Relaxed convex model for optimal location and sizing of DGs in DC grids using sequential quadratic programming and random hyperplane approaches
This report addresses the problem of optimal location and sizing of constant power sources (distributed generators (DGs)) in direct current (DC) networks for improving network performance in terms of voltage profiles and energy efficiency. An exact mixed-integer nonlinear programming (MINLP) method...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9141
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9141
- Palabra clave:
- Convex optimization
Direct current networks
Distributed generation
Random hyperplane method
Relaxed mathematical model
Taylor series expansion
Convex optimization
Distributed power generation
Energy efficiency
Geometry
Integer programming
MATLAB
Quadratic programming
Relaxation processes
Taylor series
Voltage regulators
Direct current
Distributed generator (DGs)
Meta-heuristic optimizations
Mixed-integer nonlinear programming
Random hyperplane method
Sequential quadratic programming
Taylor series expansions
Taylor series methods
Heuristic methods
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_f1b42b769906ba1d26605a5dc0c6fba9 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9141 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Relaxed convex model for optimal location and sizing of DGs in DC grids using sequential quadratic programming and random hyperplane approaches |
title |
Relaxed convex model for optimal location and sizing of DGs in DC grids using sequential quadratic programming and random hyperplane approaches |
spellingShingle |
Relaxed convex model for optimal location and sizing of DGs in DC grids using sequential quadratic programming and random hyperplane approaches Convex optimization Direct current networks Distributed generation Random hyperplane method Relaxed mathematical model Taylor series expansion Convex optimization Distributed power generation Energy efficiency Geometry Integer programming MATLAB Quadratic programming Relaxation processes Taylor series Voltage regulators Direct current Distributed generator (DGs) Meta-heuristic optimizations Mixed-integer nonlinear programming Random hyperplane method Sequential quadratic programming Taylor series expansions Taylor series methods Heuristic methods |
title_short |
Relaxed convex model for optimal location and sizing of DGs in DC grids using sequential quadratic programming and random hyperplane approaches |
title_full |
Relaxed convex model for optimal location and sizing of DGs in DC grids using sequential quadratic programming and random hyperplane approaches |
title_fullStr |
Relaxed convex model for optimal location and sizing of DGs in DC grids using sequential quadratic programming and random hyperplane approaches |
title_full_unstemmed |
Relaxed convex model for optimal location and sizing of DGs in DC grids using sequential quadratic programming and random hyperplane approaches |
title_sort |
Relaxed convex model for optimal location and sizing of DGs in DC grids using sequential quadratic programming and random hyperplane approaches |
dc.subject.keywords.none.fl_str_mv |
Convex optimization Direct current networks Distributed generation Random hyperplane method Relaxed mathematical model Taylor series expansion Convex optimization Distributed power generation Energy efficiency Geometry Integer programming MATLAB Quadratic programming Relaxation processes Taylor series Voltage regulators Direct current Distributed generator (DGs) Meta-heuristic optimizations Mixed-integer nonlinear programming Random hyperplane method Sequential quadratic programming Taylor series expansions Taylor series methods Heuristic methods |
topic |
Convex optimization Direct current networks Distributed generation Random hyperplane method Relaxed mathematical model Taylor series expansion Convex optimization Distributed power generation Energy efficiency Geometry Integer programming MATLAB Quadratic programming Relaxation processes Taylor series Voltage regulators Direct current Distributed generator (DGs) Meta-heuristic optimizations Mixed-integer nonlinear programming Random hyperplane method Sequential quadratic programming Taylor series expansions Taylor series methods Heuristic methods |
description |
This report addresses the problem of optimal location and sizing of constant power sources (distributed generators (DGs)) in direct current (DC) networks for improving network performance in terms of voltage profiles and energy efficiency. An exact mixed-integer nonlinear programming (MINLP) method is proposed to represent this problem, considering the minimization of total power losses as the objective function. Furthermore, the power balance per node, voltage regulation limits, DG capabilities, and maximum penetration of the DG are considered as constraints. To solve the MINLP model, a convex relaxation is proposed using a Taylor series expansion, in conjunction with the transformation of the binary variables into continuous variables. The solution of the relaxed convex model is constructed using a sequential quadratic programming approach to minimize the linearization error using the Taylor series method. The solution of the relaxed convex model is used as the input for a heuristic random hyperplane method that facilitates the recovery of binary variables that solve the original MINLP model. Two DC distribution feeders, one having 21 and the other having 69 nodes, were used as test systems. Simulation results were obtained using the MATLAB/quadprog package and contrasted with the large-scale nonlinear solvers available for General algebraic modeling system (GAMS) software metaheuristic optimization approaches to demonstrate the robustness and effectiveness of our proposed methodology. © 2019 Elsevier Ltd |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:02Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:02Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
International Journal of Electrical Power and Energy Systems; Vol. 115 |
dc.identifier.issn.none.fl_str_mv |
01420615 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9141 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.ijepes.2019.105442 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56919564100 57191493648 55791991200 |
identifier_str_mv |
International Journal of Electrical Power and Energy Systems; Vol. 115 01420615 10.1016/j.ijepes.2019.105442 Universidad Tecnológica de Bolívar Repositorio UTB 56919564100 57191493648 55791991200 |
url |
https://hdl.handle.net/20.500.12585/9141 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072686799&doi=10.1016%2fj.ijepes.2019.105442&partnerID=40&md5=1afc2e3394c01af635e748ed905ecff0 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9141/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021676493438976 |
spelling |
2020-03-26T16:33:02Z2020-03-26T16:33:02Z2020International Journal of Electrical Power and Energy Systems; Vol. 11501420615https://hdl.handle.net/20.500.12585/914110.1016/j.ijepes.2019.105442Universidad Tecnológica de BolívarRepositorio UTB569195641005719149364855791991200This report addresses the problem of optimal location and sizing of constant power sources (distributed generators (DGs)) in direct current (DC) networks for improving network performance in terms of voltage profiles and energy efficiency. An exact mixed-integer nonlinear programming (MINLP) method is proposed to represent this problem, considering the minimization of total power losses as the objective function. Furthermore, the power balance per node, voltage regulation limits, DG capabilities, and maximum penetration of the DG are considered as constraints. To solve the MINLP model, a convex relaxation is proposed using a Taylor series expansion, in conjunction with the transformation of the binary variables into continuous variables. The solution of the relaxed convex model is constructed using a sequential quadratic programming approach to minimize the linearization error using the Taylor series method. The solution of the relaxed convex model is used as the input for a heuristic random hyperplane method that facilitates the recovery of binary variables that solve the original MINLP model. Two DC distribution feeders, one having 21 and the other having 69 nodes, were used as test systems. Simulation results were obtained using the MATLAB/quadprog package and contrasted with the large-scale nonlinear solvers available for General algebraic modeling system (GAMS) software metaheuristic optimization approaches to demonstrate the robustness and effectiveness of our proposed methodology. © 2019 Elsevier LtdUniversidad Tecnológica de Pereira, UTP: C2018P020 Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015This study was funded in part by the Administrative Department of Science, Technology, and Innovation of Colombia ( COLCIENCIAS ) through its National Scholarship Program, under Grant 727-2015 , and in part by Universidad Tecnológica de Bolívar , under Project C2018P020 .Recurso electrónicoapplication/pdfengElsevier Ltdhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85072686799&doi=10.1016%2fj.ijepes.2019.105442&partnerID=40&md5=1afc2e3394c01af635e748ed905ecff0Relaxed convex model for optimal location and sizing of DGs in DC grids using sequential quadratic programming and random hyperplane approachesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Convex optimizationDirect current networksDistributed generationRandom hyperplane methodRelaxed mathematical modelTaylor series expansionConvex optimizationDistributed power generationEnergy efficiencyGeometryInteger programmingMATLABQuadratic programmingRelaxation processesTaylor seriesVoltage regulatorsDirect currentDistributed generator (DGs)Meta-heuristic optimizationsMixed-integer nonlinear programmingRandom hyperplane methodSequential quadratic programmingTaylor series expansionsTaylor series methodsHeuristic methodsMontoya O.D.Gil-González W.Grisales-Noreña L.F.Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: a review (2015) IEEE Access, 3, pp. 890-925Lu, S., Wang, L., Lo, T., Prokhorov, A.V., Integration of wind power and wave power generation systems using a DC microgrid (2015) IEEE Trans Ind Appl, 51 (4), pp. 2753-2761Kwon, M., Choi, S., Control scheme for autonomous and smooth mode switching of bidirectional DCDC converters in a DC microgrid (2018) IEEE Trans Power Electron, 33 (8), pp. 7094-7104Garces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electr Power Syst Res, 151, pp. 149-153Wang, L., Wang, K., Lee, W., Chen, Z., Power-flow control and stability enhancement of four parallel-operated offshore wind farms using a line-commutated HVDC link (2010) IEEE Trans Power Del, 25 (2), pp. 1190-1202Wang, L., Thi, M.S.N., Comparative stability analysis of offshore wind and marine-current farms feeding into a power grid using HVDC links and HVAC line (2013) IEEE Trans Power Del, 28 (4), pp. 2162-2171Mitra, P., Zhang, L., Harnefors, L., Offshore wind integration to a weak grid by VSC-HVDC links using power-synchronization control: a case study (2014) IEEE Trans Power Del, 29 (1), pp. 453-461Gavriluta, C., Candela, I., Citro, C., Luna, A., Rodriguez, P., Design considerations for primary control in multi-terminal VSC-HVDC grids (2015) Electr Power Syst Res, 122, pp. 33-41Gil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F., Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) J Energy Storage, 21, pp. 1-8Garcés, A., Herrera, J., Gil-González, W., Montoya, O.D., Small-signal stability in low-voltage DC-grids (2018) IEEE ANDESCON, 2018, pp. 1-5Montoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Electr Power Syst Res, 163, pp. 375-381Pinares, G., Bongiorno, M., Modeling and analysis of VSC-based HVDC systems for DC network stability studies (2016) IEEE Trans Power Del, 31 (2), pp. 848-856Sun, J., Autonomous local control and stability analysis of multiterminal DC systems (2015) IEEE J Emerg Sel Top Power Electron, 3 (4), pp. 1078-1089Shamsi, P., Fahimi, B., Stability assessment of a DC distribution network in a hybrid micro-grid application (2014) IEEE Trans Smart Grid, 5 (5), pp. 2527-2534Montoya, O.D., Gil-González, W., Garces, A., Optimal power flow on DC microgrids: a quadratic convex approximation (2018) IEEE Trans Circuits Syst, 2, p. 1Wang, C., Li, X., Guo, L., Li, Y.W., A nonlinear-disturbance-observer-based DC-bus voltage control for a hybrid AC/DC microgrid (2014) IEEE Trans Power Electron, 29 (11), pp. 6162-6177Wang, J., Jin, C., Wang, P., A uniform control strategy for the interlinking converter in hierarchical controlled hybrid AC/DC microgrids (2018) IEEE Trans Ind Electron, 65 (8), pp. 6188-6197Davari, M., Mohamed, Y.A.I., Robust multi-objective control of VSC-based DC-voltage power port in hybrid AC/DC multi-terminal micro-grids (2013) IEEE Trans Smart Grid, 4 (3), pp. 1597-1612Ang, G., Arcibal, P.J., Crisostomo, L.M.R., Ostia, C.F., Joaquin, P.J.C.S., Tabuton, J.E.C., Implementation of a fuzzy controlled buck-boost converter for photovoltaic systems (2017) Energy Procedia, 143, pp. 641-648. , leveraging Energy Technologies and Policy Options for Low Carbon CitiesWang, B., Ma, G., Xu, D., Zhang, L., Zhou, J., Switching sliding-mode control strategy based on multi-type restrictive condition for voltage control of buck converter in auxiliary energy source (2018) Appl Energy, 228, pp. 1373-1384Viswanatha, V., Venkata Siva Reddy, R., Microcontroller based bidirectional buckboost converter for photo-voltaic power plant (2018) J Electr Syst Inf Technol, 5 (3), pp. 745-758Serna-Garcés, S.I., https://doi.org/10.3390/en9040245, Gonzalez Montoya D, Ramos-Paja CA. Sliding-mode control of a charger/discharger DC/DC converter for DC-bus regulation in renewable power systems. Energies 9 (4). doi:Valencia, P.A.O., Ramos-Paja, C.A., Sliding-mode controller for maximum power point tracking in grid-connected photovoltaic systems (2015) Energies, 8 (11), pp. 12363-12387. , <http://www.mdpi.com/1996-1073/8/11/12318>Duberney Murillo-Yarce, A.G.-R., A.E.-M. 1, Passivity-based control for DC-microgrids with constant power terminals in island mode operation (2018) Revista Facultad de Ingeniería, (86), pp. 32-39He, W., Soriano-Rangel, C.A., Ortega, R., Astolfi, A., Mancilla-David, F., Li, S., Energy shaping control for buckboost converters with unknown constant power load (2018) Control Eng Pract, 74, pp. 33-43Hernández-Márquez, E., Silva-Ortigoza, R., García-Sánchez, J.R., Marcelino-Aranda, M., Saldaña-González, G., A DC/DC buck-boost converterinverterDC motor system: sensorless passivity-based control (2018) IEEE Access, 6, pp. 31486-31492Shadmand, M.B., Balog, R.S., Abu-Rub, H., Model predictive control of PV sources in a smart DC distribution system: maximum power point tracking and droop control (2014) IEEE Trans Energy Convers, 29 (4), pp. 913-921Xie, Y., Ghaemi, R., Sun, J., Freudenberg, J.S., Model predictive control for a full bridge DC/DC converter (2012) IEEE Trans Control Syst Technol, 20 (1), pp. 164-172Geyer, T., Papafotiou, G., Morari, M., Hybrid model predictive control of the step-down DCDC converter (2008) IEEE Trans Control Syst Technol, 16 (6), pp. 1112-1124Ghiasi, M.I., Golkar, M.A., Hajizadeh, A., Lyapunov based-distributed fuzzy-sliding mode control for building integrated-DC microgrid with plug-in electric vehicle (2017) IEEE Access, 5, pp. 7746-7752Kakigano, H., Miura, Y., Ise, T., Distribution voltage control for DC microgrids using fuzzy control and gain-scheduling technique (2013) IEEE Trans Power Electron, 28 (5), pp. 2246-2258Serafimovski, A., Martinez-Salamero, L., Leyva, R., Stankovski, M., Shutinoski, G., Dzhekov, T., Linear state-feedback control of a buck-boost converter using passivity technique (2001) IFAC Proc Vol, 34 (3), pp. 131-136. , 2nd IFAC Workshop on Automatic Systems for Building the Infrastructure in Developing Countries 2001, Ochrid, Rep of Macedonia, 21–23 May 2001Kim, S., Lee, K., Robust feedback-linearizing output voltage regulator for DC/DC boost converter (2015) IEEE Trans Ind Electron, 62 (11), pp. 7127-7135Garces, A., On convergence of Newtons method in power flow study for DC microgrids (2018) IEEE Trans Power Syst, p. 1Karimipour, D., Salmasi, F.R., Stability analysis of AC microgrids with constant power loads based on Popov's absolute stability criterion (2015) IEEE Trans Circuits Syst II Express Briefs, 62 (7), pp. 696-700Garces, A., Montoya, D., Torres, R., Optimal power flow in multiterminal HVDC systems considering DC/DC converters (2016) 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), pp. 1212-1217Montoya, O.D., Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model (2018) IEEE Trans Circuits Syst, 2, p. 1Li, J., Liu, F., Wang, Z., Low, S., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans Power Syst, p. 1Lotfi, H., Khodaei, A., AC versus DC microgrid planning (2017) IEEE Trans Smart Grid, 8 (1), pp. 296-304Ahmed, H.M.A., Eltantawy, A.B., Salama, M.M.A., A planning approach for the network configuration of ac-dc hybrid distribution systems (2018) IEEE Trans Smart Grid, 9 (3), pp. 2203-2213Nasir, M., Iqbal, S., Khan, H.A., Optimal planning and design of low-voltage low-power solar DC microgrids (2018) IEEE Trans Power Syst, 33 (3), pp. 2919-2928Singh, A.K., Parida, S.K., Optimal placement of DGs using MINLP in deregulated electricity market (2010) Proceedings of the international conference on Energy and Sustainable Development: Issues and Strategies (ESD 2010), pp. 1-7Kaur, S., Kumbhar, G., Sharma, J., A MINLP technique for optimal placement of multiple DG units in distribution systems (2014) Int J Electr Power Energy Syst, 63, pp. 609-617. , <http://www.sciencedirect.com/science/article/pii/S014206151400372X>Bohre, A.K., Agnihotri, G., Dubey, M., Optimal sizing and sitting of DG with load models using soft computing techniques in practical distribution system (2016) IET Gener Transm Distrib, 10 (11), pp. 2606-2621Abdelaziz, A., Ali, E., Elazim, S.A., Optimal sizing and locations of capacitors in radial distribution systems via flower pollination optimization algorithm and power loss index (2016) Eng Sci Technol Int J, 19 (1), pp. 610-618Moradi, M., Abedini, M., A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems (2012) Int J Electr Power Energy Syst, 34 (1), pp. 66-74Jamian, J., Mustafa, M., Mokhlis, H., Optimal multiple distributed generation output through rank evolutionary particle swarm optimization (2015) Neurocomputing, 152, pp. 190-198Sultana, S., Roy, P.K., Krill herd algorithm for optimal location of distributed generator in radial distribution system (2016) Appl Soft Comput, 40, pp. 391-404Gandomkar, M., Vakilian, M., Ehsan, M., A genetic based tabu search algorithm for optimal DG allocation in distribution networks (2005) Electric Power Compon Syst, 33 (12), pp. 1351-1362Abido, M.A., Optimal power flow using tabu search algorithm (2002) Electric Power Compon Syst, 30 (5), pp. 469-483Grisales-Noreña, L.F., Gonzalez-Montoya, D., Ramos-Paja, C.A., Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (1018), pp. 1-27Mohanty, B., Tripathy, S., A teaching learning based optimization technique for optimal location and size of DG in distribution network (2016) J Electr Syst Inf Technol, 3 (1), pp. 33-44Kanwar, N., Gupta, N., Niazi, K., Swarnkar, A., Simultaneous allocation of distributed resources using improved teaching learning based optimization (2015) Energy Convers Manage, 103, pp. 387-400Nguyen, T.P., Dieu, V.N., Vasant, P., Symbiotic organism search algorithm for optimal size and siting of distributed generators in distribution systems (2017) Int J Energy Optim Eng, 6 (3), pp. 1-28Montoya, O.D., Gil-González, W., Garces, A., Sequential quadratic programming models for solving the OPF problem in DC grids (2019) Electr Power Syst Res, 169, pp. 18-23Nesterov, Y., Introductory lectures on convex optimization: a basic course (2004), <https://www.springer.com/us/book/9781402075537>, Springer USDahdari, V., Sequential Quadratic Programming (SQP) for solving constrained production optimization: case study from Brugge field (2010), <https://books.google.com.co/books?id=oKn6ewEACAAJ>, University of OklahomaNejdawi, I.M., Clements, K.A., Davis, P.W., An efficient interior point method for sequential quadratic programming based optimal power flow (2000) IEEE Trans Power Syst, 15 (4), pp. 1179-1183Subathra, M.S.P., Selvan, S.E., Victoire, T.A.A., Christinal, A.H., Amato, U., A hybrid with cross-entropy method and sequential quadratic programming to solve economic load dispatch problem (2015) IEEE Syst J, 9 (3), pp. 1031-1044Sheng, W., Liu, K., Cheng, S., Meng, X., Dai, W., A trust region SQP method for coordinated voltage control in smart distribution grid (2016) IEEE Trans Smart Grid, 7 (1), pp. 381-391Bai, Y., Xu, Z., Xi, X., Wang, S., Objective variation simplex algorithm for continuous piecewise linear programming (2017) Tsinghua Sci Technol, 22 (1), pp. 73-82Velasquez, O.S., Montoya, O.D., Garrido, V.M., Grisales-Noreña, L.F., Optimal power flow in direct-current power grids via black hole optimization (2019) Adv Electrical Electron Eng, 17 (1), pp. 24-32Montoya, O.D., Gil-González, W., Grisales-Noreña, L.F., Optimal power dispatch of DGs in DC power grids: a hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem (2018) WSEAS Trans Power Syst, 13 (33), pp. 335-346Wang, P., Zhang, L., Xu, D., Optimal sizing of distributed generations in DC microgrids with lifespan estimated model of batteries (2018) 2018 21st International Conference on Electrical Machines and Systems (ICEMS), pp. 2045-2049http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9141/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9141oai:repositorio.utb.edu.co:20.500.12585/91412021-02-02 14:54:10.908Repositorio Institucional UTBrepositorioutb@utb.edu.co |