Integration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: A PBC Approach
This paper presents a general control design for photovoltaic systems integrated with Direct-Current power grids by using an unidirectional boost converter. Passivity-based control (PBC) theory is used as a control technique since the dynamical model of the boost converter has an intrinsically port-...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8856
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8856
- Palabra clave:
- Boost converter
Current control mode
Lyapunov stability
Passivity-based control theory
Pphotovoltaic arrays
Control theory
Controllers
DC-DC converters
Electric current control
Electric power transmission networks
Hamiltonians
MATLAB
Photoelectrochemical cells
Photovoltaic cells
Power control
Solar power generation
Two term control systems
Boost converter
Current control modes
Lyapunov stability
Passivity based control
Photovoltaic arrays
Electric power system control
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_f16d1895ab347c3af21af05637e9c1e7 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8856 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Integration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: A PBC Approach |
title |
Integration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: A PBC Approach |
spellingShingle |
Integration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: A PBC Approach Boost converter Current control mode Lyapunov stability Passivity-based control theory Pphotovoltaic arrays Control theory Controllers DC-DC converters Electric current control Electric power transmission networks Hamiltonians MATLAB Photoelectrochemical cells Photovoltaic cells Power control Solar power generation Two term control systems Boost converter Current control modes Lyapunov stability Passivity based control Photovoltaic arrays Electric power system control |
title_short |
Integration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: A PBC Approach |
title_full |
Integration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: A PBC Approach |
title_fullStr |
Integration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: A PBC Approach |
title_full_unstemmed |
Integration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: A PBC Approach |
title_sort |
Integration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: A PBC Approach |
dc.subject.keywords.none.fl_str_mv |
Boost converter Current control mode Lyapunov stability Passivity-based control theory Pphotovoltaic arrays Control theory Controllers DC-DC converters Electric current control Electric power transmission networks Hamiltonians MATLAB Photoelectrochemical cells Photovoltaic cells Power control Solar power generation Two term control systems Boost converter Current control modes Lyapunov stability Passivity based control Photovoltaic arrays Electric power system control |
topic |
Boost converter Current control mode Lyapunov stability Passivity-based control theory Pphotovoltaic arrays Control theory Controllers DC-DC converters Electric current control Electric power transmission networks Hamiltonians MATLAB Photoelectrochemical cells Photovoltaic cells Power control Solar power generation Two term control systems Boost converter Current control modes Lyapunov stability Passivity based control Photovoltaic arrays Electric power system control |
description |
This paper presents a general control design for photovoltaic systems integrated with Direct-Current power grids by using an unidirectional boost converter. Passivity-based control (PBC) theory is used as a control technique since the dynamical model of the boost converter has an intrinsically port-Hamiltonian structure, where PBC theory is based upon, to design stable controllers via Lyapunov stability theory. To control the photovoltaic solar system, a current control mode is used, since photovoltaic cells are mathematically modelled as current sources, where the photo-current determined by the solar irradiance and the cell's temperature. Proportional and proportional-integral passivity-based controllers are developed to operate the boost converter under current control mode to extract the maximum power available in the PV array. Simulation results are conducted via MATLAB/ODE-package software. © 2018 IEEE. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:30Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:30Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
2018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 2018 |
dc.identifier.isbn.none.fl_str_mv |
9781538678428 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8856 |
dc.identifier.doi.none.fl_str_mv |
10.1109/EPIM.2018.8756428 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56919564100 55609096600 57191493648 36449223500 |
identifier_str_mv |
2018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 2018 9781538678428 10.1109/EPIM.2018.8756428 Universidad Tecnológica de Bolívar Repositorio UTB 56919564100 55609096600 57191493648 36449223500 |
url |
https://hdl.handle.net/20.500.12585/8856 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
14 November 2018 through 16 November 2018 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069774602&doi=10.1109%2fEPIM.2018.8756428&partnerID=40&md5=f10eda05e24d890d8b456d27081d9e34 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
9th IEEE Power, Instrumentation and Measurement Meeting, EPIM 2018 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8856/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021598126014464 |
spelling |
2020-03-26T16:32:30Z2020-03-26T16:32:30Z20182018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 20189781538678428https://hdl.handle.net/20.500.12585/885610.1109/EPIM.2018.8756428Universidad Tecnológica de BolívarRepositorio UTB56919564100556090966005719149364836449223500This paper presents a general control design for photovoltaic systems integrated with Direct-Current power grids by using an unidirectional boost converter. Passivity-based control (PBC) theory is used as a control technique since the dynamical model of the boost converter has an intrinsically port-Hamiltonian structure, where PBC theory is based upon, to design stable controllers via Lyapunov stability theory. To control the photovoltaic solar system, a current control mode is used, since photovoltaic cells are mathematically modelled as current sources, where the photo-current determined by the solar irradiance and the cell's temperature. Proportional and proportional-integral passivity-based controllers are developed to operate the boost converter under current control mode to extract the maximum power available in the PV array. Simulation results are conducted via MATLAB/ODE-package software. © 2018 IEEE.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government, DSITI Universidad Tecnológica de Pereira, UTPFINANCIAL SUPPORT This work was partially supported by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program, calling contest 727–2015, and the PhD program in Engineering of la Universidad Tecnológica de Pereira.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85069774602&doi=10.1109%2fEPIM.2018.8756428&partnerID=40&md5=f10eda05e24d890d8b456d27081d9e349th IEEE Power, Instrumentation and Measurement Meeting, EPIM 2018Integration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: A PBC Approachinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fBoost converterCurrent control modeLyapunov stabilityPassivity-based control theoryPphotovoltaic arraysControl theoryControllersDC-DC convertersElectric current controlElectric power transmission networksHamiltoniansMATLABPhotoelectrochemical cellsPhotovoltaic cellsPower controlSolar power generationTwo term control systemsBoost converterCurrent control modesLyapunov stabilityPassivity based controlPhotovoltaic arraysElectric power system control14 November 2018 through 16 November 2018Montoya O.D.Campillo Jiménez, Javier EduardoGil-González W.Garces A.Rauf, S., Khan, N., Application of DC-AC hybrid grid and solar photovoltaic generation with battery storage using smart grid (2017) International Journal of Photoenergy, 2017Kouro, S., Leon, J.I., Vinnikov, D., Franquelo, L.G., Grid-connected photovoltaic systems: An overview of recent research and emerging PV converter technology (2015) IEEE Industrial Electronics Magazine, 9 (1), pp. 47-61Kadir, A., Fazliana, A., Khatib, T., Elmenreich, W., Integrating photovoltaic systems in power system: Power quality impacts and optimal planning challenges (2014) International Journal of Photoenergy, 2014Kakosimos, P.E., Kladas, A.G., Manias, S.N., Fast photovoltaicsystem voltage-or current-oriented MPPT employing a predictive digital current-controlled converter (2013) IEEE Transactions on Industrial Electronics, 60 (12), pp. 5673-5685Espinoza-Trejo, D.R., Bárcenas-Bárcenas, E., Campos-Delgado, D.U., De Angelo, C.H., Voltage-oriented input-output linearization controller as maximum power point tracking technique for photovoltaic systems (2015) IEEE Transactions on Industrial Electronics, 62 (6), pp. 3499-3507Bianconi, E., Calvente, J., Giral, R., Mamarelis, E., Petrone, G., Ramos-Paja, C.A., Spagnuolo, G., Vitelli, M., A fast current-based MPPT technique employing sliding mode control (2013) IEEE Transactions on Industrial Electronics, 60 (3), pp. 1168-1178Velázquez, I.O., Pérez, G.R.E., Giraldo, O.D.M., Ruiz, A.G., Noreña, L.F.G., Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approach (2018) Green Technologies Conference (GreenTech), 2018, pp. 1-6De Brito, M.A.G., Galotto, L., Sampaio, L.P., Melo, G.D.A.E., Canesin, C.A., Evaluation of the main MPPT techniques for photovoltaic applications (2013) IEEE Transactions on Industrial Electronics, 60 (3), pp. 1156-1167Solodovnik, E.V., Liu, S., Dougal, R.A., Power controller design for maximum power tracking in solar installations (2004) IEEE Transactions on Power Electronics, 19 (5), pp. 1295-1304. , SeptShahdadi, A., Khajeh, A., Barakati, S.M., A new slip surface sliding mode controller to implement MPPT method in photovoltaic system (2018) Power Electronics, Drives Systems and Technologies Conference (PEDSTC), 2018 9th Annual, pp. 212-217Chiu, C.-S., Ouyang, Y.-L., Robust maximum power tracking control of uncertain photovoltaic systems: A unified TS fuzzy model-based approach (2011) IEEE Transactions on Control Systems Technology, 19 (6), pp. 1516-1526Kakosimos, P.E., Kladas, A.G., Implementation of photovoltaic array MPPT through fixed step predictive control technique (2011) Renewable Energy, 36 (9), pp. 2508-2514Metry, M., Shadmand, M.B., Balog, R.S., Abu-Rub, H., MPPT of photovoltaic systems using sensorless current-based model predictive control (2017) IEEE Trans. Ind. Appl, 53 (2), pp. 1157-1167Gil-González, W., Montoya, O.D., Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach (2018) Journal of Energy Storage, 18, pp. 459-466Montoya, O., Gil-González, W., Serra, F., PBC approach for SMES devices in electric distribution networks (2018) IEEE Transactions on Circuits and Systems II: Express BriefsMontoya, O.D., Gil-González, W., Garcés, A., Espinosa-Pérez, G., Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC (2018) Journal of Energy Storage, 17, pp. 261-271Sira-Ramirez, H., Ortega, R., Escobar, G., Lagrangian modeling of switch regulated DC-to-DC power converters (1996) Proceedings of 35th IEEE Conference on Decision and Control, 4, pp. 4492-4497. , Dec vol.4Van Der Schaft, A., Jeltsema, D., Port-hamiltonian systems theory: An introductory overview (2014) Foundations and Trends R - In Systems and Control, 1 (2-3), pp. 173-378Nageshrao, S.P., Lopes, G.A., Jeltsema, D., Babuska, R., Porthamiltonian systems in adaptive and learning control: A survey (2016) IEEE Trans. Automat. Contr., 61 (5), pp. 1223-1238Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters (2015) Control Engineering Practice, 43, pp. 109-119Avila-Becerril, S., Montoya, O.D., Espinosa-Pérez, G., Garcés, A., Control of a detailed model of microgrids from a hamiltonian approach (2018) IFAC-PapersOnLine, 51 (3), pp. 187-192Castaneda, M., Cano, A., Jurado, F., Sánchez, H., Fernandez, L.M., Sizing optimization, dynamic modeling and energy management strategies of a stand-alone PV/hydrogen/battery-based hybrid system (2013) International Journal of Hydrogen Energy, 38 (10), pp. 3830-3845http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8856/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8856oai:repositorio.utb.edu.co:20.500.12585/88562023-05-25 14:57:17.504Repositorio Institucional UTBrepositorioutb@utb.edu.co |