Location of FACTS Devices in Power Systems: Application to the IEEE 9 bus System
This paper proposes a methodology to find the location of a flexible transmission system in AC in a power system, based on a nodal order and the analysis of repetitive power flows. To check the proposed methodology, the IEEE 9 bus system was taken as a case study. Results obtained were analyzed in t...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9084
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9084
- Palabra clave:
- FACTS
Power flow
Reactive power
SVC
Electric load flow
Location
Reactive power
Active and Reactive Power
Bus systems
Facts devices
Flexible transmission systems
Nodal orderings
Power factors
Power flows
Repetitive power flows
Flexible AC transmission systems
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_f10ae0726445eb7e6a19b25d50145ab7 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9084 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Location of FACTS Devices in Power Systems: Application to the IEEE 9 bus System |
title |
Location of FACTS Devices in Power Systems: Application to the IEEE 9 bus System |
spellingShingle |
Location of FACTS Devices in Power Systems: Application to the IEEE 9 bus System FACTS Power flow Reactive power SVC Electric load flow Location Reactive power Active and Reactive Power Bus systems Facts devices Flexible transmission systems Nodal orderings Power factors Power flows Repetitive power flows Flexible AC transmission systems |
title_short |
Location of FACTS Devices in Power Systems: Application to the IEEE 9 bus System |
title_full |
Location of FACTS Devices in Power Systems: Application to the IEEE 9 bus System |
title_fullStr |
Location of FACTS Devices in Power Systems: Application to the IEEE 9 bus System |
title_full_unstemmed |
Location of FACTS Devices in Power Systems: Application to the IEEE 9 bus System |
title_sort |
Location of FACTS Devices in Power Systems: Application to the IEEE 9 bus System |
dc.subject.keywords.none.fl_str_mv |
FACTS Power flow Reactive power SVC Electric load flow Location Reactive power Active and Reactive Power Bus systems Facts devices Flexible transmission systems Nodal orderings Power factors Power flows Repetitive power flows Flexible AC transmission systems |
topic |
FACTS Power flow Reactive power SVC Electric load flow Location Reactive power Active and Reactive Power Bus systems Facts devices Flexible transmission systems Nodal orderings Power factors Power flows Repetitive power flows Flexible AC transmission systems |
description |
This paper proposes a methodology to find the location of a flexible transmission system in AC in a power system, based on a nodal order and the analysis of repetitive power flows. To check the proposed methodology, the IEEE 9 bus system was taken as a case study. Results obtained were analyzed in two moments, initially the power flow is simulated without modifications, reading of the loss variables in the transmission lines, power factor, active and reactive power and voltage in p.u. in the buses. Then the power flow is simulated again and the resulting values are taken and compared with those initially taken, finding that by locating the device in bus 5, a better response is obtained. © 2019 IEEE. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:54Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:54Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Proceedings of the 2019 IEEE 26th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2019 |
dc.identifier.isbn.none.fl_str_mv |
9781728136462 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9084 |
dc.identifier.doi.none.fl_str_mv |
10.1109/INTERCON.2019.8853560 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57208126635 56919564100 57211342997 57212785022 |
identifier_str_mv |
Proceedings of the 2019 IEEE 26th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2019 9781728136462 10.1109/INTERCON.2019.8853560 Universidad Tecnológica de Bolívar Repositorio UTB 57208126635 56919564100 57211342997 57212785022 |
url |
https://hdl.handle.net/20.500.12585/9084 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
12 August 2019 through 14 August 2019 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073573050&doi=10.1109%2fINTERCON.2019.8853560&partnerID=40&md5=d2c22b46d71c8b91f7679c0168a4441c |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
26th IEEE International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2019 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9084/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021632182714368 |
spelling |
2020-03-26T16:32:54Z2020-03-26T16:32:54Z2019Proceedings of the 2019 IEEE 26th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 20199781728136462https://hdl.handle.net/20.500.12585/908410.1109/INTERCON.2019.8853560Universidad Tecnológica de BolívarRepositorio UTB57208126635569195641005721134299757212785022This paper proposes a methodology to find the location of a flexible transmission system in AC in a power system, based on a nodal order and the analysis of repetitive power flows. To check the proposed methodology, the IEEE 9 bus system was taken as a case study. Results obtained were analyzed in two moments, initially the power flow is simulated without modifications, reading of the loss variables in the transmission lines, power factor, active and reactive power and voltage in p.u. in the buses. Then the power flow is simulated again and the resulting values are taken and compared with those initially taken, finding that by locating the device in bus 5, a better response is obtained. © 2019 IEEE.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073573050&doi=10.1109%2fINTERCON.2019.8853560&partnerID=40&md5=d2c22b46d71c8b91f7679c0168a4441c26th IEEE International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2019Location of FACTS Devices in Power Systems: Application to the IEEE 9 bus Systeminfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fFACTSPower flowReactive powerSVCElectric load flowLocationReactive powerActive and Reactive PowerBus systemsFacts devicesFlexible transmission systemsNodal orderingsPower factorsPower flowsRepetitive power flowsFlexible AC transmission systems12 August 2019 through 14 August 2019Garrido Arévalo, Víctor ManuelMontoya O.D.Alba L.F.Jimenez D.Bindal, R.K., A review of benefits of facts devices in power system (2014) International Journal of Engineering and Advanced Technology, 3 (4), pp. 105-108Welhazi, Y., Guesmi, T., Ben Jaoued, I., Abdallah, H.H., Power system stability enhancement using facts controllers in multimachine power systems (2014) Journal of Electrical Systems, 10 (3), pp. 276-291Duong, T.L., Gang, Y.J., Truong, V.A., Application of min cut algorithm for optimal location of facts devices considering system loadability and cost of installation (2014) International Journal of Electrical Power &Energy Systems, 63, pp. 979-987Yu, Q., Applications of flexible ac transmissions system (facts) technology in smartgrid and its EMC impact (2014) IEEE International Symposium on Electromagnetic Compatibility, pp. 392-397Asaway, S.S., Al-Attiyah, S., Impact of facts device in electrical power system (2016) International Conference on Electrical, Electronics, and Optimization Techniques, pp. 2488-2495Berrouk, F., Ali Rachedi, B., Lemzadmi, A., Bounaya, K., Zeghache, H., Applications of shunt FACTS controller for voltage stability improvment (2014) International Conference on Electrical Sciences and Technologies in Maghreb, pp. 1-6Duan, C., Fang, W., Jiang, L., Niu, S., Facts devices allocation via sparse optimization (2016) IEEE Transactions on Power Systems, 31 (2), pp. 1308-1319Rezaee Jordehi, A., Optimal allocation of FACTS devices for static security enhancement in power systems via imperialistic competitive algorithm (ICA) (2016) Applied Soft Computing, 48, pp. 317-328Abdelaziz, A.Y., El-Sharkawy, M.A., Attia, M.A., El-Saadany, E.F., Optimal location of series FACTS to improve the performance of power system with wind penetration (2014) IEEE PES General Meeting, pp. 1-5Patel, H., Paliwal, R., Congestion management in deregulated power system using facts devices (2014) International Journal of Advances in Engineering &Technology, 8 (2), pp. 175-184Nanda Kumar, E., Dhanasekaran, R., Optimal power flow with facts controller using hybrid pso (2014) Arabian Journal for Science and Engineering, 39 (4), pp. 3137-3146Gasperic, S., Mihalic, R., The impact of serial controllable facts devices on voltage stability (2015) International Journal of Electrical Power &Energy Systems, 64, pp. 1040-1048Khan, M.T., Siddiqui, A.S., FACTS device control strategy using PMU (2016) Perspectives in Science, 8, pp. 730-732Chansareewittaya, S., Jirapong, P., Optimal allocation of multi-type FACTS controllers for total transfer capability enhancement using hybrid particle swarm optimization (2014) International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, pp. 1-6Wang, L., Xie, X., Jiang, Q., Li, H., Liu, H., Investigation of ssr in practical dfig-based wind farms connected to a series-compensated power system (2015) IEEE Transactions on Power Systems, 30 (5), pp. 2772-2779Saribulut, L., A novel average filter based phase-locked loop for FACTS devices (2016) Electric Power Systems Research, 136, pp. 289-297Tembhurnikar, G., Chaudhari, A., Wani, N., Gajare, A., Gajare, P., A review on reactive power compensation techniques using facts devices (2014) International Journal of Engineering and Management Research, 4 (1), pp. 76-80Kolosok, I., Tikhonov, A., Mahnitko, A., State estimation of electric power systems including facts models (svc and statcom) (2016) Power and Electrical Engineering, 33, pp. 40-45Anderson, P.M., Fouad, A.A., Power system control and stability (1994) IEEE Presshttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9084/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9084oai:repositorio.utb.edu.co:20.500.12585/90842023-05-26 10:08:39.481Repositorio Institucional UTBrepositorioutb@utb.edu.co |