. doi: 10.1016/j.neucom.2013.01.063Mahdavinejad, M.S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., Sheth, A.P. Machine learning for internet of things data analysis: a survey (2018) Digital Communications and Networks, 4 (3), pp. 161-175. Cited 602 times. https://www.journals.elsevier.com/digital-communications-and-networks doi: 10.1016/j.dcan.2017.10.002De La Hoz, E.J., De La Hoz, E.J., Fontalvo, T.J. Methodology of Machine Learning for the classification and Prediction of users in Virtual Education Environments (2019) Informacion Tecnologica, 30 (1), pp. 247-254. Cited 23 times. https://scielo.conicyt.cl/pdf/infotec/v30n1/0718-0764-infotec-30-01-247.pdf doi: 10.4067/S0718-07642019000100247Delahoz-Dominguez, E.J., Fontalvo, T., Zuluaga, R. Evaluation of academic productivity of citizen competencies in the teaching of engineering by using the Malmquist index (Open Access) (2020) Formacion Universitaria, 13 (5), pp. 27-34. Cited 5 times. http://www.scielo.cl/scielo.php?script=sci_serial&pid=0718-5006&lng=en&nrm=iso doi: 10.4067/S0718-50062020000500027Delahoz-Dominguez, E., Zuluaga, R., Fontalvo-Herrera, T. Dataset of academic performance evolution for engineering students (Open Access) (2020) Data in Brief, 30, art. no. 105537. Cited 17 times. https://www.journals.elsevier.com/data-in-brief doi: 10.1016/j.dib.2020.105537Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction (2015) Computational and Structural Biotechnology Journal, 13, pp. 8-17. Cited 1652 times. www.csbj.org doi: 10.1016/j.csbj.2014.11.005Erevelles, S., Fukawa, N., Swayne, L. Big Data consumer analytics and the transformation of marketing (Open Access) (2016) Journal of Business Research, 69 (2), pp. 897-904. Cited 717 times. http://www.elsevier.com/locate/jbusres doi: 10.1016/j.jbusres.2015.07.001Stalidis, G., Karapistolis, D., Vafeiadis, A. Marketing decision support using artificial intelligence and knowledge modeling: Application to tourist destination management (2015) Procedia Soc. Behav. Sci., 175, pp. 106-113. Cited 38 times.Sundsøy, P., Bjelland, J., Iqbal, A.M., Pentland, A., De Montjoye, Y.-A. Big data-driven marketing: How machine learning outperforms marketers' gut-feeling (Open Access) (2014) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8393 LNCS, pp. 367-374. Cited 29 times. http://springerlink.com/content/0302-9743/copyright/2005/ ISBN: 978-331905578-7 doi: 10.1007/978-3-319-05579-4_45F.Y, O., J.E.T, A., O, A., J.O, H., O, O., J, A. Supervised machine learning algorithms: Classification and comparison (2017) Int. J. Comput. Trends Technol., 48 (3), pp. 128-138. Cited 316 times.Allcott, H., Gentzkow, M. Social media and fake news in the 2016 election (2017) Journal of Economic Perspectives, 31 (2), pp. 211-236. Cited 2715 times. http://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.31.2.211 doi: 10.1257/jep.31.2.211Adgate, B. Newspapers have Been Struggling and then Came the Pandemic. Cited 2 times. https://www.forbes.com/sites/bradadgate/2021/08/20/newspapers-have-been-struggling-and-then-camethe-pandemic/Digital Transformation through Data for News and Media Companies http://www2.deloitte.com/us/en/pages/consulting/articles/digital-transformation-through-data-fornews.htmlde La Hoz Domínguez, E., Mendoza Mendoza, A., Ojeda De La Hoz, H. Classification of readers profiles of a digital journal (2017) Rev. UDCA Actual. Amp Divulg. Científica., 20, pp. 469-478. Cited 4 times.Ahn, J., Jung, Y. The common sense of dependence on smartphone: A comparison between digital natives and digital immigrants (2016) New Media and Society, 18 (7), pp. 1236-1256. Cited 64 times. doi: 10.1177/1461444814554902Hernández, D.H., Ramírez-Martinell, A., Cassany, D. Categorizando a los usuarios de sistemas digitales (2014) Pixel-Bit Rev. Medios Educ.. Cited 13 times. https://doi.org/10.12795/pixelbit.2014.i44.08Therneau, T., Atkinson, B., Ripley, B. rpart: Recursive partitioning and regression trees (Version R package version 4.1-10). URL HttpsCRAN R-Proj (2015) Orgpackage RpartEsposito, F., Malerba, D., Semeraro, G. A comparative analysis of methods for pruning decision trees (Open Access) (1997) IEEE Transactions on Pattern Analysis and Machine Intelligence, 19 (5), pp. 476-491. Cited 409 times. doi: 10.1109/34.589207IBM: Pruning Decision Tress https://prod.ibmdocs-production-dal-6099123ce774e592a519d7c33db8265e-0000.us-south.containers.appdomain.cloud/docs/en/db2/10.5?topic=view-pruning-decision-treesPetkovic, D., Altman, R., Wong, M., Vigil, A. Improving the explainability of Random Forest classifier – User centered approach (Open Access) (2018) Pacific Symposium on Biocomputing, 0, pp. 204-215. Cited 47 times. http://psb.stanford.edu/ doi: 10.1142/9789813235533_0019Breiman, L. Random forests (Open Access) (2001) Machine Learning, 45 (1), pp. 5-32. Cited 69880 times. doi: 10.1023/A:1010933404324Biau, G. Analysis of a random forests model (2012) Journal of Machine Learning Research, 13, pp. 1063-1095. Cited 869 times. http://jmlr.csail.mit.edu/papers/volume13/biau12a/biau12a.pdfAraújo, F.H.D., Santana, A.M., de A. Santos Neto, P. Using machine learning to support healthcare professionals in making preauthorisation decisions (Open Access) (2016) International Journal of Medical Informatics, 94, pp. 1-7. Cited 38 times. www.elsevier.com/inca/publications/store/5/0/6/0/4/0/ doi: 10.1016/j.ijmedinf.2016.06.007Faraggi, D., Reiser, B. Estimation of the area under the ROC curve (Open Access) (2002) Statistics in Medicine, 21 (20), pp. 3093-3106. Cited 311 times. doi: 10.1002/sim.1228Adeniyi, D.A., Wei, Z., Yongquan, Y. Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN) classification method (Open Access) (2016) Applied Computing and Informatics, 12 (1), pp. 90-108. Cited 266 times. https://www.emeraldgrouppublishing.com/journal/aci doi: 10.1016/j.aci.2014.10.001http://purl.org/coar/resource_type/c_6501ORIGINALg.pdfg.pdfapplication/pdf118027https://repositorio.utb.edu.co/bitstream/20.500.12585/12106/1/g.pdffd87a64bc1d4078128caf7b5fbcb77a1MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12106/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12106/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTg.pdf.txtg.pdf.txtExtracted texttext/plain4https://repositorio.utb.edu.co/bitstream/20.500.12585/12106/4/g.pdf.txtce17bbb4d4f1cbe9a2413e4ea88bb0b2MD54THUMBNAILg.pdf.jpgg.pdf.jpgGenerated Thumbnailimage/jpeg3624https://repositorio.utb.edu.co/bitstream/20.500.12585/12106/5/g.pdf.jpgec90c94ec84476132f3852dbcebfbee9MD5520.500.12585/12106oai:repositorio.utb.edu.co:20.500.12585/121062023-10-10 08:20:27.295Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=