An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room

There are no exact criteria for the architecture of openings and windows in office buildings in order to optimize energy consumption. Due to the physical limitations of this renewable energy source and the lack of conscious control over its capabilities, the amount of light entering offices and the...

Full description

Autores:
Liu, Kuang-Sheng
Muda, Iskandar
Lin, Ming-Hung
Dwijendra, Ngakan Ketut Acwin
Caballero, Gaylord Carrillo
Alviz-Meza, Aníbal
Cárdenas-Escrocia, Yulineth
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12171
Acceso en línea:
https://hdl.handle.net/20.500.12585/12171
Palabra clave:
Electric Power Transmission Networks;
Optimal Power Flow;
Power System
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_f24c934f48cb86a7c912e6f33ca13387
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12171
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room
title An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room
spellingShingle An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room
Electric Power Transmission Networks;
Optimal Power Flow;
Power System
title_short An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room
title_full An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room
title_fullStr An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room
title_full_unstemmed An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room
title_sort An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room
dc.creator.fl_str_mv Liu, Kuang-Sheng
Muda, Iskandar
Lin, Ming-Hung
Dwijendra, Ngakan Ketut Acwin
Caballero, Gaylord Carrillo
Alviz-Meza, Aníbal
Cárdenas-Escrocia, Yulineth
dc.contributor.author.none.fl_str_mv Liu, Kuang-Sheng
Muda, Iskandar
Lin, Ming-Hung
Dwijendra, Ngakan Ketut Acwin
Caballero, Gaylord Carrillo
Alviz-Meza, Aníbal
Cárdenas-Escrocia, Yulineth
dc.subject.keywords.spa.fl_str_mv Electric Power Transmission Networks;
Optimal Power Flow;
Power System
topic Electric Power Transmission Networks;
Optimal Power Flow;
Power System
description There are no exact criteria for the architecture of openings and windows in office buildings in order to optimize energy consumption. Due to the physical limitations of this renewable energy source and the lack of conscious control over its capabilities, the amount of light entering offices and the role of daylight as a source of energy are determined by how they are constructed. In this study, the standard room dimensions, which are suitable for three to five employees, are compared to computer simulations. DesignBuilder and EnergyPlus are utilized to simulate the office’s lighting and energy consumption. This study presents a new method for estimating conventional energy consumption based on gene expression programming (GEP). A gravitational search algorithm (GSA) is implemented in order to optimize the model results. Using input and output data collected from a simulation of conventional energy use, the physical law underlying the problem and the relationship between inputs and outputs are identified. This method has the advantages of being quick and accurate, with no simulation required. Based on effective input parameters and sensitivity analysis, four models are evaluated. These models are used to evaluate the performance of the trained network based on statistical indicators. Among all the GEP models tested in this study, the one with the lowest MAE (0.1812) and RMSE (0.09146) and the highest correlation coefficient (0.90825) is found to be the most accurate. © 2023 by the authors. Licensee MDPI, Basel, Switzerland.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-19T21:12:04Z
dc.date.available.none.fl_str_mv 2023-07-19T21:12:04Z
dc.date.issued.none.fl_str_mv 2023
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Liu, Kuang-Sheng, Iskandar Muda, Ming-Hung Lin, Ngakan Ketut Acwin Dwijendra, Gaylord Carrillo Caballero, Aníbal Alviz-Meza, and Yulineth Cárdenas-Escrocia. 2023. "An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room" Sustainability 15, no. 2: 1728. https://doi.org/10.3390/su15021728
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12171
dc.identifier.doi.none.fl_str_mv 10.3390/su15021728
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Liu, Kuang-Sheng, Iskandar Muda, Ming-Hung Lin, Ngakan Ketut Acwin Dwijendra, Gaylord Carrillo Caballero, Aníbal Alviz-Meza, and Yulineth Cárdenas-Escrocia. 2023. "An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room" Sustainability 15, no. 2: 1728. https://doi.org/10.3390/su15021728
10.3390/su15021728
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12171
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 14 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12171/1/sustainability-15-01728.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12171/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12171/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12171/4/sustainability-15-01728.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12171/5/sustainability-15-01728.pdf.jpg
bitstream.checksum.fl_str_mv 36571b604e47cc2c1f555266bba5b692
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
d3823a4c7fd4110ef21160bebd5bd541
b0a2bdbe9c478de989cef4ae39aeefd3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021734368542720
spelling Liu, Kuang-Sheng29aea359-1eea-4ba5-a050-77afca22ac22Muda, Iskandarcc973407-1bc0-4561-9ff5-8bb03e9e42b2Lin, Ming-Hung01ba3a44-067f-4860-a833-2628e5ab6dabDwijendra, Ngakan Ketut Acwinb785574c-f759-487d-82c5-74ab964f209cCaballero, Gaylord Carrillobcbc086f-8893-4b45-af9f-4034118718ccAlviz-Meza, Aníbaledb81688-b57c-4a93-8a69-1d86b83aad87Cárdenas-Escrocia, Yulinetha11f305e-8e1e-4e82-8892-a2161645d9ed2023-07-19T21:12:04Z2023-07-19T21:12:04Z20232023Liu, Kuang-Sheng, Iskandar Muda, Ming-Hung Lin, Ngakan Ketut Acwin Dwijendra, Gaylord Carrillo Caballero, Aníbal Alviz-Meza, and Yulineth Cárdenas-Escrocia. 2023. "An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room" Sustainability 15, no. 2: 1728. https://doi.org/10.3390/su15021728https://hdl.handle.net/20.500.12585/1217110.3390/su15021728Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThere are no exact criteria for the architecture of openings and windows in office buildings in order to optimize energy consumption. Due to the physical limitations of this renewable energy source and the lack of conscious control over its capabilities, the amount of light entering offices and the role of daylight as a source of energy are determined by how they are constructed. In this study, the standard room dimensions, which are suitable for three to five employees, are compared to computer simulations. DesignBuilder and EnergyPlus are utilized to simulate the office’s lighting and energy consumption. This study presents a new method for estimating conventional energy consumption based on gene expression programming (GEP). A gravitational search algorithm (GSA) is implemented in order to optimize the model results. Using input and output data collected from a simulation of conventional energy use, the physical law underlying the problem and the relationship between inputs and outputs are identified. This method has the advantages of being quick and accurate, with no simulation required. Based on effective input parameters and sensitivity analysis, four models are evaluated. These models are used to evaluate the performance of the trained network based on statistical indicators. Among all the GEP models tested in this study, the one with the lowest MAE (0.1812) and RMSE (0.09146) and the highest correlation coefficient (0.90825) is found to be the most accurate. © 2023 by the authors. Licensee MDPI, Basel, Switzerland.14 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Roominfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Electric Power Transmission Networks;Optimal Power Flow;Power SystemCartagena de IndiasPilechiha, P., Mahdavinejad, M., Pour Rahimian, F., Carnemolla, P., Seyedzadeh, S. Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency (2020) Applied Energy, 261, art. no. 114356. Cited 100 times. https://www.journals.elsevier.com/applied-energy doi: 10.1016/j.apenergy.2019.114356Sadick, A.-M., Kamardeen, I. Enhancing employees’ performance and well-being with nature exposure embedded office workplace design (2020) Journal of Building Engineering, 32, art. no. 101789. Cited 21 times. http://www.journals.elsevier.com/journal-of-building-engineering/ doi: 10.1016/j.jobe.2020.101789Anand, P., Cheong, D., Sekhar, C., Santamouris, M., Kondepudi, S. Energy saving estimation for plug and lighting load using occupancy analysis (2019) Renewable Energy, 143, pp. 1143-1161. Cited 44 times. http://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews/ doi: 10.1016/j.renene.2019.05.089Ahmadi, M.H., Ghazvini, M., Sadeghzadeh, M., Alhuyi Nazari, M., Kumar, R., Naeimi, A., Ming, T. Solar power technology for electricity generation: A critical review (2018) Energy Science and Engineering, 6 (5), pp. 340-361. Cited 218 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2050-0505http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2050-0505 doi: 10.1002/ese3.239Azizi, H., Nejatian, N. Evaluation of the climate change impact on the intensity and return period for drought indices of SPI and SPEI (study area: Varamin plain) (2022) Water Supply, 22 (4), pp. 4373-4386. Cited 13 times. https://watermark.silverchair.com/ws022044373.pdf? doi: 10.2166/ws.2022.056Yavari, F., Salehi Neyshabouri, S.A., Yazdi, J., Molajou, A., Brysiewicz, A. A Novel Framework for Urban Flood damage Assessment (Open Access) (2022) Water Resources Management, 36 (6), pp. 1991-2011. Cited 14 times. www.wkap.nl/journalhome.htm/0920-4741 doi: 10.1007/s11269-022-03122-3Karimi, G., Moradi, Y. Buffer insertion for delay minimization in RLC interconnects using cuckoo optimization algorithm (Open Access) (2019) Analog Integrated Circuits and Signal Processing, 99 (1), pp. 111-121. Cited 6 times. http://springerlink.metapress.com/app/home/journal.asp?wasp=3c35ad1151604369b8fc57d35afe8871&referrer=parent&backto=linkingpublicationresults,1:100232,1 doi: 10.1007/s10470-018-1318-yOmrani, M.M.T. Economic and Environmental Analysis of Floating Photovoltaic Techno-Economic and Environmental Analysis of Floating Photovoltaic Power Plants: A Case Study of Iran Renew. Energy Res. Appl., 2022 (4), pp. 41-54. Cited 2 times.Jalali, Z., Noorzai, E., Heidari, S. Design and optimization of form and facade of an office building using the genetic algorithm (2020) Science and Technology for the Built Environment, 26 (2), pp. 128-140. Cited 52 times. http://www.tandfonline.com/loi/uhvc21 doi: 10.1080/23744731.2019.1624095O'Brien, W., Wagner, A., Schweiker, M., Mahdavi, A., Day, J., Kjærgaard, M.B., Carlucci, S., (...), Berger, C. Introducing IEA EBC annex 79: Key challenges and opportunities in the field of occupant-centric building design and operation (2020) Building and Environment, 178, art. no. 106738. Cited 130 times. http://www.elsevier.com/inca/publications/store/2/9/6/index.htt doi: 10.1016/j.buildenv.2020.106738Elsheikh, A.H., Shanmugan, S., Sathyamurthy, R., Kumar Thakur, A., Issa, M., Panchal, H., Muthuramalingam, T., (...), Sharifpur, M. Low-cost bilayered structure for improving the performance of solar stills: Performance/cost analysis and water yield prediction using machine learning (2022) Sustainable Energy Technologies and Assessments, 49, art. no. 101783. Cited 56 times. http://www.journals.elsevier.com/sustainable-energy-technologies-and-assessments doi: 10.1016/j.seta.2021.101783Ahmadi, M.H., Baghban, A., Salwana, E., Sadeghzadeh, M., Zamen, M., Shamshirband, S., Kumar, R. (2019) Machine Learning Prediction Models of Electrical Efficiency of Photovoltaic-Thermal Collectors. Cited 6 times. PreprintsSabbagh, O., Fanaei, M.A., Arjomand, A., Hossein Ahmadi, M. Multi-objective optimization assessment of a new integrated scheme for co-production of natural gas liquids and liquefied natural gas (2021) Sustainable Energy Technologies and Assessments, 47, art. no. 101493. Cited 12 times. http://www.journals.elsevier.com/sustainable-energy-technologies-and-assessments doi: 10.1016/j.seta.2021.101493Gielen, D., Boshell, F., Saygin, D., Bazilian, M.D., Wagner, N., Gorini, R. The role of renewable energy in the global energy transformation (2019) Energy Strategy Reviews, 24, pp. 38-50. Cited 1824 times. http://www.journals.elsevier.com/energy-strategy-reviews/ doi: 10.1016/j.esr.2019.01.006Ahmadi, M.H., Açıkkalp, E. Exergetic Dimensions of Energy Systems and Processes (2021) J. Therm. Anal. Calorim., 145, pp. 631-634. Cited 3 times.Lowitzsch, J., Hoicka, C.E., van Tulder, F.J. Renewable energy communities under the 2019 European Clean Energy Package – Governance model for the energy clusters of the future? (2020) Renewable and Sustainable Energy Reviews, 122, art. no. 109489. Cited 210 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2019.109489Fessler, D.C. (2018) The Energy Disruption Triangle: Three Sectors that Will Change How We Generate, Use, and Store Energy. Cited 2 times. Wiley: Hoboken, NJ, USA, ISBN 9781119347132Li, Q., Loy-Benitez, J., Nam, K., Hwangbo, S., Rashidi, J., Yoo, C. Sustainable and reliable design of reverse osmosis desalination with hybrid renewable energy systems through supply chain forecasting using recurrent neural networks (2019) Energy, 178, pp. 277-292. Cited 64 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2019.04.114Sudharshan, K., Naveen, C., Vishnuram, P., Krishna Rao Kasagani, D.V.S., Nastasi, B. Systematic Review on Impact of Different Irradiance Forecasting Techniques for Solar Energy Prediction (2022) Energies, 15 (17), art. no. 6267. Cited 10 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en15176267Davoodi, A., Abbasi, A.R., Nejatian, S. Multi-objective techno-economic generation expansion planning to increase the penetration of distributed generation resources based on demand response algorithms (2022) International Journal of Electrical Power and Energy Systems, 138, art. no. 107923. Cited 14 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2021.107923Dagoumas, A.S., Koltsaklis, N.E. Review of models for integrating renewable energy in the generation expansion planning (Open Access) (2019) Applied Energy, 242, pp. 1573-1587. Cited 132 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2019.03.194Taherkhani, M., Hosseini, S.H., Javadi, M.S., Catalão, J.P.S. Scenario-based probabilistic multi-stage optimization for transmission expansion planning incorporating wind generation integration (2020) Electric Power Systems Research, 189, art. no. 106601. Cited 17 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2020.106601Pokhrel, S., Amiri, L., Zueter, A., Poncet, S., Hassani, F.P., Sasmito, A.P., Ghoreishi-Madiseh, S.A. Thermal performance evaluation of integrated solar-geothermal system; a semi-conjugate reduced order numerical model (Open Access) (2021) Applied Energy, 303, art. no. 117676. Cited 10 times. https://www.journals.elsevier.com/applied-energy doi: 10.1016/j.apenergy.2021.117676Paliwal, P., Webber, J.L., Mehbodniya, A., Haq, M.A., Kumar, A., Chaurasiya, P.K. Multi-agent-based approach for generation expansion planning in isolated micro-grid with renewable energy sources and battery storage (Open Access) (2022) Journal of Supercomputing, 78 (17), pp. 18497-18523. Cited 7 times. https://www.springer.com/journal/11227 doi: 10.1007/s11227-022-04609-xSweerts, B., Pfenninger, S., Yang, S., Folini, D., van der Zwaan, B., Wild, M. Estimation of losses in solar energy production from air pollution in China since 1960 using surface radiation data (2019) Nature Energy, 4 (8), pp. 657-663. Cited 71 times. www.nature.com/nenergy/ doi: 10.1038/s41560-019-0412-4Azimi, H., Bonakdari, H., Ebtehaj, I. Gene expression programming-based approach for predicting the roller length of a hydraulic jump on a rough bed (2021) ISH Journal of Hydraulic Engineering, 27 (S1), pp. 77-87. Cited 13 times. www.tandfonline.com/tish doi: 10.1080/09715010.2019.1579058Pirzadeh Ashraf, B., Mojtahedi, A., Dadashzadeh, M. Prediction of dissolved oxygen in wetlands using FCM-ANFIS model—A Case Study: Choghakhor Wetland J. Iran. Water Eng. Res., 2022 (2), pp. 33-50.Han, T., Ansari, N. Provisioning Green Energy for Base Stations in Heterogeneous Networks (2016) IEEE Transactions on Vehicular Technology, 65 (7), art. no. 7182373, pp. 5439-5448. Cited 27 times. doi: 10.1109/TVT.2015.2466101Drachal, K., Pawłowski, M. A review of the applications of genetic algorithms to forecasting prices of commodities (Open Access) (2021) Economies, 9 (1), art. no. 6. Cited 17 times. https://www.mdpi.com/2227-7099/9/1/6/pdf doi: 10.3390/economies9010006Tijani, I.A., Zayed, T. Gene expression programming based mathematical modeling for leak detection of water distribution networks (Open Access) (2022) Measurement: Journal of the International Measurement Confederation, 188, art. no. 110611. Cited 9 times. https://www.journals.elsevier.com/measurement doi: 10.1016/j.measurement.2021.110611Mittal, H., Tripathi, A., Pandey, A.C., Pal, R. Gravitational search algorithm: a comprehensive analysis of recent variants (Open Access) (2021) Multimedia Tools and Applications, 80 (5), pp. 7581-7608. Cited 33 times. https://link.springer.com/journal/11042 doi: 10.1007/s11042-020-09831-4Sabri, N.M., Puteh, M., Mahmood, M.R. An overview of Gravitational Search Algorithm utilization in optimization problems (Open Access) (2013) Proceedings - 2013 IEEE 3rd International Conference on System Engineering and Technology, ICSET 2013, art. no. 6650144, pp. 61-66. Cited 18 times. ISBN: 978-147991030-4 doi: 10.1109/ICSEngT.2013.6650144Wang, Y., Gao, S., Yu, Y., Cai, Z., Wang, Z. A gravitational search algorithm with hierarchy and distributed framework (2021) Knowledge-Based Systems, 218, art. no. 106877. Cited 42 times. https://www.journals.elsevier.com/knowledge-based-systems doi: 10.1016/j.knosys.2021.106877Rashedi, E., Rashedi, E., Nezamabadi-pour, H. A comprehensive survey on gravitational search algorithm (Open Access) (2018) Swarm and Evolutionary Computation, 41, pp. 141-158. Cited 155 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724666/description#description doi: 10.1016/j.swevo.2018.02.018Younes, Z., Alhamrouni, I., Mekhilef, S., Reyasudin, M. A memory-based gravitational search algorithm for solving economic dispatch problem in micro-grid (Open Access) (2021) Ain Shams Engineering Journal, 12 (2), pp. 1985-1994. Cited 47 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724208/description#description doi: 10.1016/j.asej.2020.10.021Campbell, J.E., Carmichael, G.R., Chai, T., Mena-Carrasco, M., Tang, Y., Blake, D.R., Blake, N.J., (...), Stanier, C.O. Photosynthetic control of atmospheric carbonyl sulfide during the growing season (Open Access) (2008) Science, 322 (5904), pp. 1085-1088. Cited 158 times. doi: 10.1126/science.1164015http://purl.org/coar/resource_type/c_6501ORIGINALsustainability-15-01728.pdfsustainability-15-01728.pdfapplication/pdf3457404https://repositorio.utb.edu.co/bitstream/20.500.12585/12171/1/sustainability-15-01728.pdf36571b604e47cc2c1f555266bba5b692MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12171/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12171/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTsustainability-15-01728.pdf.txtsustainability-15-01728.pdf.txtExtracted texttext/plain59031https://repositorio.utb.edu.co/bitstream/20.500.12585/12171/4/sustainability-15-01728.pdf.txtd3823a4c7fd4110ef21160bebd5bd541MD54THUMBNAILsustainability-15-01728.pdf.jpgsustainability-15-01728.pdf.jpgGenerated Thumbnailimage/jpeg7987https://repositorio.utb.edu.co/bitstream/20.500.12585/12171/5/sustainability-15-01728.pdf.jpgb0a2bdbe9c478de989cef4ae39aeefd3MD5520.500.12585/12171oai:repositorio.utb.edu.co:20.500.12585/121712023-07-20 00:17:54.391Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=