Light-induced control of the spin distribution on Cu–dithiolene complexes: A correlated ab initio study

Metal dithiolene complexes—M(dmit)2—are key building blocks for magnetic, conducting, and optical molecular materials, with singular electronic structures resulting from the mixing of the metal and dmit ligand orbitals. Their use in the design of magnetic and conducting materials is linked to the co...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8723
Acceso en línea:
https://hdl.handle.net/20.500.12585/8723
Palabra clave:
CASSCF/CASPT2 calculations
Dmit radicals
Magnetism
Spin control
UV–Vis spectrum
Chemistry
Electron spin resonance
Light
Magnet
Magnetism
Quantum theory
Electron Spin Resonance Spectroscopy
Light
Magnetics
Magnets
Quantum theory
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_f557ed25bd47125549fb584eecf6ca3b
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8723
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Light-induced control of the spin distribution on Cu–dithiolene complexes: A correlated ab initio study
title Light-induced control of the spin distribution on Cu–dithiolene complexes: A correlated ab initio study
spellingShingle Light-induced control of the spin distribution on Cu–dithiolene complexes: A correlated ab initio study
CASSCF/CASPT2 calculations
Dmit radicals
Magnetism
Spin control
UV–Vis spectrum
Chemistry
Electron spin resonance
Light
Magnet
Magnetism
Quantum theory
Electron Spin Resonance Spectroscopy
Light
Magnetics
Magnets
Quantum theory
title_short Light-induced control of the spin distribution on Cu–dithiolene complexes: A correlated ab initio study
title_full Light-induced control of the spin distribution on Cu–dithiolene complexes: A correlated ab initio study
title_fullStr Light-induced control of the spin distribution on Cu–dithiolene complexes: A correlated ab initio study
title_full_unstemmed Light-induced control of the spin distribution on Cu–dithiolene complexes: A correlated ab initio study
title_sort Light-induced control of the spin distribution on Cu–dithiolene complexes: A correlated ab initio study
dc.subject.keywords.none.fl_str_mv CASSCF/CASPT2 calculations
Dmit radicals
Magnetism
Spin control
UV–Vis spectrum
Chemistry
Electron spin resonance
Light
Magnet
Magnetism
Quantum theory
Electron Spin Resonance Spectroscopy
Light
Magnetics
Magnets
Quantum theory
topic CASSCF/CASPT2 calculations
Dmit radicals
Magnetism
Spin control
UV–Vis spectrum
Chemistry
Electron spin resonance
Light
Magnet
Magnetism
Quantum theory
Electron Spin Resonance Spectroscopy
Light
Magnetics
Magnets
Quantum theory
description Metal dithiolene complexes—M(dmit)2—are key building blocks for magnetic, conducting, and optical molecular materials, with singular electronic structures resulting from the mixing of the metal and dmit ligand orbitals. Their use in the design of magnetic and conducting materials is linked to the control of the unpaired electrons and their localized/delocalized nature. It has been recently found that UV–Vis light can control the spin distribution of some [Cu(dmit)2]−2 salts in a direct and reversible way. In this work, we study the optical response of these salts and the origin of the differences observed in the EPR spectra under UV–Vis irradiation by means of wave function-based quantum chemistry methods. The low-lying states of the complex have been characterized and the electronic transitions with a non-negligible oscillator strength have been identified. The population of the corresponding excited states promoted by the UV–Vis absorption produces significant changes in the spin distribution, and could explain the changes observed in the system upon illumination. The interaction between neighbor [Cu(dmit)2]−2 complexes is weakly ferromagnetic, consistent with the relative orientation of the magnetic orbitals and the crystal packing, but in disagreement with previous assignments. Our results put in evidence the complex electronic structure of the [Cu(dmit)2]−2 radical and the relevance of a multideterminantal approach for an adequate analysis of their properties. © 2019 by the authors.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-06T19:05:09Z
dc.date.available.none.fl_str_mv 2019-11-06T19:05:09Z
dc.date.issued.none.fl_str_mv 2019
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Molecules; Vol. 24, Núm. 6
dc.identifier.issn.none.fl_str_mv 1420-3049
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8723
dc.identifier.doi.none.fl_str_mv 10.3390/molecules24061088
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
identifier_str_mv Molecules; Vol. 24, Núm. 6
1420-3049
10.3390/molecules24061088
Universidad Tecnológica de Bolívar
Repositorio UTB
url https://hdl.handle.net/20.500.12585/8723
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI AG
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85063113670&doi=10.3390%2fmolecules24061088&partnerID=40&md5=dc7eb755437594c043ecdde8f0681586
Scopus 41662282200
Scopus 6701633179
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8723/1/DOI10_3390molecules24061088.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/8723/4/DOI10_3390molecules24061088.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/8723/5/DOI10_3390molecules24061088.pdf.jpg
bitstream.checksum.fl_str_mv ccf7546aa6113fe319c2e3f609ac3e9b
a2389b09fb47ef8ae6b7f8241cb6b920
8c6de9b8d183a3d8f594b0cfd029accd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021623814029312
spelling 2019-11-06T19:05:09Z2019-11-06T19:05:09Z2019Molecules; Vol. 24, Núm. 61420-3049https://hdl.handle.net/20.500.12585/872310.3390/molecules24061088Universidad Tecnológica de BolívarRepositorio UTBMetal dithiolene complexes—M(dmit)2—are key building blocks for magnetic, conducting, and optical molecular materials, with singular electronic structures resulting from the mixing of the metal and dmit ligand orbitals. Their use in the design of magnetic and conducting materials is linked to the control of the unpaired electrons and their localized/delocalized nature. It has been recently found that UV–Vis light can control the spin distribution of some [Cu(dmit)2]−2 salts in a direct and reversible way. In this work, we study the optical response of these salts and the origin of the differences observed in the EPR spectra under UV–Vis irradiation by means of wave function-based quantum chemistry methods. The low-lying states of the complex have been characterized and the electronic transitions with a non-negligible oscillator strength have been identified. The population of the corresponding excited states promoted by the UV–Vis absorption produces significant changes in the spin distribution, and could explain the changes observed in the system upon illumination. The interaction between neighbor [Cu(dmit)2]−2 complexes is weakly ferromagnetic, consistent with the relative orientation of the magnetic orbitals and the crystal packing, but in disagreement with previous assignments. Our results put in evidence the complex electronic structure of the [Cu(dmit)2]−2 radical and the relevance of a multideterminantal approach for an adequate analysis of their properties. © 2019 by the authors.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 1411712-51515, Ministerio de Economía y Competitividad, Federación Española de Enfermedades Raras: CTQ-2015-69019-PRecurso electrónicoapplication/pdfengMDPI AGhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85063113670&doi=10.3390%2fmolecules24061088&partnerID=40&md5=dc7eb755437594c043ecdde8f0681586Scopus 41662282200Scopus 6701633179Light-induced control of the spin distribution on Cu–dithiolene complexes: A correlated ab initio studyinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1CASSCF/CASPT2 calculationsDmit radicalsMagnetismSpin controlUV–Vis spectrumChemistryElectron spin resonanceLightMagnetMagnetismQuantum theoryElectron Spin Resonance SpectroscopyLightMagneticsMagnetsQuantum theoryZapata-Rivera, J.Calzado, C.J.Day, P., Coronado, E., Molecular materials combining magnetic and conducting properties (2005) Magnetism: Molecules to Materials, , Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, GermanyFourmigué, M., Ouahab, L., (2011) Conducting and Magnetic Organometallic Molecular Materials, , Springer: Berlin/Heidelberg, GermanyRobertson, N., Cronin, L., Metal bis-1,2-dithiolene complexes in conducting or magnetic crystalline assemblies (2002) Coord. Chem. Rev., 227, pp. 93-127Kobayashi, H., Miyamoto, A., Kato, R., Sakai, F., Kobayashi, A., Yamakita, Y., Furukawa, Y., Watanabe, T., Mixed valency of Cu, electron-mass enhancement, and three-dimensional arrangement of magnetic sites in the organic conductors (R1,R2-N,N’-dicyanoquinonediimine)2Cu (where R1,R2=CH3,CH3O,Cl,Br) (1993) Phys. Rev. B, 47, pp. 3500-3510Uji, S., Terashima, T., Aoki, H., Brooks, J.S., Kato, R., Sawa, H., Aonuma, S., Kinoshita, M., Coexistence of one- And three-dimensional fermi surfaces and heavy cyclotron mass in the molecular conductor (DME-DCNQI)2Cu (1994) Phys. Rev. B, 50, pp. 15597-15601Uji, S., Shinagawa, H., Terashima, T., Yakabe, T., Terai, Y., Tokumoto, M., Kobayashi, A., Kobayashi, H., Magnetic-field-induced superconductivity in a two-dimensional organic conductor (2001) Nature, 410, p. 908Sawa, H., Tamura, M., Aonuma, S., Kinoshita, M., Kato, R., Charge-transfer-controlled phase transition in a molecular conductor, (DME-DCNQI)2Cu –doping effect– (1994) J. Phys. Soc. Jpn., 63, pp. 4302-4305Fujiwara, H., Kobayashi, H., Fujiwara, E., Kobayashi, A., An indication of magnetic-field-induced superconductivity in a bifunctional layered organic conductor, κ-(bets)2FeBr4 (2002) J. Am. Chem. Soc., 124, pp. 6816-6817Coronado, E., Galan-Mascaros, J.R., Gomez-Garcia, C.J., Laukhin, V., Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound (2000) Nature, 408, pp. 447-449Nakazawa, Y., Sato, A., Seki, M., Saito, K., Hiraki, K.-I., Takahashi, T., Kanoda, K., Sorai, M., Spin-peierls transition of the quasi-one-dimensional electronic system (DMe-DCNQI) _ (2) M (M = Li, Ag) probed by heat capacity (2003) Phys. Rev. B, 68, p. 085112Coomber, A.T., Beljonne, D., Friend, R.H., Brédas, J.L., Charlton, A., Robertson, N., Underbill, A.E., Day, P., Intermolecular interactions in the molecular ferromagnetic NH4Ni(mnt)2· H2O (1996) Nature, 380, p. 144Kato, R., Conducting metal dithiolene complexes: Structural and electronic properties (2004) Chem. Rev., 104, pp. 5319-5346Kobayashi, A., Fujiwara, E., Kobayashi, H., Single-component molecular metals with extended-ttf dithiolate ligands (2004) Chem. Rev., 104, pp. 5243-5264Kobayashi, H., Fujiwara, E., Fujiwara, H., Tanaka, H., Otsuka, T., Kobayashi, A., Tokumoto, M., Cassoux, P., Antiferromagnetic organic superconductors, bets2FeX4 (2002) Mol. Cryst. Liquid Cryst., 380, pp. 139-144Pop, F., Avarvari, N., Chiral metal-dithiolene complexes (2017) Coord. Chem. Rev., 346, pp. 20-31Dong, R., Pfeffermann, M., Liang, H., Zheng, Z., Zhu, X., Zhang, J., Feng, X., Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution (2015) Angew. Chem. Int. Ed., 54, pp. 12058-12063Zarkadoulas, A., Koutsouri, E., Mitsopoulou, C.A., A perspective on solar energy conversion and water photosplitting by dithiolene complexes (2012) Coord. Chem. Rev., 256, pp. 2424-2434Kusamoto, T., Nishihara, H., Zero-, one- And two-dimensional bis(dithiolato)metal complexes with unique physical and chemical properties (2019) Coord. Chem. Rev., 380, pp. 419-439Kato, R., Development of π-electron systems based on Mm(dmit)2] (M = Ni and Pddmit: 1,3-dithiole-2-thione-4,5-dithiolate) anion radicals (2014) Bull. Chem. Soc. Jpn., 87, pp. 355-374Naito, T., Karasudani, T., Mori, S., Ohara, K., Konishi, K., Takano, T., Takahashi, Y., Inoue, K., Molecular photoconductor with simultaneously photocontrollable localized spins (2012) J. Am. Chem. Soc., 134, pp. 18656-18666Naito, T., Karasudani, T., Ohara, K., Takano, T., Takahashi, Y., Inabe, T., Furukawa, K., Nakamura, T., Simultaneous control of carriers and localized spins with light in organic materials (2012) Adv. Mater., 24, pp. 6153-6157Noma, H., Ohara, K., Naito, T., Cu(dmit)2]2− building block for molecular conductors and magnets with photocontrollable spin distribution (2014) Chem. Lett., 43, pp. 1230-1232Noma, H., Ohara, K., Naito, T., Direct control of spin distribution and anisotropy in cu-dithiolene complex anions by light (2016) Inorganics, 4, p. 7Naito, T., Development of a control method for conduction and magnetism in molecular crystals (2017) Bull. Chem. Soc. Jpn., 90, pp. 89-136Ray, K., Weyhermüller, T., Neese, F., Wieghardt, K., Electronic structure of square planar bis(benzene-1,2dithiolato)metal complexes [M(L)2]z (z = 2−, 1−, 0M = Ni, Pd, Pt, Cu, Au): An experimental, density functional, and correlated ab initio study (2005) Inorg. Chem., 44, pp. 5345-5360Gewirth, A.A., Cohen, S.L., Schugar, H.J., Solomon, E.I., Spectroscopic and theoretical studies of the unusual epr parameters of distorted tetrahedral cupric sites: Correlations to X-ray spectral features of core levels (1987) Inorg. Chem., 26, pp. 1133-1146Hoffmann, S.K., Goslar, J., Lijewski, S., Zalewska, A., Epr and ese of cus4 complex in Cu(dmit)2: G-factor and hyperfine splitting correlation in tetrahedral cu–sulfur complexes (2013) J. Magn. Reson., 236, pp. 7-14Ozarowski, A., Calzado, C.J., Sharma, R.P., Kumar, S., Jezierska, J., Angeli, C., Spizzo, F., Ferretti, V., Metal–metal interactions in trinuclear copper(II) complexes [Cu3(RCOO)4(H2tea)2] and binuclear [Cu2(RCOO)2(H2tea)2]. Syntheses and combined structural, magnetic, high-field electron paramagnetic resonance, and theoretical studies (2015) Inorg. Chem., 54, pp. 11916-11934Ozarowski, A., The zero-field-splitting parameter D in binuclear copper(II) carboxylates is negative (2008) Inorg. Chem., 47, pp. 9760-9762Nesterova, O.V., Nesterov, D.S., Jezierska, J., Pombeiro, A.J.L., Ozarowski, A., Copper(II) complexes with bulky n-substituted diethanolamines: High-field electron paramagnetic resonance, magnetic, and catalytic studies in oxidative cyclohexane amidation (2018) Inorg. Chem., 57, pp. 12384-12397Reger, D.L., Pascui, A.E., Foley, E.A., Smith, M.D., Jezierska, J., Wojciechowska, A., Stoian, S.A., Ozarowski, A., Dinuclear metallacycles with single M–X–M bridges (X = Cl–, Br–M = Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)): Strong antiferromagnetic superexchange interactions (2017) Inorg. Chem., 56, pp. 2884-2901Eisenberg, R., Gray, H.B., Noninnocence in metal complexes: A dithiolene dawn (2011) Inorg. Chem., 50, pp. 9741-9751McCleverty, J.A., Metal 1,2-dithiolene and related complexes (2007) Progress in Inorganic Chemistry, , Cotton, F.A., Ed.Wiley Online Library: Hoboken, NJ, USAOlk, R.-M., Olk, B., Dietzsch, W., Kirmse, R., Hoyer, E., The chemistry of 1,3-dithiole-2-thione-4,5-dithiolate (dmit) (1992) Coord. Chem. Rev., 117, pp. 99-131Szilagyi, R.K., Lim, B.S., Glaser, T., Holm, R.H., Hedman, B., Hodgson, K.O., Solomon, E.I., Description of the ground state wave functions of ni dithiolenes using sulfur k-edge X-ray absorption spectroscopy (2003) J. Am. Chem. Soc., 125, pp. 9158-9169Zapata-Rivera, J., Maynau, D., Calzado, C.J., Evaluation of the magnetic interactions in salts containing [ni(dmit)2]− Radical anions (2017) Chem. Mater., 29, pp. 4317-4329Sarangi, R., DeBeer George, S., Rudd, D.J., Szilagyi, R.K., Ribas, X., Rovira, C., Almeida, M., Solomon, E.I., Sulfur k-edge X-ray absorption spectroscopy as a probe of ligand–metal bond covalency: Metal vs ligand oxidation in copper and nickel dithiolene complexes (2007) J. Am. Chem. Soc., 129, pp. 2316-2326Stach, J., Kirmse, R., Dietzsch, W., Olk, R.M., Hoyer, E., Single-crystal EPR spectra of tetra-n-butylammonium bis(isotrithione-3,4-dithiolato)cuprate(II) (1984) Inorg. Chem., 23, pp. 4779-4780Rosa, A., Ricciardi, G., Baerends, E.J., Structural properties of M(dmit)2-based (M = Ni, Pd, Ptdmit2− = 2-thioxo-1,3-dithiole-4,5-dithiolato) molecular metals. Insights from density functional calculations (1998) Inorg. Chem., 37, pp. 1368-1379Hoffmann, S.K., Goslar, J., Lijewski, S., Tadyszak, K., Zalewska, A., Jankowska, A., Florczak, P., Kowalak, S., EPR and UV-Vis study on solutions of Cu(II) dmit complexes and the complexes entrapped in zeolite Z and ZIF-Cu(IM)2 (2014) Microporous Mesoporous Mater, 186, pp. 57-64Kirmse, R., Stach, J., Dietzsch, W., Steimecke, G., Hoyer, E., Single-crystal epr studies on nickel(III), palladium(III), and platinum(III) dithiolene chelates containing the ligands isotrithionedithiolate, o-xylenedithiolate, and maleonitriledithiolate (1980) Inorg. Chem., 19, pp. 2679-2685Cabrero, J., Calzado, C.J., Maynau, D., Caballol, R., Malrieu, J.P., Metal-ligand delocalization in magnetic orbitals of binuclear complexes (2002) J. Phys. Chem. A, 106, pp. 8146-8155Calzado, C.J., Malrieu, J.P., Proposal of an extended t-j hamiltonian for high-t-c cuprates from ab initio calculations on embedded clusters (2001) Phys. Rev. B, 63Gellé, A., Munzarová, M.L., Lepetit, M.-B., Illas, F., Role of dynamical polarization of the ligand-to-metal charge transfer excitations in ab initio determination of effective exchange parameters (2003) Phys. Rev. B, 68, p. 125103Tenti, L., Maynau, D., Angeli, C., Calzado, C.J., Highly efficient perturbative plus variational strategy based on orthogonal valence bond theory for the evaluation of magnetic coupling constants. Application to the trinuclear Cu(II) site of multicopper oxidases (2016) Phys. Chem. Chem. Phys., 18, pp. 18365-18380Giner, E., Angeli, C., Spin density and orbital optimization in open shell systems: A rational and computationally efficient proposal (2016) J. Chem. Phys., 144, p. 104104Giner, E., Angeli, C., Metal-ligand delocalization and spin density in the CuCl2 and [CuCl4]2− molecules: Some insights from wave function theory (2015) J. Chem. Phys., 143, p. 124305Baker, G.A., Jr., Rushbrooke, G.S., Gilbert, H.E., High-temperature series expansions for the spin-1/2 heisenberg model by the method of irreducible representations of the symmetric group (1964) Phys. Rev., 135, pp. A1272-A1277Roos, B.O., (1987) The Complete Active Space Self-Consistent Field Method and Its Applications in Electronic Structure Calculations, , John Wiley & Sons: Hoboken, NJ, USAAndersson, K., Per-Ake, M., Roos, B.O., Second-order perturbation theory with a complete active space self-consistent field reference function (1992) J. Chem. Phys., 96, pp. 1218-1226Finley, J., Malmqvist, P.-Å., Roos, B.O., Serrano-Andrés, L., The multi-state caspt2 method (1998) Chem. Phys. Lett., 288, pp. 299-306Malmqvist, P.-A.K., Roos, B.O., Schimmelpfennig, B., The restricted active space (ras) state interaction approach with spin–orbit coupling (2002) Chem. Phys. Lett., 357, pp. 230-240Miralles, J., Castell, O., Caballol, R., Malrieu, J.-P., Specific ci calculation of energy differences: Transition energies and bond energies (1993) Chem. Phys., 172, pp. 33-43Miralles, J., Daudey, J.-P., Caballol, R., Variational calculation of small energy differences. The singlet-triplet gap in [cu2cl6]2− (1992) Chem. Phys. Lett., 198, pp. 555-562Malrieu, J.P., Caballol, R., Calzado, C.J., De Graaf, C., Guihery, N., Magnetic interactions in molecules and highly correlated materials: Physical content, analytical derivation, and rigorous extraction of magnetic hamiltonians (2014) Chem. Rev., 114, pp. 429-492Roos, B.O., Lindh, R., Malmqvist, P.A., Veryazov, V., Widmark, P.O., New relativistic ano basis sets for transition metal atoms (2005) J. Phys. Chem. A, 109, pp. 6575-6579Roos, B.O., Lindh, R., Malmqvist, P.A., Veryazov, V., Widmark, P.O., Main group atoms and dimers studied with a new relativistic ano basis set (2004) J. Phys. Chem. A, 108, pp. 2851-2858Aquilante, F., Autschbach, J., Carlson, R.K., Chibotaru, L.F., Delcey, M.G., De Vico, L., Fdez Galván, I., Gagliardi, L., Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table (2016) J. Comput. Chem., 37, pp. 506-541Maynau, D., (1998) Casdi Package Developed at The Laboratoire De Physique Quantique, , Université Paul Sabatier: Toulouse, FranceBen Amor, N., Maynau, D., Size-consistent self-consistent configuration interaction from a complete active space (1998) Chem. Phys. Lett., 286, pp. 211-220http://purl.org/coar/resource_type/c_6501ORIGINALDOI10_3390molecules24061088.pdfapplication/pdf2575202https://repositorio.utb.edu.co/bitstream/20.500.12585/8723/1/DOI10_3390molecules24061088.pdfccf7546aa6113fe319c2e3f609ac3e9bMD51TEXTDOI10_3390molecules24061088.pdf.txtDOI10_3390molecules24061088.pdf.txtExtracted texttext/plain78318https://repositorio.utb.edu.co/bitstream/20.500.12585/8723/4/DOI10_3390molecules24061088.pdf.txta2389b09fb47ef8ae6b7f8241cb6b920MD54THUMBNAILDOI10_3390molecules24061088.pdf.jpgDOI10_3390molecules24061088.pdf.jpgGenerated Thumbnailimage/jpeg88607https://repositorio.utb.edu.co/bitstream/20.500.12585/8723/5/DOI10_3390molecules24061088.pdf.jpg8c6de9b8d183a3d8f594b0cfd029accdMD5520.500.12585/8723oai:repositorio.utb.edu.co:20.500.12585/87232020-10-23 04:44:34.702Repositorio Institucional UTBrepositorioutb@utb.edu.co