High impedance fault modeling and location for transmission line

A fault in a power system generates economic losses, security problems, social problems and can even take human lives. Therefore, it is necessary to have an efficient fault location strategy to reduce the exposure time and recurrence of the fault. This paper presents an impedance-based method to est...

Full description

Autores:
García, Jose Doria
Orozco-Henao, Cesar
Leborgne, Roberto
Montoya, Oscar Danilo
Gil-González, Walter
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10405
Acceso en línea:
https://hdl.handle.net/20.500.12585/10405
Palabra clave:
Distributed parameters
Electrical power systems
Fault location
High impedance fault
Nonlinear arcing fault
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_f47300adf5ef2f906348449112ea6d37
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10405
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv High impedance fault modeling and location for transmission line
title High impedance fault modeling and location for transmission line
spellingShingle High impedance fault modeling and location for transmission line
Distributed parameters
Electrical power systems
Fault location
High impedance fault
Nonlinear arcing fault
LEMB
title_short High impedance fault modeling and location for transmission line
title_full High impedance fault modeling and location for transmission line
title_fullStr High impedance fault modeling and location for transmission line
title_full_unstemmed High impedance fault modeling and location for transmission line
title_sort High impedance fault modeling and location for transmission line
dc.creator.fl_str_mv García, Jose Doria
Orozco-Henao, Cesar
Leborgne, Roberto
Montoya, Oscar Danilo
Gil-González, Walter
dc.contributor.author.none.fl_str_mv García, Jose Doria
Orozco-Henao, Cesar
Leborgne, Roberto
Montoya, Oscar Danilo
Gil-González, Walter
dc.subject.keywords.spa.fl_str_mv Distributed parameters
Electrical power systems
Fault location
High impedance fault
Nonlinear arcing fault
topic Distributed parameters
Electrical power systems
Fault location
High impedance fault
Nonlinear arcing fault
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description A fault in a power system generates economic losses, security problems, social problems and can even take human lives. Therefore, it is necessary to have an efficient fault location strategy to reduce the exposure time and recurrence of the fault. This paper presents an impedance-based method to estimate the fault location in transmission lines. The mathematical formu lation considers the distributed parameters transmission line model for the estimation of the fault distance, and it is obtained by the application of Gauss-Newton method. Said method considers available voltage and current measurements at both terminals of the transmission line as well as the line parameters. Moreover, the method can be used for locating high and low impedance faults. Additionally, it is proposed an adjustable HIF model to validate its performance, which allows to generate synthetic high impedance faults by setting specific features of a HIF from simple input parameters. The error in fault location accuracy is under 0.1% for more than 90% of the performance test cases. The easy implementation of this method and encouraging test results indicate its potential for real-life applications.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-04-07
dc.date.accessioned.none.fl_str_mv 2022-01-25T12:53:49Z
dc.date.available.none.fl_str_mv 2022-01-25T12:53:49Z
dc.date.submitted.none.fl_str_mv 2022-01-24
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Doria, Jose & Orozco, Cesar & Leborgne, Roberto & Montoya Giraldo, Oscar & Gil González, Walter. (2021). High impedance fault modeling and location for transmission line. Electric Power Systems Research. 196. 1-8. 10.1016/j.epsr.2021.107202.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10405
dc.identifier.doi.none.fl_str_mv 10.1016/j.epsr.2021.107202
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Doria, Jose & Orozco, Cesar & Leborgne, Roberto & Montoya Giraldo, Oscar & Gil González, Walter. (2021). High impedance fault modeling and location for transmission line. Electric Power Systems Research. 196. 1-8. 10.1016/j.epsr.2021.107202.
10.1016/j.epsr.2021.107202
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10405
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 10 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Colombia
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Electric Power Systems Research - vol. 196 (2021)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10405/1/High%20impedance%20fault%20modeling%20and%20location%20for%20transmission%20line.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10405/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10405/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10405/4/High%20impedance%20fault%20modeling%20and%20location%20for%20transmission%20line.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10405/5/High%20impedance%20fault%20modeling%20and%20location%20for%20transmission%20line.pdf.jpg
bitstream.checksum.fl_str_mv 98961af3315118a7751998b437ef217e
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
40ecd218a3fadf0c74a20d3608bc46ae
5bcd258e32051d0701c3d4dcdf7eadb0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021732407705600
spelling García, Jose Doriac4e36293-bedf-48d2-a715-7276623a9201Orozco-Henao, Cesarb7606b9b-c12f-48d3-a4a0-23903e7dcfe6Leborgne, Robertoc6b916fc-48b2-4b8d-b8c9-6f9d0bf88bfcMontoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Gil-González, Walter8f5d95ca-3776-4c51-a538-d5c9cba44f8eColombia2022-01-25T12:53:49Z2022-01-25T12:53:49Z2021-04-072022-01-24Doria, Jose & Orozco, Cesar & Leborgne, Roberto & Montoya Giraldo, Oscar & Gil González, Walter. (2021). High impedance fault modeling and location for transmission line. Electric Power Systems Research. 196. 1-8. 10.1016/j.epsr.2021.107202.https://hdl.handle.net/20.500.12585/1040510.1016/j.epsr.2021.107202Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarA fault in a power system generates economic losses, security problems, social problems and can even take human lives. Therefore, it is necessary to have an efficient fault location strategy to reduce the exposure time and recurrence of the fault. This paper presents an impedance-based method to estimate the fault location in transmission lines. The mathematical formu lation considers the distributed parameters transmission line model for the estimation of the fault distance, and it is obtained by the application of Gauss-Newton method. Said method considers available voltage and current measurements at both terminals of the transmission line as well as the line parameters. Moreover, the method can be used for locating high and low impedance faults. Additionally, it is proposed an adjustable HIF model to validate its performance, which allows to generate synthetic high impedance faults by setting specific features of a HIF from simple input parameters. The error in fault location accuracy is under 0.1% for more than 90% of the performance test cases. The easy implementation of this method and encouraging test results indicate its potential for real-life applications.10 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Electric Power Systems Research - vol. 196 (2021)High impedance fault modeling and location for transmission lineinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Distributed parametersElectrical power systemsFault locationHigh impedance faultNonlinear arcing faultLEMBCartagena de IndiasPC37.250/D1.30, Nov 2019 - PC37.250/D1.30, Nov 2019 - IEEE Approved Draft Guide for Engineering, Implementation, and Management of System Integrity Protection Schemes - IEEE Standard n.d.P Anderson Analysis of Faulted Power Systems Institute of Electrical and Electronics, Inc, Iowa (1995)D. Hou, S. Carolina, D. Hou, S.E. Laboratories Detection of high-impedance faults in power distribution systems Power Syst. Conf. Adv. Metering, Prot. Control. Commun. Distrib. Resour., 2007 (2007), pp. 1-11M.M. Saha, J. Izykowski, E. Rosolowski Fault Location on Power Networks Springer, London (2010)Ramamurthy T.A., Swarup K.S. High Impedance Fault detection using DWT for transmission and distribution networks. 2016 IEEE 6th Int Conf Power Syst 2016:1–6. 10.1109/ICPES.2016.7584004.A.E. Emanuel, D. Cyganski, J.A. Orr, S. Shiller, E.M. Gulachenski High impedance fault arcing on sandy soil in 15 kV distribution feeders: contributions to the evaluation of the low frequency spectrum IEEE Trans Power Deliv, 5 (1990), pp. 676-686, 10.1109/61.53070D.I. Jerrings, J.R. Linders Ground resistance-revisited IEEE Trans Power Deliv, 4 (1989), pp. 949-956, 10.1109/MPER.1989.4310592M. Aucoin Status of high impedance fault detection IEEE Trans Power Appar Syst, PAS-104 (1985), pp. 637-644, 10.1109/TPAS.1985.318999M. Jannati, L. Eslami Precise modeling of high impedance faults in power distribution system in EMTPWorks software J Electr Eng, 13 (2013), pp. 283-290S.R. Nam, J.K. Park, Y.C. Kang, T.H. Kim A modeling method of a high impedance fault in a distribution system using two series time-varying resistances in EMTP Power Eng. Soc. Summer Meet. 2001. Conf. Proc., 2 (2001), pp. 1175-1180, 10.1109/PESS.2001.970231W. Santos, B. Sousa, N. Dantas, F. Bezzerra, M. Cerqueira High impedance faults: from field tests to modeling J Control Autom Electr Syst, 24 (2013), pp. 885-896R.G. Ferraz Localização De Faltas De Alta impedância: Formulação Baseada Na Impedância Aparente e Nométodo De Mínimos Quadrados Universidade Federal do Rio Grande do Sul (2014)R.A. de Aguiar, A.L. Dalcastagnê, H.H. Zürn, R. Seara Impedance-based fault location methods: sensitivity analysis and performance improvement Electr Power Syst Res, 155 (2018), pp. 236-245, 10.1016/j.epsr.2017.10.021Akmaz D., Mamiş M.S., Arkan M., Tağluk M.E. Transmission line fault location using traveling wave frequencies and extreme learning machine. Electr. Power Syst. Res. 2018. 10.1016/j.epsr.2017.09.019.S.G. Di Santo, C.E.D.M. Pereira Fault location method applied to transmission lines of general configuration Int. J. Electr. Power Energy Syst., 69 (2015), pp. 287-294, 10.1016/j.ijepes.2015.01.014T. NengLing, C. JiaJia Wavelet-based approach for high impedance fault detection of high voltage transmission line Eur. Trans. Electr. Power, 18 (2008), pp. 79-92, 10.1002/etepJ. Doria-García, C. Orozco-Henao, L.U. Orozco Iurinic, J.D Pulgarín-rivera High impedance fault location : generalized extension for ground faults Electr. Power Energy Syst., 114 (2020), Article 105387, 10.1016/j.ijepes.2019.105387H. Livani, C Yaman Evrenosoglu A machine learning and Wavelet-Based fault location method for hybrid transmission lines IEEE Trans. Smart Grid., 5 (2014), pp. 51-59, 10.1109/TSG.2013.2260421D.T.W. Chan, X. Yibin A novel technique for high impedance fault identification IEEE Trans. Power Deliv., 13 (1998), pp. 738-744, 10.1109/61.686968M. Chen, J. Zhai, Z. Lang, J. Liao, Z. Fan High Impedance Fault Location in Transmission Line Using Nonlinear Frequency Analysis Life Syst. Model Intell. Comput., 6328 (2010), pp. 104-111L.U. Iurinic, A.R. Herrera-Orozco, R.G. Ferraz, A.S. Bretas Distribution systems high-impedance fault location: a parameter estimation approach IEEE Trans. Power Deliv., 31 (2016), pp. 1806-1814, 10.1109/TPWRD.2015.2507541M. Ghazizadeh-Ahsaee Accurate NHIF Locator Utilizing Two-End Unsynchronized Measurements, 28 (2013), pp. 419-426C.J. Lee, J.B. Park, J.R. Shin, Z.M. Radojevié A new two-terminal numerical algorithm for fault location, distance protection, and arcing fault recognition IEEE Trans. Power Syst., 21 (2006), pp. 1460-1462, 10.1109/TPWRS.2006.876646R.G. Ferraz, L.U. Iurinic, A.D. Filomena, D.S. Gazzana, A.S. Bretas Arc fault location: a nonlinear time varying fault model and frequency domain parameter estimation approach Int. J. Electr. Power Energy Syst., 80 (2016), pp. 347-355, 10.1016/j.ijepes.2016.02.003H. Saadat Power System Analysis.Pdf McGraw-Hill, New York (1999)S. Gratton, A.S. Lawless, N.K. Nichols Approximate Gauss-newton methods for nonlinear least squares problems SIAM J Optim, 18 (2007), pp. 106-132, 10.1137/050624935http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALHigh impedance fault modeling and location for transmission line.pdfHigh impedance fault modeling and location for transmission line.pdfapplication/pdf1575362https://repositorio.utb.edu.co/bitstream/20.500.12585/10405/1/High%20impedance%20fault%20modeling%20and%20location%20for%20transmission%20line.pdf98961af3315118a7751998b437ef217eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10405/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10405/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTHigh impedance fault modeling and location for transmission line.pdf.txtHigh impedance fault modeling and location for transmission line.pdf.txtExtracted texttext/plain39588https://repositorio.utb.edu.co/bitstream/20.500.12585/10405/4/High%20impedance%20fault%20modeling%20and%20location%20for%20transmission%20line.pdf.txt40ecd218a3fadf0c74a20d3608bc46aeMD54THUMBNAILHigh impedance fault modeling and location for transmission line.pdf.jpgHigh impedance fault modeling and location for transmission line.pdf.jpgGenerated Thumbnailimage/jpeg94751https://repositorio.utb.edu.co/bitstream/20.500.12585/10405/5/High%20impedance%20fault%20modeling%20and%20location%20for%20transmission%20line.pdf.jpg5bcd258e32051d0701c3d4dcdf7eadb0MD5520.500.12585/10405oai:repositorio.utb.edu.co:20.500.12585/104052023-05-26 10:20:18.514Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=