Genetic diversity of Rhizoctonia solaniAG-3PT, the etiological cause of stem canker and black scurf in Colombian potatoes

Stem canker and black scurf are potato diseases caused by the fungus Rhizoctonia solani, anastomosisgroup 3 (AG-3PT). This fungus affects potato roots, stems, and tubers, reducing crop yields. This study aimsto determine the genetic diversity of R. solaniAG-3PT obtained from the Colombian department...

Full description

Autores:
Chavarro Mesa, Edisson
Herrera-Blanco, Néstor Andrés
Beltrán-Acosta, Camilo Rubén
Cotes-Prado, Alba Marina
Ángel-Díaz, Jorge Evelio
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10632
Acceso en línea:
https://hdl.handle.net/20.500.12585/10632
https://doi.org/10.21930/rcta.vol22_num3_art:1888
Palabra clave:
Random amplified microsatellites (RAMs)
Ribosomal DNA
Solanum phureja
Solanum tuberosum
Thanatephorus cucumeris
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_f514bc38efdecbae2bcc0044d7925c96
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10632
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Genetic diversity of Rhizoctonia solaniAG-3PT, the etiological cause of stem canker and black scurf in Colombian potatoes
title Genetic diversity of Rhizoctonia solaniAG-3PT, the etiological cause of stem canker and black scurf in Colombian potatoes
spellingShingle Genetic diversity of Rhizoctonia solaniAG-3PT, the etiological cause of stem canker and black scurf in Colombian potatoes
Random amplified microsatellites (RAMs)
Ribosomal DNA
Solanum phureja
Solanum tuberosum
Thanatephorus cucumeris
title_short Genetic diversity of Rhizoctonia solaniAG-3PT, the etiological cause of stem canker and black scurf in Colombian potatoes
title_full Genetic diversity of Rhizoctonia solaniAG-3PT, the etiological cause of stem canker and black scurf in Colombian potatoes
title_fullStr Genetic diversity of Rhizoctonia solaniAG-3PT, the etiological cause of stem canker and black scurf in Colombian potatoes
title_full_unstemmed Genetic diversity of Rhizoctonia solaniAG-3PT, the etiological cause of stem canker and black scurf in Colombian potatoes
title_sort Genetic diversity of Rhizoctonia solaniAG-3PT, the etiological cause of stem canker and black scurf in Colombian potatoes
dc.creator.fl_str_mv Chavarro Mesa, Edisson
Herrera-Blanco, Néstor Andrés
Beltrán-Acosta, Camilo Rubén
Cotes-Prado, Alba Marina
Ángel-Díaz, Jorge Evelio
dc.contributor.author.none.fl_str_mv Chavarro Mesa, Edisson
Herrera-Blanco, Néstor Andrés
Beltrán-Acosta, Camilo Rubén
Cotes-Prado, Alba Marina
Ángel-Díaz, Jorge Evelio
dc.subject.keywords.spa.fl_str_mv Random amplified microsatellites (RAMs)
Ribosomal DNA
Solanum phureja
Solanum tuberosum
Thanatephorus cucumeris
topic Random amplified microsatellites (RAMs)
Ribosomal DNA
Solanum phureja
Solanum tuberosum
Thanatephorus cucumeris
description Stem canker and black scurf are potato diseases caused by the fungus Rhizoctonia solani, anastomosisgroup 3 (AG-3PT). This fungus affects potato roots, stems, and tubers, reducing crop yields. This study aimsto determine the genetic diversity of R. solaniAG-3PT obtained from the Colombian departments of Antioquia, Boyacá, and Cundinamarca. Restrictionfragment lengthpolymorphism(RFLP) analysis of the ITS-5.8S ribosomal DNA region allowed the differentiation and specific identification of AG-3PT and AG2-1 anastomosis groups. These results confirm that AG-3PT is the primary causative agent and etiologicalorigin of stem canker and black scurf in Colombia. Two distinct subgroups within R. solaniAG-3PT were identified using random amplified microsatellite markers (RAMs); AG-3PT (A) shares a similarity index of 78%, and AG-3PT (B) shares a similarity of 79% among its isolates. These subgroups were not linked to a geographical origin but to the AG group to which they belong. Nei’s genetic diversity [D] of 0.25 confirmed the high genetic diversity for AG-3PT through RAMsanalysis, related to a high evolutive potential within the AG-3PT group in Colombia. Finally, the R. solaniAG-3PT fungus obtained from Cundinamarca had the adaptative potential to emerge as a pathogen of Solanum phurejain Colombia, possibly due tothe similarity between pathosystems.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-10-18
dc.date.accessioned.none.fl_str_mv 2022-03-18T18:46:30Z
dc.date.available.none.fl_str_mv 2022-03-18T18:46:30Z
dc.date.submitted.none.fl_str_mv 2022-03-18
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Chavarro-Mesa, E., Herrera-Blanco, N. E., Beltrán-Acosta, C. R., Cotes-Prado, A. M., & Ángel-Díaz, J. E. (2021). Genetic diversity of Rhizoctonia solaniAG-3PT, the etiological cause of stem canker and black scurf in Colombian potatoes. Ciencia y TecnologíaAgropecuaria, 22(3), e1888. https://doi.org/10.21930/rcta.vol22_num3_art:1888
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10632
dc.identifier.doi.none.fl_str_mv https://doi.org/10.21930/rcta.vol22_num3_art:1888
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Chavarro-Mesa, E., Herrera-Blanco, N. E., Beltrán-Acosta, C. R., Cotes-Prado, A. M., & Ángel-Díaz, J. E. (2021). Genetic diversity of Rhizoctonia solaniAG-3PT, the etiological cause of stem canker and black scurf in Colombian potatoes. Ciencia y TecnologíaAgropecuaria, 22(3), e1888. https://doi.org/10.21930/rcta.vol22_num3_art:1888
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10632
https://doi.org/10.21930/rcta.vol22_num3_art:1888
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 24 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Cienc. Tecnol. Agropecuaria, 22(3): e1888
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10632/1/1888-Texto%20del%20art%c3%adculo-17148-1-10-20211018.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10632/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10632/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10632/4/1888-Texto%20del%20art%c3%adculo-17148-1-10-20211018.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10632/5/1888-Texto%20del%20art%c3%adculo-17148-1-10-20211018.pdf.jpg
bitstream.checksum.fl_str_mv 3aca8116c4ce0a061040e2c1f0a346c6
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
afb6757ee1cfa74c599a4bffe17241ea
6cdd9ad1f9086396133a073391f116c8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021602398961664
spelling Chavarro Mesa, Edisson800ba77d-129a-48f9-bc50-2a8c25be1208Herrera-Blanco, Néstor Andrés311ee86a-fa90-4d93-b70a-9f0c08b94277Beltrán-Acosta, Camilo Rubén1f6463b8-c8a7-4074-b6de-3b3823154eb8Cotes-Prado, Alba Marina59abbf12-95ef-4b9e-a703-89cb15ef5bd4Ángel-Díaz, Jorge Evelio1ddbfb9b-542f-4e38-99b4-3cb2c41a1d132022-03-18T18:46:30Z2022-03-18T18:46:30Z2021-10-182022-03-18Chavarro-Mesa, E., Herrera-Blanco, N. E., Beltrán-Acosta, C. R., Cotes-Prado, A. M., & Ángel-Díaz, J. E. (2021). Genetic diversity of Rhizoctonia solaniAG-3PT, the etiological cause of stem canker and black scurf in Colombian potatoes. Ciencia y TecnologíaAgropecuaria, 22(3), e1888. https://doi.org/10.21930/rcta.vol22_num3_art:1888https://hdl.handle.net/20.500.12585/10632https://doi.org/10.21930/rcta.vol22_num3_art:1888Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarStem canker and black scurf are potato diseases caused by the fungus Rhizoctonia solani, anastomosisgroup 3 (AG-3PT). This fungus affects potato roots, stems, and tubers, reducing crop yields. This study aimsto determine the genetic diversity of R. solaniAG-3PT obtained from the Colombian departments of Antioquia, Boyacá, and Cundinamarca. Restrictionfragment lengthpolymorphism(RFLP) analysis of the ITS-5.8S ribosomal DNA region allowed the differentiation and specific identification of AG-3PT and AG2-1 anastomosis groups. These results confirm that AG-3PT is the primary causative agent and etiologicalorigin of stem canker and black scurf in Colombia. Two distinct subgroups within R. solaniAG-3PT were identified using random amplified microsatellite markers (RAMs); AG-3PT (A) shares a similarity index of 78%, and AG-3PT (B) shares a similarity of 79% among its isolates. These subgroups were not linked to a geographical origin but to the AG group to which they belong. Nei’s genetic diversity [D] of 0.25 confirmed the high genetic diversity for AG-3PT through RAMsanalysis, related to a high evolutive potential within the AG-3PT group in Colombia. Finally, the R. solaniAG-3PT fungus obtained from Cundinamarca had the adaptative potential to emerge as a pathogen of Solanum phurejain Colombia, possibly due tothe similarity between pathosystems.24 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Cienc. Tecnol. Agropecuaria, 22(3): e1888Genetic diversity of Rhizoctonia solaniAG-3PT, the etiological cause of stem canker and black scurf in Colombian potatoesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Random amplified microsatellites (RAMs)Ribosomal DNASolanum phurejaSolanum tuberosumThanatephorus cucumerisCartagena de IndiasInvestigadoresAjayi-Oyetunde, O. O., & Bradley, C. A. (2017). Identification and Characterization of Rhizoctonia Species Associated with Soybean Seedling Disease. Plant Disease, 101(4), 520-533.Aliferis, K. A., & Jabaji, S. (2012). FT-ICR/MS and GC-EI/MS metabolomics networking unravels global potato sprout’s responses to Rhizoctonia solani infection. PLoS ONE, 7(8).Anderson, N. A. (1982). The Genetics and Pathology of Rhizoctonia Solani. Annual Review of Phytopathology, 20, 329-347Anguiz, R., & Martin, C. (1989). Anastomosis groups, pathogenicity, and other characteristics of Rhizoctonia solani isolated from potatoes in Peru. Plant Disease, 73(3), 199-201.Balali, G. R., Whisson, D. L., Scott, E. S., & Neate, S. M. (1996). DNA fingerprinting probe specific to isolates of Rhizoctonia solani AG-3. Mycological Research, 100(4), 467-470.Horsfall, J. G., & Barratt, R. W. (1945). An improved grading system for measuring plant disease. Phytopathology, 35, 655.Beltrán, C., Cotes, A. M., & Becerra, A. P. (2007). Selection of isolates of Trichoderma spp. with biocontrol activity over Rhizoctonia solani in potato. IOBC WPRS Bulletin, 30(6/2), 55-58.Beltrán, C., Velandia, C., & Cotes, A. (2011). Trichoderma koningiopsis Th003, a biological alternative in the control of Rhizoctonia solani in potato cultivars. CORPOICA.Campion, C., Chatot, C., Perraton, B., & Andrivon, D. (2003). Anastomosis groups, pathogenicity and sensitivity to fungicides of Rhizoctonia solani isolates collected on potato crops in France. European Journal of Plant Pathology, 109(9), 983-992.Carling, D. E., Brainard, K. A., Virgen-Calleros, G., & Olalde-Portugal, V. (1998). First Report of Rhizoctonia solani AG-7 on Potato in Mexico. Plant Disease, 82(1), 127.Carling, D. E., Kuninaga, S., & Brainard, K. A. (2002). Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences, and virulence levels among subsets of Rhizoctonia solani anastomosis group-2 (AG-2) and AG-BI. Phytopathology, 92(1), 43-50.Cedeño, L., Carrero, C., Quintero, K., Araujo, Y., Pino, H., & García, R. (2001). Identificación y virulencia de grupos de anastomosis de Rhizoctonia solani Kühn asociados con papa en Mérida, Venezuela. Interciencia, 26(7), 296-300.Ceresini, P. C., Shew, H. D., & Cubeta, M. A. (1999). RFLP analysis of the PCR amplified ribosomal DNA regions ITS and IGS indicated that isolates of Rhizoctonia solani from potato and tobacco represent distinct groups within the anastomosis group 3. Phytopathology, 89, S12.Ceresini, P. C., Shew, H. D., Vilgalys, R. J., & Cubeta, M. A. (2002). Genetic diversity of Rhizoctonia solani AG-3 from potato and tobacco in North Carolina. Mycologia, 94(3), 437-449Ceresini, P. C., Shew, H. D., Vilgalys, R. J., Rosewich, U. L., & Cubeta, M. A. (2002). Genetic structure of populations of Rhizoctonia solani AG-3 on potato in eastern North Carolina. Mycologia, 94(3), 450-460.Chavarro-Mesa, E., Ceresini, P. C., Ramos Molina, L. M., Pereira, D. A. S., Schurt, D. A., Vieira, J. R., & McDonald, B. A. (2015). The Urochloa foliar blight and collar rot pathogen Rhizoctonia solani AG-1 IA emerged in South America via a host shift from rice. Phytopathology, 105(11), 1475-1486Chavarro-Mesa, E., Ceresini, P., Pereira, D., Vicentini, S., Silva, T., Ramos-Molina, L., Negrisoli, M., Schurt, D., & Vieira Júnior, J. R. (2020). A broad diversity survey of Rhizoctonia species from the Brazilian Amazon reveals the prevalence of R. solani AG-1 IA on signal grass and the new record of AG-1 IF on cowpea and soybeans. Plant Pathology, 69(3), 455-466.Ciampi, M. B., Meyer, M. C., Costa, M. J. N., Zala, M., McDonald, B. A., & Ceresini, P. C. (2008). Genetic Structure of Populations of Rhizoctonia solani Anastomosis Group-1 IA from Soybean in Brazil. Phytopathology, 98(8), 932-941.Cotes, A. M. (Ed.). (2018). Control biológico de fitopatógenos, insectos y ácaros (Vol. 2). Corporación Colombiana de Investigación Agropecuaria (Agrosavia).Das, S., Shah, F. A., Butler, R. C., Falloon, R. E., Stewart, A., Raikar, S., & Pitman, A. R. (2014). Genetic variability and pathogenicity of Rhizoctonia solani associated with black scurf of potato in New Zealand. Plant Pathology, 63(3), 651-666.David, G. Q., Chavarro-Mesa, E., Schurt, D. A., & Ceresini, P. C. (2018). Rhizoctonia como fitopatógeno no agroecossistema brasileiro. In U.P. Lopes, & S.J. Michereff (Eds.), Desafios Manejo Doenças Radiculares causadas por fungos (pp. 33-55).Elbakali, A. M., Lilja, A., Hantula, J., & Martin, M. P. (2003). Identification of Spanish isolates of Rhizoctonia solani from potato by anastomosis grouping, ITS-RFLP and RAMS-fingerprinting. Phytopathologia Mediterranea, 42(2), 167-176.Ferrucho, R. L., Ceresini, P. C., Ramirez-Escobar, U. M., McDonald, B. A., Cubeta, M. A., & García-Domínguez, C. (2013). The population genetic structure of Rhizoctonia solani AG-3PT from potato in the Colombian Andes. Phytopathology, 103(8), 862-869.Ferrucho, R. L., Cifuentes, J. M., Ceresini, P., & García-domínguez, C. (2012). Rhizoctonia solani AG-3PT is the major pathogen associated with potato stem canker and black scurf in Colombia. Agronomía Colombiana, 30(2), 204-2013González-García, V., Portal Onco, M. A., & Rubio Susan, V. (2006). Review. Biology and systematics of the form genus Rhizoctonia. Spanish Journal of Agricultural Research, 4(1), 55-79.Gonzalez-Vera, A. D., Bernardes-de-Assis, J., Zala, M., McDonald, B. A., Correa-Victoria, F., Graterol-Matute, E. J., & Ceresini, P. C. (2010). Divergence between sympatric rice-and maize-infecting populations of Rhizoctonia solani AG-1 IA from Latin America. Phytopathology, 100(2), 172-182.Goodwin, D. C., & Lee, S. B. (1993). Microwave miniprep of total genomic DNA from fungi, plants, protists and animals for PCR. BioTechniques, 15(3), 438-444.Hammer, Ø., Harper, D., & Ryan, P. (2001). Past: Paleontological statistics software package for education and data analysis. Paleontologia Electronica, 4(1), 1-9.Hantula, J., Dusabenyagasani, M., & Hamelin, R. C. (1996). Random amplified microsatellites (RAMS)-a novel method for characterizing genetic variation within fungi. European Journal of Forest Pathology, 26(3), 159-166.Helgason, T., Watson, I. J., & Young, J. P. W. (2003). Phylogeny of the Glomerales and Diversisporales (Fungi: Glomeromycota) from actin and elongation factor 1-alpha sequences. FEMS Microbiology Letters, 229(1), 127-132.Herrera, C. A., Fierro, L. H., & Moreno, J. D. (Eds.). (2000). Manejo integrado del cultivo de la papa [Technical manual]. Corporación Colombiana de Investigación Agropecuaria (CORPOICA).Hunter, P. R. (1990). Reproducibility and indices of discriminatory power of microbial typing methods. Journal of Clinical Microbiology, 28(9), 1903-1905.Hunter, P. R., & Gaston, M. A. (1988). Numerical index of the discriminatory ability of typing systems: An application of Simpson’s index of diversity. Journal of Clinical Microbiology, 26(11), 2465-2466.Inokuti, E. M., Reis, A., Ceresini, P. C., Câmara, M. P. S., & Michereff, S. J. (2019). Diversity and pathogenicity of anastomosis groups of Rhizoctonia associated with potato stem canker and black scurf diseases in Brazil. European Journal of Plant Pathology, 153(4), 1333–1339.Jia, Y., Correa-Victoria, F., McClung, A., Zhu, L., Liu, G., Wamishe, Y., & Correll, J. C. (2007). Rapid determination of rice cultivar responses to the sheath blight pathogen Rhizoctonia solani using a micro-chamber screening method. Plant Disease, 91(5), 485-489.Justesen, A. F., Yohalem, D., Bay, A., & Nicolaisen, M. (2003). Genetic diversity in potato field populations of Thanatephorus cucumeris AG-3, revealed by ITS polymorphism and RAPD markers. Mycological Research, 107(11), 1323-1331.Kuninaga, S., Carling, D. E., Takenuichi, T., & Yokosawa, R. (2000). Comparison of rDNA-ITS Sequences between Potato and Tobacco Strains in Rhizoctonia solani AG-3. Journal of General Plant Pathology, 66(1), 2-11Kuninaga, S., Godoy-Lutz, G., & Yokosawa, R. (2002). rDNA-ITS nucleotide sequences analysis of Thanatephorus cucumeris AG-1 associated with web blight on common beans in Central America and Caribbean. Japanese Journal of Phytopathology, 68, 3-20.Lees, A. K., Cullen, D. W., Sullivan, L., & Nicolson, M. J. (2002). Development of conventional and quantitative real-time PCR assays for the detection and identification of Rhizoctonia solani AG-3 in potato and soil. Plant Pathology, 51(3), 293-302.Mandujano, M. C., Montaña, C., Franco, M., Golubov, J., & Flores-Martínez, A. (2001). Integration of demographic annual variability in a clonal desert cactus. Ecology, 82(2), 344-359.Mandujano, M. del C., Montaña, C., Méndez, I., & Golubov, J. (1998). The relative contributions of sexual reproduction and clonal propagation in Opuntia rastrera from two habitats in the Chihuahuan Desert. Journal of Ecology, 86(6), 911-921.McDonald, B. A. (1997). The population genetics of fungi: tools and techniques. Phytopathology, 87(4), 448-453.McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40(1), 349-379.Mogie, M., & Hutchings, M. (1990). Phylogeny, ontogeny and clonal growth in vascular plants. In J. van Groenendael & H. de Kroon (Eds.), Clonal Growth in Plants: Regulation and Function (pp. 3-22). SPB Academic Publishing. Muzhinji, N., Truter, M., Woodhall, J. W., & Van der Waals, J. E. (2015). Anastomosis groups and pathogenicity of Rhizoctonia solani and binucleate Rhizoctonia from potato in South Africa. Plant Disease, 99(12), 1790-1802.Muzhinji, N., Woodhall, J. W., Truter, M., & Van der Waals, J. E. (2017). Relative contribution of seed tuber- and soilborne inoculum to potato disease development and changes in the population genetic structure of Rhizoctonia solani AG 3-PT under Field Conditions in South Africa. Plant Disease, 102(1), 60-66.Nei, M. (1973). Analysis of Gene Diversity in Subdivided Populations. Proceedings of the National Academy of Sciences, 70(12), 3321-3323. https://doi.org/10.1073/pnas.70.12.3321Ogoshi, A. (1987). Ecology and Pathogenicity of Anastomosis and Intraspecific Groups of Rhizoctonia Solani Kuhn. Annual Review of Phytopathology, 25(1), 125-143. https://dx.doi.org/10.1146/annurev.py.25.090187.001013Pereira, D. A., Ceresini, P. C., Castroagudín, V. L., Ramos-Molina, L. M., Chavarro-Mesa, E., Negrisoli, M. M., & Takada, H. M. (2016). Population genetic structure of Rhizoctonia oryzae-sativae from rice in Latin America and its adaptive potential to emerge as a pathogen on Urochloa pastures. Phytopathology, 107(1), 121-131Pérez, T., Albornoz, J., & Dominguez, A. (1998). An evaluation of RAPD fragment reproducibility and nature. Molecular Ecology, 7(10), 1347-1357Poloni, N. M., Molina, L. M. R., Mesa, E. C., Garcia, I. L., & Ceresini, P. C. (2016). Evidência de que o fungo Rhizoctonia solani AG-1 IA adaptado à Urochloa na Colômbia mantém ampla gama de hospedeiros incluindo o milho. Summa Phytopathologica, 42(3), 228-232R Core Team. (2017). R: A language and environment for statistical computing [software]. R Foundation for Statistical Computing.Ramanatha, V., & Hodgkin, T. (2002). Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell, Tissue and Organ Culture, 68(1), 1-19.Ramos-Molina, L. M., Chavarro-Mesa, E., Pereira, D. A. dos S., Silva-Herrera, M. del R., & Ceresini, P. C. (2016). Rhizoctonia solani AG-1 IA infects both rice and signalgrass in the Colombian Llanos. Pesquisa Agropecuária Tropical, 46(1), 65-71.Rioux, R., Manmathan, H., Singh, P., De Los Reyes, B., Jia, Y., & Tavantzis, S. (2011). Comparative analysis of putative pathogenesis-related gene expression in two Rhizoctonia solani pathosystems. Current Genetics, 57(6), 391-408.Roberts, P. (2000). Rhizoctonia-Forming Fungi, a Taxonomic Guide. Kew Bulletin, 55(1), 252-253.Salazar-Zuluaga, L. (2014). Creation of descriptive diagrams for the severity of “take-all” disease by Gaeumannomyces graminis Sacc. Von Arx & d. Oliver var. graminis in leaves and stalks through different phenological stages of rice. [Master’s thesis, Universidad Nacional de Colombia]. Repositorio UN.Sharon, M., Kuninaga, S., Hyakumachi, M., & Sneh, B. (2006). The advancing identification and classification of Rhizoctonia spp. using molecular and biotechnological methods compared with the classical anastomosis grouping. Mycoscience, 47(6), 299-316Suzuki, R., & Shimodaira, H. (2006). Pvclust: An R package for assessing the uncertainty in hierarchical clustering. Bioinformatics, 22(12), 1540-1542.Tsror, L. (2010). Biology, epidemiology and management of Rhizoctonia solani on potato. Journal of Phytopathology, 158(10), 649-658Willi, Y., Frank, A., Heinzelmann, R., Kälin, A., Spalinger, L., & Ceresini, P. C. (2011). The adaptive potential of a plant pathogenic fungus, Rhizoctonia solani AG-3, under heat and fungicide stress. Genetica, 139(7), 903-908.Woodhall, J. W., Adams, I. P., Peters, J. C., Harper, G., & Boonham, N. (2013). A new quantitative real-time PCR assay for Rhizoctonia solani AG3-PT and the detection of AGs of Rhizoctonia solani associated with potato in soil and tuber samples in Great Britain. European Journal of Plant Pathology, 136(2), 273-280.Yang, S., Min, F., Wang, W., Wei, Q., Guo, M., Gao, Y., Lu, D. (2017). Anastomosis group and pathogenicity of Rhizoctonia solani associated with stem scanker and black scurf of potato in Heilongjiang Province of China. American Journal of Potato Research, 94(2), 95-104.Yang, Y., Zhao, C., Guo, Z., & Wu, X. (2015). Anastomosis group and pathogenicity of Rhizoctonia solani associated with stem canker and black scurf of potato in China. European Journal of Plant Pathology, 143(1), 99-11.http://purl.org/coar/resource_type/c_6501ORIGINAL1888-Texto del artículo-17148-1-10-20211018.pdf1888-Texto del artículo-17148-1-10-20211018.pdfapplication/pdf1023405https://repositorio.utb.edu.co/bitstream/20.500.12585/10632/1/1888-Texto%20del%20art%c3%adculo-17148-1-10-20211018.pdf3aca8116c4ce0a061040e2c1f0a346c6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10632/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10632/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT1888-Texto del artículo-17148-1-10-20211018.pdf.txt1888-Texto del artículo-17148-1-10-20211018.pdf.txtExtracted texttext/plain55816https://repositorio.utb.edu.co/bitstream/20.500.12585/10632/4/1888-Texto%20del%20art%c3%adculo-17148-1-10-20211018.pdf.txtafb6757ee1cfa74c599a4bffe17241eaMD54THUMBNAIL1888-Texto del artículo-17148-1-10-20211018.pdf.jpg1888-Texto del artículo-17148-1-10-20211018.pdf.jpgGenerated Thumbnailimage/jpeg45607https://repositorio.utb.edu.co/bitstream/20.500.12585/10632/5/1888-Texto%20del%20art%c3%adculo-17148-1-10-20211018.pdf.jpg6cdd9ad1f9086396133a073391f116c8MD5520.500.12585/10632oai:repositorio.utb.edu.co:20.500.12585/106322022-03-19 00:18:09.963Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=