Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter
In this paper, a passivity-based control (PBC) theory is applied to control a battery energy storage system (BESS) under current control mode by employing a bidirectional buck-boost DC-DC converter. The proposed controller guarantees globally exponentially stability for the system under closed-loop...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8876
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8876
- Palabra clave:
- Battery energy storage system (BESS)
Bidirectional buck boost DC DC converter
Charge/discharge battery operating modes
Current control mode
Lyapunov stability
Passivity based control (PBC)
Charging (batteries)
Control system stability
Electric current control
Electric inverters
Energy storage
Hamiltonians
MATLAB
Secondary batteries
Battery energy storage system (BESS)
Buck-boost DC-DC converter
Current control modes
Lyapunov stability
Operating modes
Passivity based control
DC-DC converters
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_f7a1ff36523c5552580c5e6344b01f91 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8876 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter |
title |
Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter |
spellingShingle |
Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter Battery energy storage system (BESS) Bidirectional buck boost DC DC converter Charge/discharge battery operating modes Current control mode Lyapunov stability Passivity based control (PBC) Charging (batteries) Control system stability Electric current control Electric inverters Energy storage Hamiltonians MATLAB Secondary batteries Battery energy storage system (BESS) Buck-boost DC-DC converter Current control modes Lyapunov stability Operating modes Passivity based control DC-DC converters |
title_short |
Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter |
title_full |
Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter |
title_fullStr |
Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter |
title_full_unstemmed |
Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter |
title_sort |
Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter |
dc.subject.keywords.none.fl_str_mv |
Battery energy storage system (BESS) Bidirectional buck boost DC DC converter Charge/discharge battery operating modes Current control mode Lyapunov stability Passivity based control (PBC) Charging (batteries) Control system stability Electric current control Electric inverters Energy storage Hamiltonians MATLAB Secondary batteries Battery energy storage system (BESS) Buck-boost DC-DC converter Current control modes Lyapunov stability Operating modes Passivity based control DC-DC converters |
topic |
Battery energy storage system (BESS) Bidirectional buck boost DC DC converter Charge/discharge battery operating modes Current control mode Lyapunov stability Passivity based control (PBC) Charging (batteries) Control system stability Electric current control Electric inverters Energy storage Hamiltonians MATLAB Secondary batteries Battery energy storage system (BESS) Buck-boost DC-DC converter Current control modes Lyapunov stability Operating modes Passivity based control DC-DC converters |
description |
In this paper, a passivity-based control (PBC) theory is applied to control a battery energy storage system (BESS) under current control mode by employing a bidirectional buck-boost DC-DC converter. The proposed controller guarantees globally exponentially stability for the system under closed-loop conditions via proportional control design. An averaging model of the buck-boost DC-DC converter is employed to represent the dynamics of the system via port-Hamiltonian (pH) structure. Simulation results show that a unique control law can be used to the charging or discharging battery process. MATLAB/SIMULINK software is employed to validate the proposed control methodology. © 2018 IEEE. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:32Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:32Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
IEEE Green Technologies Conference; Vol. 2018-April, pp. 89-94 |
dc.identifier.isbn.none.fl_str_mv |
9781538651834 |
dc.identifier.issn.none.fl_str_mv |
21665478 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8876 |
dc.identifier.doi.none.fl_str_mv |
10.1109/GreenTech.2018.00025 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57202648917 56207250200 57202647160 57198269531 |
identifier_str_mv |
IEEE Green Technologies Conference; Vol. 2018-April, pp. 89-94 9781538651834 21665478 10.1109/GreenTech.2018.00025 Universidad Tecnológica de Bolívar Repositorio UTB 57202648917 56207250200 57202647160 57198269531 |
url |
https://hdl.handle.net/20.500.12585/8876 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
4 April 2018 through 6 April 2018 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE Computer Society |
publisher.none.fl_str_mv |
IEEE Computer Society |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048968428&doi=10.1109%2fGreenTech.2018.00025&partnerID=40&md5=1499c5d64ac2a8d64012798d1c65dcfb |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
2018 IEEE Annual Green Technologies Conference, GreenTech 2018 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8876/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021690955399168 |
spelling |
2020-03-26T16:32:32Z2020-03-26T16:32:32Z2018IEEE Green Technologies Conference; Vol. 2018-April, pp. 89-94978153865183421665478https://hdl.handle.net/20.500.12585/887610.1109/GreenTech.2018.00025Universidad Tecnológica de BolívarRepositorio UTB57202648917562072502005720264716057198269531In this paper, a passivity-based control (PBC) theory is applied to control a battery energy storage system (BESS) under current control mode by employing a bidirectional buck-boost DC-DC converter. The proposed controller guarantees globally exponentially stability for the system under closed-loop conditions via proportional control design. An averaging model of the buck-boost DC-DC converter is employed to represent the dynamics of the system via port-Hamiltonian (pH) structure. Simulation results show that a unique control law can be used to the charging or discharging battery process. MATLAB/SIMULINK software is employed to validate the proposed control methodology. © 2018 IEEE.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015This work was supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technologyand Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015 and PhD program in Engineering of the Universidad Tecnolgica de Pereira.Recurso electrónicoapplication/pdfengIEEE Computer Societyhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85048968428&doi=10.1109%2fGreenTech.2018.00025&partnerID=40&md5=1499c5d64ac2a8d64012798d1c65dcfb2018 IEEE Annual Green Technologies Conference, GreenTech 2018Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converterinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fBattery energy storage system (BESS)Bidirectional buck boost DC DC converterCharge/discharge battery operating modesCurrent control modeLyapunov stabilityPassivity based control (PBC)Charging (batteries)Control system stabilityElectric current controlElectric invertersEnergy storageHamiltoniansMATLABSecondary batteriesBattery energy storage system (BESS)Buck-boost DC-DC converterCurrent control modesLyapunov stabilityOperating modesPassivity based controlDC-DC converters4 April 2018 through 6 April 2018Giraldo O.D.M.Ruiz A.G.Velazquez I.O.Perez G.R.E.Strzelecki, R., Benysek, G., (2008) Power Electronics in Smart Electrical Energy Networks, , http://www.springer.com/la/book/9781848003170, Springer-Verlag London, Ed. SpringerParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925Saleh, M., Esa, Y., Mhandi, Y., Brandauer, W., Mohamed, A., Design and implementation of CCNY DC microgrid testbed (2016) 2016 IEEE Industry Applications Society Annual Meeting, pp. 1-7. , OctElliman, R., Gould, C., Al-Tai, M., Review of current and future electrical energy storage devices (2015) 2015 50th International Universities Power Engineering Conference (UPEC), pp. 1-5. , SeptYang, Y., Ye, Q., Tung, L.J., Greenleaf, M., Li, H., Integrated size and energy management design of battery storage to enhance grid integration of large-scale pv power plants (2018) IEEE Trans. Ind. Electron., 65 (1), pp. 394-402. , JanHadjipaschalis, I., Poullikkas, A., Efthimiou, V., Overview of current and future energy storage technologies for electric power applications (2009) Renewable Sustainable Energy Rev., 13 (6), pp. 1513-1522Teodorescu, R., Liserre, M., Rodriguez, P., (2011) Grid Converters for Photovoltaic and Wind Power Systems, 29. , John Wiley & SonsBruce, P.G., Freunberger, S.A., Hardwick, L.J., Tarascon, J.-M., Li-O2 and Li-S batteries with high energy storage (2012) Nature Materials, 11 (1), pp. 19-29Manwell, J.F., McGowan, J.G., Lead acid battery storage model for hybrid energy systems (1993) Sol. Energy, 50 (5), pp. 399-405Ogawa, H., Ikoma, M., Kawano, H., Matsumoto, I., Metal hydride electrode for high energy density sealed nickel-metal hydride battery (1988) Power Sources 12: Research and Development in Non-Mechanical Electrical Power Sources, pp. 393-409Gao, L., Liu, S., Dougal, R.A., Dynamic lithium-ion battery model for system simulation (2002) IEEE Trans Compon Packag Technol, 25 (3), pp. 495-505Salameh, Z.M., Casacca, M.A., Lynch, W.A., A mathematical model for lead-acid batteries (1992) IEEE Trans. Energy Convers., 7 (1), pp. 93-98Bock, S., Pinheiro, J., Grundling, H., Hey, H., Pinheiro, H., Existence and stability of sliding modes in bi-directional DC-DC converters (2001) Power Electronics Specialists Conference, 2001. PESC. 2001 IEEE 32nd Annual, 3, pp. 1277-1282. , IEEEWu, T.-F., Chang, C.-H., Chen, Y.-H., A fuzzy-logic-controlled single-stage converter for PV-powered lighting system applications (2000) IEEE Trans. Ind. Electron., 47 (2), pp. 287-296Abedi, M., Song, B.-M., Kim, R.-Y., Nonlinear-model predictive control based bidirectional converter for V2G battery charger applications (2011) Vehicle Power and Propulsion Conference (VPPC), 2011 IEEE. IEEE, pp. 1-6Mojallizadeh, M.R., Badamchizadeh, M.A., Adaptive passivity-based control of a photovoltaic/battery hybrid power source via algebraic parameter identification (2016) IEEE J. Photovoltaics, 6 (2), pp. 532-539. , MarchSaleh, M., Voltage control dc/dc bidirectional converter simulink-software (2017) Mathworks-File Exchange, , https://www.mathworks.com/matlabcentral/fileexchange/63791-voltage-control-dc-dc-bidirectional-converter, Julyhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8876/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8876oai:repositorio.utb.edu.co:20.500.12585/88762021-02-02 14:37:46.452Repositorio Institucional UTBrepositorioutb@utb.edu.co |