Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter

In this paper, a passivity-based control (PBC) theory is applied to control a battery energy storage system (BESS) under current control mode by employing a bidirectional buck-boost DC-DC converter. The proposed controller guarantees globally exponentially stability for the system under closed-loop...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8876
Acceso en línea:
https://hdl.handle.net/20.500.12585/8876
Palabra clave:
Battery energy storage system (BESS)
Bidirectional buck boost DC DC converter
Charge/discharge battery operating modes
Current control mode
Lyapunov stability
Passivity based control (PBC)
Charging (batteries)
Control system stability
Electric current control
Electric inverters
Energy storage
Hamiltonians
MATLAB
Secondary batteries
Battery energy storage system (BESS)
Buck-boost DC-DC converter
Current control modes
Lyapunov stability
Operating modes
Passivity based control
DC-DC converters
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_f7a1ff36523c5552580c5e6344b01f91
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8876
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter
title Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter
spellingShingle Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter
Battery energy storage system (BESS)
Bidirectional buck boost DC DC converter
Charge/discharge battery operating modes
Current control mode
Lyapunov stability
Passivity based control (PBC)
Charging (batteries)
Control system stability
Electric current control
Electric inverters
Energy storage
Hamiltonians
MATLAB
Secondary batteries
Battery energy storage system (BESS)
Buck-boost DC-DC converter
Current control modes
Lyapunov stability
Operating modes
Passivity based control
DC-DC converters
title_short Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter
title_full Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter
title_fullStr Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter
title_full_unstemmed Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter
title_sort Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converter
dc.subject.keywords.none.fl_str_mv Battery energy storage system (BESS)
Bidirectional buck boost DC DC converter
Charge/discharge battery operating modes
Current control mode
Lyapunov stability
Passivity based control (PBC)
Charging (batteries)
Control system stability
Electric current control
Electric inverters
Energy storage
Hamiltonians
MATLAB
Secondary batteries
Battery energy storage system (BESS)
Buck-boost DC-DC converter
Current control modes
Lyapunov stability
Operating modes
Passivity based control
DC-DC converters
topic Battery energy storage system (BESS)
Bidirectional buck boost DC DC converter
Charge/discharge battery operating modes
Current control mode
Lyapunov stability
Passivity based control (PBC)
Charging (batteries)
Control system stability
Electric current control
Electric inverters
Energy storage
Hamiltonians
MATLAB
Secondary batteries
Battery energy storage system (BESS)
Buck-boost DC-DC converter
Current control modes
Lyapunov stability
Operating modes
Passivity based control
DC-DC converters
description In this paper, a passivity-based control (PBC) theory is applied to control a battery energy storage system (BESS) under current control mode by employing a bidirectional buck-boost DC-DC converter. The proposed controller guarantees globally exponentially stability for the system under closed-loop conditions via proportional control design. An averaging model of the buck-boost DC-DC converter is employed to represent the dynamics of the system via port-Hamiltonian (pH) structure. Simulation results show that a unique control law can be used to the charging or discharging battery process. MATLAB/SIMULINK software is employed to validate the proposed control methodology. © 2018 IEEE.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:32Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:32Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv IEEE Green Technologies Conference; Vol. 2018-April, pp. 89-94
dc.identifier.isbn.none.fl_str_mv 9781538651834
dc.identifier.issn.none.fl_str_mv 21665478
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8876
dc.identifier.doi.none.fl_str_mv 10.1109/GreenTech.2018.00025
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57202648917
56207250200
57202647160
57198269531
identifier_str_mv IEEE Green Technologies Conference; Vol. 2018-April, pp. 89-94
9781538651834
21665478
10.1109/GreenTech.2018.00025
Universidad Tecnológica de Bolívar
Repositorio UTB
57202648917
56207250200
57202647160
57198269531
url https://hdl.handle.net/20.500.12585/8876
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 4 April 2018 through 6 April 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE Computer Society
publisher.none.fl_str_mv IEEE Computer Society
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048968428&doi=10.1109%2fGreenTech.2018.00025&partnerID=40&md5=1499c5d64ac2a8d64012798d1c65dcfb
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 2018 IEEE Annual Green Technologies Conference, GreenTech 2018
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8876/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021690955399168
spelling 2020-03-26T16:32:32Z2020-03-26T16:32:32Z2018IEEE Green Technologies Conference; Vol. 2018-April, pp. 89-94978153865183421665478https://hdl.handle.net/20.500.12585/887610.1109/GreenTech.2018.00025Universidad Tecnológica de BolívarRepositorio UTB57202648917562072502005720264716057198269531In this paper, a passivity-based control (PBC) theory is applied to control a battery energy storage system (BESS) under current control mode by employing a bidirectional buck-boost DC-DC converter. The proposed controller guarantees globally exponentially stability for the system under closed-loop conditions via proportional control design. An averaging model of the buck-boost DC-DC converter is employed to represent the dynamics of the system via port-Hamiltonian (pH) structure. Simulation results show that a unique control law can be used to the charging or discharging battery process. MATLAB/SIMULINK software is employed to validate the proposed control methodology. © 2018 IEEE.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015This work was supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technologyand Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015 and PhD program in Engineering of the Universidad Tecnolgica de Pereira.Recurso electrónicoapplication/pdfengIEEE Computer Societyhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85048968428&doi=10.1109%2fGreenTech.2018.00025&partnerID=40&md5=1499c5d64ac2a8d64012798d1c65dcfb2018 IEEE Annual Green Technologies Conference, GreenTech 2018Passivity-based control for battery charging/discharging applications by using a buck-boost DC-DC converterinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fBattery energy storage system (BESS)Bidirectional buck boost DC DC converterCharge/discharge battery operating modesCurrent control modeLyapunov stabilityPassivity based control (PBC)Charging (batteries)Control system stabilityElectric current controlElectric invertersEnergy storageHamiltoniansMATLABSecondary batteriesBattery energy storage system (BESS)Buck-boost DC-DC converterCurrent control modesLyapunov stabilityOperating modesPassivity based controlDC-DC converters4 April 2018 through 6 April 2018Giraldo O.D.M.Ruiz A.G.Velazquez I.O.Perez G.R.E.Strzelecki, R., Benysek, G., (2008) Power Electronics in Smart Electrical Energy Networks, , http://www.springer.com/la/book/9781848003170, Springer-Verlag London, Ed. SpringerParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925Saleh, M., Esa, Y., Mhandi, Y., Brandauer, W., Mohamed, A., Design and implementation of CCNY DC microgrid testbed (2016) 2016 IEEE Industry Applications Society Annual Meeting, pp. 1-7. , OctElliman, R., Gould, C., Al-Tai, M., Review of current and future electrical energy storage devices (2015) 2015 50th International Universities Power Engineering Conference (UPEC), pp. 1-5. , SeptYang, Y., Ye, Q., Tung, L.J., Greenleaf, M., Li, H., Integrated size and energy management design of battery storage to enhance grid integration of large-scale pv power plants (2018) IEEE Trans. Ind. Electron., 65 (1), pp. 394-402. , JanHadjipaschalis, I., Poullikkas, A., Efthimiou, V., Overview of current and future energy storage technologies for electric power applications (2009) Renewable Sustainable Energy Rev., 13 (6), pp. 1513-1522Teodorescu, R., Liserre, M., Rodriguez, P., (2011) Grid Converters for Photovoltaic and Wind Power Systems, 29. , John Wiley & SonsBruce, P.G., Freunberger, S.A., Hardwick, L.J., Tarascon, J.-M., Li-O2 and Li-S batteries with high energy storage (2012) Nature Materials, 11 (1), pp. 19-29Manwell, J.F., McGowan, J.G., Lead acid battery storage model for hybrid energy systems (1993) Sol. Energy, 50 (5), pp. 399-405Ogawa, H., Ikoma, M., Kawano, H., Matsumoto, I., Metal hydride electrode for high energy density sealed nickel-metal hydride battery (1988) Power Sources 12: Research and Development in Non-Mechanical Electrical Power Sources, pp. 393-409Gao, L., Liu, S., Dougal, R.A., Dynamic lithium-ion battery model for system simulation (2002) IEEE Trans Compon Packag Technol, 25 (3), pp. 495-505Salameh, Z.M., Casacca, M.A., Lynch, W.A., A mathematical model for lead-acid batteries (1992) IEEE Trans. Energy Convers., 7 (1), pp. 93-98Bock, S., Pinheiro, J., Grundling, H., Hey, H., Pinheiro, H., Existence and stability of sliding modes in bi-directional DC-DC converters (2001) Power Electronics Specialists Conference, 2001. PESC. 2001 IEEE 32nd Annual, 3, pp. 1277-1282. , IEEEWu, T.-F., Chang, C.-H., Chen, Y.-H., A fuzzy-logic-controlled single-stage converter for PV-powered lighting system applications (2000) IEEE Trans. Ind. Electron., 47 (2), pp. 287-296Abedi, M., Song, B.-M., Kim, R.-Y., Nonlinear-model predictive control based bidirectional converter for V2G battery charger applications (2011) Vehicle Power and Propulsion Conference (VPPC), 2011 IEEE. IEEE, pp. 1-6Mojallizadeh, M.R., Badamchizadeh, M.A., Adaptive passivity-based control of a photovoltaic/battery hybrid power source via algebraic parameter identification (2016) IEEE J. Photovoltaics, 6 (2), pp. 532-539. , MarchSaleh, M., Voltage control dc/dc bidirectional converter simulink-software (2017) Mathworks-File Exchange, , https://www.mathworks.com/matlabcentral/fileexchange/63791-voltage-control-dc-dc-bidirectional-converter, Julyhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8876/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8876oai:repositorio.utb.edu.co:20.500.12585/88762021-02-02 14:37:46.452Repositorio Institucional UTBrepositorioutb@utb.edu.co