An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room
There are no exact criteria for the architecture of openings and windows in office buildings in order to optimize energy consumption. Due to the physical limitations of this renewable energy source and the lack of conscious control over its capabilities, the amount of light entering offices and the...
- Autores:
-
Liu, Kuang-Sheng
Muda, Iskandar
Lin, Ming-Hung
Dwijendra, Ngakan Ketut Acwin
Caballero, Gaylord Carrillo
Alviz-Meza, Aníbal
Cárdenas-Escrocia, Yulineth
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12171
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12171
- Palabra clave:
- Electric Power Transmission Networks;
Optimal Power Flow;
Power System
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_f24c934f48cb86a7c912e6f33ca13387 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12171 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room |
title |
An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room |
spellingShingle |
An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room Electric Power Transmission Networks; Optimal Power Flow; Power System |
title_short |
An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room |
title_full |
An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room |
title_fullStr |
An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room |
title_full_unstemmed |
An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room |
title_sort |
An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room |
dc.creator.fl_str_mv |
Liu, Kuang-Sheng Muda, Iskandar Lin, Ming-Hung Dwijendra, Ngakan Ketut Acwin Caballero, Gaylord Carrillo Alviz-Meza, Aníbal Cárdenas-Escrocia, Yulineth |
dc.contributor.author.none.fl_str_mv |
Liu, Kuang-Sheng Muda, Iskandar Lin, Ming-Hung Dwijendra, Ngakan Ketut Acwin Caballero, Gaylord Carrillo Alviz-Meza, Aníbal Cárdenas-Escrocia, Yulineth |
dc.subject.keywords.spa.fl_str_mv |
Electric Power Transmission Networks; Optimal Power Flow; Power System |
topic |
Electric Power Transmission Networks; Optimal Power Flow; Power System |
description |
There are no exact criteria for the architecture of openings and windows in office buildings in order to optimize energy consumption. Due to the physical limitations of this renewable energy source and the lack of conscious control over its capabilities, the amount of light entering offices and the role of daylight as a source of energy are determined by how they are constructed. In this study, the standard room dimensions, which are suitable for three to five employees, are compared to computer simulations. DesignBuilder and EnergyPlus are utilized to simulate the office’s lighting and energy consumption. This study presents a new method for estimating conventional energy consumption based on gene expression programming (GEP). A gravitational search algorithm (GSA) is implemented in order to optimize the model results. Using input and output data collected from a simulation of conventional energy use, the physical law underlying the problem and the relationship between inputs and outputs are identified. This method has the advantages of being quick and accurate, with no simulation required. Based on effective input parameters and sensitivity analysis, four models are evaluated. These models are used to evaluate the performance of the trained network based on statistical indicators. Among all the GEP models tested in this study, the one with the lowest MAE (0.1812) and RMSE (0.09146) and the highest correlation coefficient (0.90825) is found to be the most accurate. © 2023 by the authors. Licensee MDPI, Basel, Switzerland. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-19T21:12:04Z |
dc.date.available.none.fl_str_mv |
2023-07-19T21:12:04Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.submitted.none.fl_str_mv |
2023 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Liu, Kuang-Sheng, Iskandar Muda, Ming-Hung Lin, Ngakan Ketut Acwin Dwijendra, Gaylord Carrillo Caballero, Aníbal Alviz-Meza, and Yulineth Cárdenas-Escrocia. 2023. "An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room" Sustainability 15, no. 2: 1728. https://doi.org/10.3390/su15021728 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12171 |
dc.identifier.doi.none.fl_str_mv |
10.3390/su15021728 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Liu, Kuang-Sheng, Iskandar Muda, Ming-Hung Lin, Ngakan Ketut Acwin Dwijendra, Gaylord Carrillo Caballero, Aníbal Alviz-Meza, and Yulineth Cárdenas-Escrocia. 2023. "An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room" Sustainability 15, no. 2: 1728. https://doi.org/10.3390/su15021728 10.3390/su15021728 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12171 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
14 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12171/1/sustainability-15-01728.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12171/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12171/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12171/4/sustainability-15-01728.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12171/5/sustainability-15-01728.pdf.jpg |
bitstream.checksum.fl_str_mv |
36571b604e47cc2c1f555266bba5b692 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 d3823a4c7fd4110ef21160bebd5bd541 b0a2bdbe9c478de989cef4ae39aeefd3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021734368542720 |
spelling |
Liu, Kuang-Sheng29aea359-1eea-4ba5-a050-77afca22ac22Muda, Iskandarcc973407-1bc0-4561-9ff5-8bb03e9e42b2Lin, Ming-Hung01ba3a44-067f-4860-a833-2628e5ab6dabDwijendra, Ngakan Ketut Acwinb785574c-f759-487d-82c5-74ab964f209cCaballero, Gaylord Carrillobcbc086f-8893-4b45-af9f-4034118718ccAlviz-Meza, Aníbaledb81688-b57c-4a93-8a69-1d86b83aad87Cárdenas-Escrocia, Yulinetha11f305e-8e1e-4e82-8892-a2161645d9ed2023-07-19T21:12:04Z2023-07-19T21:12:04Z20232023Liu, Kuang-Sheng, Iskandar Muda, Ming-Hung Lin, Ngakan Ketut Acwin Dwijendra, Gaylord Carrillo Caballero, Aníbal Alviz-Meza, and Yulineth Cárdenas-Escrocia. 2023. "An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room" Sustainability 15, no. 2: 1728. https://doi.org/10.3390/su15021728https://hdl.handle.net/20.500.12585/1217110.3390/su15021728Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThere are no exact criteria for the architecture of openings and windows in office buildings in order to optimize energy consumption. Due to the physical limitations of this renewable energy source and the lack of conscious control over its capabilities, the amount of light entering offices and the role of daylight as a source of energy are determined by how they are constructed. In this study, the standard room dimensions, which are suitable for three to five employees, are compared to computer simulations. DesignBuilder and EnergyPlus are utilized to simulate the office’s lighting and energy consumption. This study presents a new method for estimating conventional energy consumption based on gene expression programming (GEP). A gravitational search algorithm (GSA) is implemented in order to optimize the model results. Using input and output data collected from a simulation of conventional energy use, the physical law underlying the problem and the relationship between inputs and outputs are identified. This method has the advantages of being quick and accurate, with no simulation required. Based on effective input parameters and sensitivity analysis, four models are evaluated. These models are used to evaluate the performance of the trained network based on statistical indicators. Among all the GEP models tested in this study, the one with the lowest MAE (0.1812) and RMSE (0.09146) and the highest correlation coefficient (0.90825) is found to be the most accurate. © 2023 by the authors. Licensee MDPI, Basel, Switzerland.14 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Roominfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Electric Power Transmission Networks;Optimal Power Flow;Power SystemCartagena de IndiasPilechiha, P., Mahdavinejad, M., Pour Rahimian, F., Carnemolla, P., Seyedzadeh, S. Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency (2020) Applied Energy, 261, art. no. 114356. Cited 100 times. https://www.journals.elsevier.com/applied-energy doi: 10.1016/j.apenergy.2019.114356Sadick, A.-M., Kamardeen, I. Enhancing employees’ performance and well-being with nature exposure embedded office workplace design (2020) Journal of Building Engineering, 32, art. no. 101789. Cited 21 times. http://www.journals.elsevier.com/journal-of-building-engineering/ doi: 10.1016/j.jobe.2020.101789Anand, P., Cheong, D., Sekhar, C., Santamouris, M., Kondepudi, S. Energy saving estimation for plug and lighting load using occupancy analysis (2019) Renewable Energy, 143, pp. 1143-1161. Cited 44 times. http://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews/ doi: 10.1016/j.renene.2019.05.089Ahmadi, M.H., Ghazvini, M., Sadeghzadeh, M., Alhuyi Nazari, M., Kumar, R., Naeimi, A., Ming, T. Solar power technology for electricity generation: A critical review (2018) Energy Science and Engineering, 6 (5), pp. 340-361. Cited 218 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2050-0505http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2050-0505 doi: 10.1002/ese3.239Azizi, H., Nejatian, N. Evaluation of the climate change impact on the intensity and return period for drought indices of SPI and SPEI (study area: Varamin plain) (2022) Water Supply, 22 (4), pp. 4373-4386. Cited 13 times. https://watermark.silverchair.com/ws022044373.pdf? doi: 10.2166/ws.2022.056Yavari, F., Salehi Neyshabouri, S.A., Yazdi, J., Molajou, A., Brysiewicz, A. A Novel Framework for Urban Flood damage Assessment (Open Access) (2022) Water Resources Management, 36 (6), pp. 1991-2011. Cited 14 times. www.wkap.nl/journalhome.htm/0920-4741 doi: 10.1007/s11269-022-03122-3Karimi, G., Moradi, Y. Buffer insertion for delay minimization in RLC interconnects using cuckoo optimization algorithm (Open Access) (2019) Analog Integrated Circuits and Signal Processing, 99 (1), pp. 111-121. Cited 6 times. http://springerlink.metapress.com/app/home/journal.asp?wasp=3c35ad1151604369b8fc57d35afe8871&referrer=parent&backto=linkingpublicationresults,1:100232,1 doi: 10.1007/s10470-018-1318-yOmrani, M.M.T. Economic and Environmental Analysis of Floating Photovoltaic Techno-Economic and Environmental Analysis of Floating Photovoltaic Power Plants: A Case Study of Iran Renew. Energy Res. Appl., 2022 (4), pp. 41-54. Cited 2 times.Jalali, Z., Noorzai, E., Heidari, S. Design and optimization of form and facade of an office building using the genetic algorithm (2020) Science and Technology for the Built Environment, 26 (2), pp. 128-140. Cited 52 times. http://www.tandfonline.com/loi/uhvc21 doi: 10.1080/23744731.2019.1624095O'Brien, W., Wagner, A., Schweiker, M., Mahdavi, A., Day, J., Kjærgaard, M.B., Carlucci, S., (...), Berger, C. Introducing IEA EBC annex 79: Key challenges and opportunities in the field of occupant-centric building design and operation (2020) Building and Environment, 178, art. no. 106738. Cited 130 times. http://www.elsevier.com/inca/publications/store/2/9/6/index.htt doi: 10.1016/j.buildenv.2020.106738Elsheikh, A.H., Shanmugan, S., Sathyamurthy, R., Kumar Thakur, A., Issa, M., Panchal, H., Muthuramalingam, T., (...), Sharifpur, M. Low-cost bilayered structure for improving the performance of solar stills: Performance/cost analysis and water yield prediction using machine learning (2022) Sustainable Energy Technologies and Assessments, 49, art. no. 101783. Cited 56 times. http://www.journals.elsevier.com/sustainable-energy-technologies-and-assessments doi: 10.1016/j.seta.2021.101783Ahmadi, M.H., Baghban, A., Salwana, E., Sadeghzadeh, M., Zamen, M., Shamshirband, S., Kumar, R. (2019) Machine Learning Prediction Models of Electrical Efficiency of Photovoltaic-Thermal Collectors. Cited 6 times. PreprintsSabbagh, O., Fanaei, M.A., Arjomand, A., Hossein Ahmadi, M. Multi-objective optimization assessment of a new integrated scheme for co-production of natural gas liquids and liquefied natural gas (2021) Sustainable Energy Technologies and Assessments, 47, art. no. 101493. Cited 12 times. http://www.journals.elsevier.com/sustainable-energy-technologies-and-assessments doi: 10.1016/j.seta.2021.101493Gielen, D., Boshell, F., Saygin, D., Bazilian, M.D., Wagner, N., Gorini, R. The role of renewable energy in the global energy transformation (2019) Energy Strategy Reviews, 24, pp. 38-50. Cited 1824 times. http://www.journals.elsevier.com/energy-strategy-reviews/ doi: 10.1016/j.esr.2019.01.006Ahmadi, M.H., Açıkkalp, E. Exergetic Dimensions of Energy Systems and Processes (2021) J. Therm. Anal. Calorim., 145, pp. 631-634. Cited 3 times.Lowitzsch, J., Hoicka, C.E., van Tulder, F.J. Renewable energy communities under the 2019 European Clean Energy Package – Governance model for the energy clusters of the future? (2020) Renewable and Sustainable Energy Reviews, 122, art. no. 109489. Cited 210 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2019.109489Fessler, D.C. (2018) The Energy Disruption Triangle: Three Sectors that Will Change How We Generate, Use, and Store Energy. Cited 2 times. Wiley: Hoboken, NJ, USA, ISBN 9781119347132Li, Q., Loy-Benitez, J., Nam, K., Hwangbo, S., Rashidi, J., Yoo, C. Sustainable and reliable design of reverse osmosis desalination with hybrid renewable energy systems through supply chain forecasting using recurrent neural networks (2019) Energy, 178, pp. 277-292. Cited 64 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2019.04.114Sudharshan, K., Naveen, C., Vishnuram, P., Krishna Rao Kasagani, D.V.S., Nastasi, B. Systematic Review on Impact of Different Irradiance Forecasting Techniques for Solar Energy Prediction (2022) Energies, 15 (17), art. no. 6267. Cited 10 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en15176267Davoodi, A., Abbasi, A.R., Nejatian, S. Multi-objective techno-economic generation expansion planning to increase the penetration of distributed generation resources based on demand response algorithms (2022) International Journal of Electrical Power and Energy Systems, 138, art. no. 107923. Cited 14 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2021.107923Dagoumas, A.S., Koltsaklis, N.E. Review of models for integrating renewable energy in the generation expansion planning (Open Access) (2019) Applied Energy, 242, pp. 1573-1587. Cited 132 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2019.03.194Taherkhani, M., Hosseini, S.H., Javadi, M.S., Catalão, J.P.S. Scenario-based probabilistic multi-stage optimization for transmission expansion planning incorporating wind generation integration (2020) Electric Power Systems Research, 189, art. no. 106601. Cited 17 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2020.106601Pokhrel, S., Amiri, L., Zueter, A., Poncet, S., Hassani, F.P., Sasmito, A.P., Ghoreishi-Madiseh, S.A. Thermal performance evaluation of integrated solar-geothermal system; a semi-conjugate reduced order numerical model (Open Access) (2021) Applied Energy, 303, art. no. 117676. Cited 10 times. https://www.journals.elsevier.com/applied-energy doi: 10.1016/j.apenergy.2021.117676Paliwal, P., Webber, J.L., Mehbodniya, A., Haq, M.A., Kumar, A., Chaurasiya, P.K. Multi-agent-based approach for generation expansion planning in isolated micro-grid with renewable energy sources and battery storage (Open Access) (2022) Journal of Supercomputing, 78 (17), pp. 18497-18523. Cited 7 times. https://www.springer.com/journal/11227 doi: 10.1007/s11227-022-04609-xSweerts, B., Pfenninger, S., Yang, S., Folini, D., van der Zwaan, B., Wild, M. Estimation of losses in solar energy production from air pollution in China since 1960 using surface radiation data (2019) Nature Energy, 4 (8), pp. 657-663. Cited 71 times. www.nature.com/nenergy/ doi: 10.1038/s41560-019-0412-4Azimi, H., Bonakdari, H., Ebtehaj, I. Gene expression programming-based approach for predicting the roller length of a hydraulic jump on a rough bed (2021) ISH Journal of Hydraulic Engineering, 27 (S1), pp. 77-87. Cited 13 times. www.tandfonline.com/tish doi: 10.1080/09715010.2019.1579058Pirzadeh Ashraf, B., Mojtahedi, A., Dadashzadeh, M. Prediction of dissolved oxygen in wetlands using FCM-ANFIS model—A Case Study: Choghakhor Wetland J. Iran. Water Eng. Res., 2022 (2), pp. 33-50.Han, T., Ansari, N. Provisioning Green Energy for Base Stations in Heterogeneous Networks (2016) IEEE Transactions on Vehicular Technology, 65 (7), art. no. 7182373, pp. 5439-5448. Cited 27 times. doi: 10.1109/TVT.2015.2466101Drachal, K., Pawłowski, M. A review of the applications of genetic algorithms to forecasting prices of commodities (Open Access) (2021) Economies, 9 (1), art. no. 6. Cited 17 times. https://www.mdpi.com/2227-7099/9/1/6/pdf doi: 10.3390/economies9010006Tijani, I.A., Zayed, T. Gene expression programming based mathematical modeling for leak detection of water distribution networks (Open Access) (2022) Measurement: Journal of the International Measurement Confederation, 188, art. no. 110611. Cited 9 times. https://www.journals.elsevier.com/measurement doi: 10.1016/j.measurement.2021.110611Mittal, H., Tripathi, A., Pandey, A.C., Pal, R. Gravitational search algorithm: a comprehensive analysis of recent variants (Open Access) (2021) Multimedia Tools and Applications, 80 (5), pp. 7581-7608. Cited 33 times. https://link.springer.com/journal/11042 doi: 10.1007/s11042-020-09831-4Sabri, N.M., Puteh, M., Mahmood, M.R. An overview of Gravitational Search Algorithm utilization in optimization problems (Open Access) (2013) Proceedings - 2013 IEEE 3rd International Conference on System Engineering and Technology, ICSET 2013, art. no. 6650144, pp. 61-66. Cited 18 times. ISBN: 978-147991030-4 doi: 10.1109/ICSEngT.2013.6650144Wang, Y., Gao, S., Yu, Y., Cai, Z., Wang, Z. A gravitational search algorithm with hierarchy and distributed framework (2021) Knowledge-Based Systems, 218, art. no. 106877. Cited 42 times. https://www.journals.elsevier.com/knowledge-based-systems doi: 10.1016/j.knosys.2021.106877Rashedi, E., Rashedi, E., Nezamabadi-pour, H. A comprehensive survey on gravitational search algorithm (Open Access) (2018) Swarm and Evolutionary Computation, 41, pp. 141-158. Cited 155 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724666/description#description doi: 10.1016/j.swevo.2018.02.018Younes, Z., Alhamrouni, I., Mekhilef, S., Reyasudin, M. A memory-based gravitational search algorithm for solving economic dispatch problem in micro-grid (Open Access) (2021) Ain Shams Engineering Journal, 12 (2), pp. 1985-1994. Cited 47 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724208/description#description doi: 10.1016/j.asej.2020.10.021Campbell, J.E., Carmichael, G.R., Chai, T., Mena-Carrasco, M., Tang, Y., Blake, D.R., Blake, N.J., (...), Stanier, C.O. Photosynthetic control of atmospheric carbonyl sulfide during the growing season (Open Access) (2008) Science, 322 (5904), pp. 1085-1088. Cited 158 times. doi: 10.1126/science.1164015http://purl.org/coar/resource_type/c_6501ORIGINALsustainability-15-01728.pdfsustainability-15-01728.pdfapplication/pdf3457404https://repositorio.utb.edu.co/bitstream/20.500.12585/12171/1/sustainability-15-01728.pdf36571b604e47cc2c1f555266bba5b692MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12171/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12171/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTsustainability-15-01728.pdf.txtsustainability-15-01728.pdf.txtExtracted texttext/plain59031https://repositorio.utb.edu.co/bitstream/20.500.12585/12171/4/sustainability-15-01728.pdf.txtd3823a4c7fd4110ef21160bebd5bd541MD54THUMBNAILsustainability-15-01728.pdf.jpgsustainability-15-01728.pdf.jpgGenerated Thumbnailimage/jpeg7987https://repositorio.utb.edu.co/bitstream/20.500.12585/12171/5/sustainability-15-01728.pdf.jpgb0a2bdbe9c478de989cef4ae39aeefd3MD5520.500.12585/12171oai:repositorio.utb.edu.co:20.500.12585/121712023-07-20 00:17:54.391Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |