Optimal Location of DGs in DC Power Grids Using a MINLP Model Implemented in GAMS

This paper addresses the problem of optimal location and sizing of distributed generators (DGs) in direct-current (dc) power grids by using a mixed-integer nonlinear programming (MINLP) formulation. The reduction of the power losses in all branches of the network are considered as the objective func...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8860
Acceso en línea:
https://hdl.handle.net/20.500.12585/8860
Palabra clave:
Direct-current power grids
Distributed generators location and sizing
General algebraic modeling system
Mixed-integer nonlinear programming
Power losses minimization
Algebra
Distributed computer systems
Distributed power generation
Integer programming
Location
Nonlinear programming
Voltage regulators
Algebraic modeling
Direct current power
Location and sizings
Mixed-integer nonlinear programming
Power-losses
Electric power transmission networks
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_f4d6609acdfd1950d7384ead16077dbb
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8860
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Optimal Location of DGs in DC Power Grids Using a MINLP Model Implemented in GAMS
title Optimal Location of DGs in DC Power Grids Using a MINLP Model Implemented in GAMS
spellingShingle Optimal Location of DGs in DC Power Grids Using a MINLP Model Implemented in GAMS
Direct-current power grids
Distributed generators location and sizing
General algebraic modeling system
Mixed-integer nonlinear programming
Power losses minimization
Algebra
Distributed computer systems
Distributed power generation
Integer programming
Location
Nonlinear programming
Voltage regulators
Algebraic modeling
Direct current power
Location and sizings
Mixed-integer nonlinear programming
Power-losses
Electric power transmission networks
title_short Optimal Location of DGs in DC Power Grids Using a MINLP Model Implemented in GAMS
title_full Optimal Location of DGs in DC Power Grids Using a MINLP Model Implemented in GAMS
title_fullStr Optimal Location of DGs in DC Power Grids Using a MINLP Model Implemented in GAMS
title_full_unstemmed Optimal Location of DGs in DC Power Grids Using a MINLP Model Implemented in GAMS
title_sort Optimal Location of DGs in DC Power Grids Using a MINLP Model Implemented in GAMS
dc.subject.keywords.none.fl_str_mv Direct-current power grids
Distributed generators location and sizing
General algebraic modeling system
Mixed-integer nonlinear programming
Power losses minimization
Algebra
Distributed computer systems
Distributed power generation
Integer programming
Location
Nonlinear programming
Voltage regulators
Algebraic modeling
Direct current power
Location and sizings
Mixed-integer nonlinear programming
Power-losses
Electric power transmission networks
topic Direct-current power grids
Distributed generators location and sizing
General algebraic modeling system
Mixed-integer nonlinear programming
Power losses minimization
Algebra
Distributed computer systems
Distributed power generation
Integer programming
Location
Nonlinear programming
Voltage regulators
Algebraic modeling
Direct current power
Location and sizings
Mixed-integer nonlinear programming
Power-losses
Electric power transmission networks
description This paper addresses the problem of optimal location and sizing of distributed generators (DGs) in direct-current (dc) power grids by using a mixed-integer nonlinear programming (MINLP) formulation. The reduction of the power losses in all branches of the network are considered as the objective function; while the restrictions are the power balance, voltage regulation, maximum penetration and maximum distributed generation units available. The general algebraic modeling system (GAMS) is selected as nonlinear optimizing package to solve this problem; besides, a small numerical example of energy production is introduced to illustrate the usability of using GAMS. Finally, a 21-node dc grid with two ideal generators, and multiple constant power loads, is used as test system. © 2018 IEEE.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:31Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:31Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv 2018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 2018
dc.identifier.isbn.none.fl_str_mv 9781538678428
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8860
dc.identifier.doi.none.fl_str_mv 10.1109/EPIM.2018.8756492
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56919564100
57210170020
55791991200
57191493648
36449223500
22836502400
identifier_str_mv 2018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 2018
9781538678428
10.1109/EPIM.2018.8756492
Universidad Tecnológica de Bolívar
Repositorio UTB
56919564100
57210170020
55791991200
57191493648
36449223500
22836502400
url https://hdl.handle.net/20.500.12585/8860
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 14 November 2018 through 16 November 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069796375&doi=10.1109%2fEPIM.2018.8756492&partnerID=40&md5=9fa265a155cdfb8e650b5ac623b9caae
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 9th IEEE Power, Instrumentation and Measurement Meeting, EPIM 2018
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8860/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021666346369024
spelling 2020-03-26T16:32:31Z2020-03-26T16:32:31Z20182018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 20189781538678428https://hdl.handle.net/20.500.12585/886010.1109/EPIM.2018.8756492Universidad Tecnológica de BolívarRepositorio UTB569195641005721017002055791991200571914936483644922350022836502400This paper addresses the problem of optimal location and sizing of distributed generators (DGs) in direct-current (dc) power grids by using a mixed-integer nonlinear programming (MINLP) formulation. The reduction of the power losses in all branches of the network are considered as the objective function; while the restrictions are the power balance, voltage regulation, maximum penetration and maximum distributed generation units available. The general algebraic modeling system (GAMS) is selected as nonlinear optimizing package to solve this problem; besides, a small numerical example of energy production is introduced to illustrate the usability of using GAMS. Finally, a 21-node dc grid with two ideal generators, and multiple constant power loads, is used as test system. © 2018 IEEE.Universidad Nacional de Colombia, UN Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government, DSITI Universidad Tecnológica de Pereira, UTP UNAL-ITM-39823/P17211FINANCIAL SUPPORT This work was supported by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program, calling contest 727-2015, the PhD program in Engineering of la Universidad Tecnológica de Pereira, and the Univer-sidad Nacional de Colombia and the Instituto Tecnológico Metropolitano under the project UNAL-ITM-39823/P17211.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85069796375&doi=10.1109%2fEPIM.2018.8756492&partnerID=40&md5=9fa265a155cdfb8e650b5ac623b9caae9th IEEE Power, Instrumentation and Measurement Meeting, EPIM 2018Optimal Location of DGs in DC Power Grids Using a MINLP Model Implemented in GAMSinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fDirect-current power gridsDistributed generators location and sizingGeneral algebraic modeling systemMixed-integer nonlinear programmingPower losses minimizationAlgebraDistributed computer systemsDistributed power generationInteger programmingLocationNonlinear programmingVoltage regulatorsAlgebraic modelingDirect current powerLocation and sizingsMixed-integer nonlinear programmingPower-lossesElectric power transmission networks14 November 2018 through 16 November 2018Montoya O.D.Garrido Arévalo, Víctor ManuelGrisales-Noreña L.F.Gil-González W.Garces A.Ramos-Paja C.A.Montoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for lowvoltage DC power grids (2018) Electr. Power Syst. Res., 163, pp. 375-381Planas, E., Andreu, J., Gárate, J.I., De Alegría, I.M., Ibarra, E., AC and DC technology in microgrids: A review (2015) Renewable Sustainable Energy Rev., 43, pp. 726-749Justo, J.J., Mwasilu, F., Lee, J., Jung, J.W., AC-microgrids versus DC-microgrids with distributed energy resources: A review (2013) Renewable Sustainable Energy Rev., 24, pp. 387-405Nasirian, V., Moayedi, S., Davoudi, A., Lewis, F., Distributed cooperative control of DC microgrids (2014) IEEE Trans. Power Electron., 8993 (C), p. 1Papadimitriou, C.N., Zountouridou, E.I., Hatziargyriou, N.D., Review of hierarchical control in DC microgrids (2015) Electr. Power Syst. Res., 122, pp. 159-167Garces, A., On convergence of newtons method in power flow study for DC microgrids (2018) IEEE Trans. Power Syst., p. 1Garces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electr. Power Syst. Res., 151, pp. 149-153Salomonsson, D., Söder, L., Sannino, A., Protection of low-voltage DC microgrids (2009) IEEE Trans. Power Del., 24 (3), pp. 1045-1053Li, J., Liu, F., Wang, Z., Low, S., Mei, S., Optimal power flow in stand-alone dc microgrids (2018) IEEE Trans. Power Syst., p. 1Montoya, O.D., Gil-González, W., Garces, A., Optimal power flow on DC microgrids: A quadratic convex approximation (2018) IEEE Trans. Circuits Syst. II Express Briefs, p. 1Montoya, O.D., Numerical Approximation of the Maximum Power Consumption in DC-MGs with CPLs via an SDP Model (2018) IEEE Trans. Circuits Syst. II Express Briefs, p. 1GAMS Free Demo Version, , https://www.gams.com/download/, GAMS Development Corp. [Online]Montoya, O.D., Grajales, A., Garces, A., Castro, C.A., Distribution systems operation considering energy storage devices and distributed generation (2017) IEEE Lat. Am. Trans., 15 (5), pp. 890-900. , MayMontoya, O.D., Solving a Classical Optimization Problem Using GAMS Optimizer Package: Economic Dispatch Problem Implementation (2017) Ingeniería y Ciencia, 13 (26), pp. 39-63. , NovNiazi, G., Lalwani, M., PSO based optimal distributed generation placement and sizing in power distribution networks: A comprehensive review (2017) 2017 International Conference on Computer, Communications and Electronics (Comptelix), pp. 305-311. , JulyRajalakshmi, J., Durairaj, S., Review on optimal distributed generation placement using particle swarm optimization algorithms (2016) 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS), pp. 1-6. , FebGrisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), pp. 1-27. , aprVatani, M., Alkaran, D.S., Sanjari, M.J., Gharehpetian, G.B., Multiple distributed generation units allocation in distribution network for loss reduction based on a combination of analytical and genetic algorithm methods (2016) IET Gener. Transm. Distrib., 10 (1), pp. 66-72Yuan, H., Li, F., Wei, Y., Zhu, J., Novel linearized power flow and linearized opf models for active distribution networks with application in distribution LMP (2018) IEEE Trans. Smart Grid, 9 (1), pp. 438-448. , JanKaur, S., Kumbhar, G., Sharma, J., A MINLP technique for optimal placement of multiple DG units in distribution systems (2014) Int. J. Electr. Power Energy Syst., 63, pp. 609-617López Lezama, J.M., Optimal location of distributed generation in distribution systems using a model of nonlineal whole mixed programming (2011) Tecnura, 15 (30), pp. 101-110Chen, C., Simulated annealing-based optimal wind-thermal coordination scheduling (2007) IET Gener. Transm. Distrib., 1 (3), pp. 447-455. , MayOgunjuyigbe, A., Ayodele, T., Akinola, O., Impact of distributed generators on the power loss and voltage profile of sub-transmission network (2016) J. Electr. Syst. Inf. Technol., 3 (1), pp. 94-107http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8860/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8860oai:repositorio.utb.edu.co:20.500.12585/88602023-05-26 10:05:21.766Repositorio Institucional UTBrepositorioutb@utb.edu.co