Integration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: A PBC Approach

This paper presents a general control design for photovoltaic systems integrated with Direct-Current power grids by using an unidirectional boost converter. Passivity-based control (PBC) theory is used as a control technique since the dynamical model of the boost converter has an intrinsically port-...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8856
Acceso en línea:
https://hdl.handle.net/20.500.12585/8856
Palabra clave:
Boost converter
Current control mode
Lyapunov stability
Passivity-based control theory
Pphotovoltaic arrays
Control theory
Controllers
DC-DC converters
Electric current control
Electric power transmission networks
Hamiltonians
MATLAB
Photoelectrochemical cells
Photovoltaic cells
Power control
Solar power generation
Two term control systems
Boost converter
Current control modes
Lyapunov stability
Passivity based control
Photovoltaic arrays
Electric power system control
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_f16d1895ab347c3af21af05637e9c1e7
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8856
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Integration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: A PBC Approach
title Integration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: A PBC Approach
spellingShingle Integration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: A PBC Approach
Boost converter
Current control mode
Lyapunov stability
Passivity-based control theory
Pphotovoltaic arrays
Control theory
Controllers
DC-DC converters
Electric current control
Electric power transmission networks
Hamiltonians
MATLAB
Photoelectrochemical cells
Photovoltaic cells
Power control
Solar power generation
Two term control systems
Boost converter
Current control modes
Lyapunov stability
Passivity based control
Photovoltaic arrays
Electric power system control
title_short Integration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: A PBC Approach
title_full Integration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: A PBC Approach
title_fullStr Integration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: A PBC Approach
title_full_unstemmed Integration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: A PBC Approach
title_sort Integration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: A PBC Approach
dc.subject.keywords.none.fl_str_mv Boost converter
Current control mode
Lyapunov stability
Passivity-based control theory
Pphotovoltaic arrays
Control theory
Controllers
DC-DC converters
Electric current control
Electric power transmission networks
Hamiltonians
MATLAB
Photoelectrochemical cells
Photovoltaic cells
Power control
Solar power generation
Two term control systems
Boost converter
Current control modes
Lyapunov stability
Passivity based control
Photovoltaic arrays
Electric power system control
topic Boost converter
Current control mode
Lyapunov stability
Passivity-based control theory
Pphotovoltaic arrays
Control theory
Controllers
DC-DC converters
Electric current control
Electric power transmission networks
Hamiltonians
MATLAB
Photoelectrochemical cells
Photovoltaic cells
Power control
Solar power generation
Two term control systems
Boost converter
Current control modes
Lyapunov stability
Passivity based control
Photovoltaic arrays
Electric power system control
description This paper presents a general control design for photovoltaic systems integrated with Direct-Current power grids by using an unidirectional boost converter. Passivity-based control (PBC) theory is used as a control technique since the dynamical model of the boost converter has an intrinsically port-Hamiltonian structure, where PBC theory is based upon, to design stable controllers via Lyapunov stability theory. To control the photovoltaic solar system, a current control mode is used, since photovoltaic cells are mathematically modelled as current sources, where the photo-current determined by the solar irradiance and the cell's temperature. Proportional and proportional-integral passivity-based controllers are developed to operate the boost converter under current control mode to extract the maximum power available in the PV array. Simulation results are conducted via MATLAB/ODE-package software. © 2018 IEEE.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:30Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:30Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv 2018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 2018
dc.identifier.isbn.none.fl_str_mv 9781538678428
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8856
dc.identifier.doi.none.fl_str_mv 10.1109/EPIM.2018.8756428
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56919564100
55609096600
57191493648
36449223500
identifier_str_mv 2018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 2018
9781538678428
10.1109/EPIM.2018.8756428
Universidad Tecnológica de Bolívar
Repositorio UTB
56919564100
55609096600
57191493648
36449223500
url https://hdl.handle.net/20.500.12585/8856
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 14 November 2018 through 16 November 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069774602&doi=10.1109%2fEPIM.2018.8756428&partnerID=40&md5=f10eda05e24d890d8b456d27081d9e34
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 9th IEEE Power, Instrumentation and Measurement Meeting, EPIM 2018
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8856/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021598126014464
spelling 2020-03-26T16:32:30Z2020-03-26T16:32:30Z20182018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 20189781538678428https://hdl.handle.net/20.500.12585/885610.1109/EPIM.2018.8756428Universidad Tecnológica de BolívarRepositorio UTB56919564100556090966005719149364836449223500This paper presents a general control design for photovoltaic systems integrated with Direct-Current power grids by using an unidirectional boost converter. Passivity-based control (PBC) theory is used as a control technique since the dynamical model of the boost converter has an intrinsically port-Hamiltonian structure, where PBC theory is based upon, to design stable controllers via Lyapunov stability theory. To control the photovoltaic solar system, a current control mode is used, since photovoltaic cells are mathematically modelled as current sources, where the photo-current determined by the solar irradiance and the cell's temperature. Proportional and proportional-integral passivity-based controllers are developed to operate the boost converter under current control mode to extract the maximum power available in the PV array. Simulation results are conducted via MATLAB/ODE-package software. © 2018 IEEE.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government, DSITI Universidad Tecnológica de Pereira, UTPFINANCIAL SUPPORT This work was partially supported by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program, calling contest 727–2015, and the PhD program in Engineering of la Universidad Tecnológica de Pereira.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85069774602&doi=10.1109%2fEPIM.2018.8756428&partnerID=40&md5=f10eda05e24d890d8b456d27081d9e349th IEEE Power, Instrumentation and Measurement Meeting, EPIM 2018Integration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: A PBC Approachinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fBoost converterCurrent control modeLyapunov stabilityPassivity-based control theoryPphotovoltaic arraysControl theoryControllersDC-DC convertersElectric current controlElectric power transmission networksHamiltoniansMATLABPhotoelectrochemical cellsPhotovoltaic cellsPower controlSolar power generationTwo term control systemsBoost converterCurrent control modesLyapunov stabilityPassivity based controlPhotovoltaic arraysElectric power system control14 November 2018 through 16 November 2018Montoya O.D.Campillo Jiménez, Javier EduardoGil-González W.Garces A.Rauf, S., Khan, N., Application of DC-AC hybrid grid and solar photovoltaic generation with battery storage using smart grid (2017) International Journal of Photoenergy, 2017Kouro, S., Leon, J.I., Vinnikov, D., Franquelo, L.G., Grid-connected photovoltaic systems: An overview of recent research and emerging PV converter technology (2015) IEEE Industrial Electronics Magazine, 9 (1), pp. 47-61Kadir, A., Fazliana, A., Khatib, T., Elmenreich, W., Integrating photovoltaic systems in power system: Power quality impacts and optimal planning challenges (2014) International Journal of Photoenergy, 2014Kakosimos, P.E., Kladas, A.G., Manias, S.N., Fast photovoltaicsystem voltage-or current-oriented MPPT employing a predictive digital current-controlled converter (2013) IEEE Transactions on Industrial Electronics, 60 (12), pp. 5673-5685Espinoza-Trejo, D.R., Bárcenas-Bárcenas, E., Campos-Delgado, D.U., De Angelo, C.H., Voltage-oriented input-output linearization controller as maximum power point tracking technique for photovoltaic systems (2015) IEEE Transactions on Industrial Electronics, 62 (6), pp. 3499-3507Bianconi, E., Calvente, J., Giral, R., Mamarelis, E., Petrone, G., Ramos-Paja, C.A., Spagnuolo, G., Vitelli, M., A fast current-based MPPT technique employing sliding mode control (2013) IEEE Transactions on Industrial Electronics, 60 (3), pp. 1168-1178Velázquez, I.O., Pérez, G.R.E., Giraldo, O.D.M., Ruiz, A.G., Noreña, L.F.G., Current control mode in PV systems integrated with DC-DC converters for MPPT: An IDA-PBC approach (2018) Green Technologies Conference (GreenTech), 2018, pp. 1-6De Brito, M.A.G., Galotto, L., Sampaio, L.P., Melo, G.D.A.E., Canesin, C.A., Evaluation of the main MPPT techniques for photovoltaic applications (2013) IEEE Transactions on Industrial Electronics, 60 (3), pp. 1156-1167Solodovnik, E.V., Liu, S., Dougal, R.A., Power controller design for maximum power tracking in solar installations (2004) IEEE Transactions on Power Electronics, 19 (5), pp. 1295-1304. , SeptShahdadi, A., Khajeh, A., Barakati, S.M., A new slip surface sliding mode controller to implement MPPT method in photovoltaic system (2018) Power Electronics, Drives Systems and Technologies Conference (PEDSTC), 2018 9th Annual, pp. 212-217Chiu, C.-S., Ouyang, Y.-L., Robust maximum power tracking control of uncertain photovoltaic systems: A unified TS fuzzy model-based approach (2011) IEEE Transactions on Control Systems Technology, 19 (6), pp. 1516-1526Kakosimos, P.E., Kladas, A.G., Implementation of photovoltaic array MPPT through fixed step predictive control technique (2011) Renewable Energy, 36 (9), pp. 2508-2514Metry, M., Shadmand, M.B., Balog, R.S., Abu-Rub, H., MPPT of photovoltaic systems using sensorless current-based model predictive control (2017) IEEE Trans. Ind. Appl, 53 (2), pp. 1157-1167Gil-González, W., Montoya, O.D., Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach (2018) Journal of Energy Storage, 18, pp. 459-466Montoya, O., Gil-González, W., Serra, F., PBC approach for SMES devices in electric distribution networks (2018) IEEE Transactions on Circuits and Systems II: Express BriefsMontoya, O.D., Gil-González, W., Garcés, A., Espinosa-Pérez, G., Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC (2018) Journal of Energy Storage, 17, pp. 261-271Sira-Ramirez, H., Ortega, R., Escobar, G., Lagrangian modeling of switch regulated DC-to-DC power converters (1996) Proceedings of 35th IEEE Conference on Decision and Control, 4, pp. 4492-4497. , Dec vol.4Van Der Schaft, A., Jeltsema, D., Port-hamiltonian systems theory: An introductory overview (2014) Foundations and Trends R - In Systems and Control, 1 (2-3), pp. 173-378Nageshrao, S.P., Lopes, G.A., Jeltsema, D., Babuska, R., Porthamiltonian systems in adaptive and learning control: A survey (2016) IEEE Trans. Automat. Contr., 61 (5), pp. 1223-1238Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters (2015) Control Engineering Practice, 43, pp. 109-119Avila-Becerril, S., Montoya, O.D., Espinosa-Pérez, G., Garcés, A., Control of a detailed model of microgrids from a hamiltonian approach (2018) IFAC-PapersOnLine, 51 (3), pp. 187-192Castaneda, M., Cano, A., Jurado, F., Sánchez, H., Fernandez, L.M., Sizing optimization, dynamic modeling and energy management strategies of a stand-alone PV/hydrogen/battery-based hybrid system (2013) International Journal of Hydrogen Energy, 38 (10), pp. 3830-3845http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8856/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8856oai:repositorio.utb.edu.co:20.500.12585/88562023-05-25 14:57:17.504Repositorio Institucional UTBrepositorioutb@utb.edu.co