Dataset for Sun dynamics from topological features

The present study presents an extensive dataset meticulously curated from solar images sourced from the Solar and Heliospheric Observatory (SOHO), encompassing a range of spectral bands. This collaborative effort spans multiple disciplines and culminates in a robust and automated methodology that tr...

Full description

Autores:
Tarazona Alvarado, Miguel
Sierra Porta, David
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12571
Acceso en línea:
https://hdl.handle.net/20.500.12585/12571
https://doi.org/10.1016/j.dib.2023.109728
Palabra clave:
Sun´s dynamics
Spectral features
Image processing
Space weather
LEMB
Rights
openAccess
License
http://creativecommons.org/publicdomain/zero/1.0/
id UTB2_f0f84f5400fee5f1dc9853c5d55153fc
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12571
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Dataset for Sun dynamics from topological features
title Dataset for Sun dynamics from topological features
spellingShingle Dataset for Sun dynamics from topological features
Sun´s dynamics
Spectral features
Image processing
Space weather
LEMB
title_short Dataset for Sun dynamics from topological features
title_full Dataset for Sun dynamics from topological features
title_fullStr Dataset for Sun dynamics from topological features
title_full_unstemmed Dataset for Sun dynamics from topological features
title_sort Dataset for Sun dynamics from topological features
dc.creator.fl_str_mv Tarazona Alvarado, Miguel
Sierra Porta, David
dc.contributor.author.none.fl_str_mv Tarazona Alvarado, Miguel
Sierra Porta, David
dc.subject.keywords.spa.fl_str_mv Sun´s dynamics
Spectral features
Image processing
Space weather
topic Sun´s dynamics
Spectral features
Image processing
Space weather
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The present study presents an extensive dataset meticulously curated from solar images sourced from the Solar and Heliospheric Observatory (SOHO), encompassing a range of spectral bands. This collaborative effort spans multiple disciplines and culminates in a robust and automated methodology that traverses the entire spectrum from solar imaging to the computation of spectral parameters and relevant characteristics. The significance of this undertaking lies in the profound insights yielded by the dataset. Encompassing diverse spectral bands and employing topological features, the dataset captures the multifaceted dynamics of solar activity, fostering interdisciplinary correlations and analyses with other solar phenomena. Consequently, the data's intrinsic value is greatly enhanced, affording researchers in solar physics, space climatology, and related fields the means to unravel intricate processes. To achieve this, an open-source Python library script has been developed, consolidating three pivotal stages: image acquisition, image processing, and parameter calculation. Originally conceived as discrete modules, these steps have been unified into a single script, streamlining the entire process. Applying this script to various solar image types has generated multiple datasets, subsequently synthesized into a comprehensive compilation through a data mining procedures. During the image processing phase, conventional libraries like OpenCV and Python's image analysis tools were harnessed to refine images for analysis. In contrast, image acquisition utilized established URL libraries in Python, facilitating direct access to original SOHO repository images and eliminating the need for local storage. The computation of spectral parameters involved a fusion of standard Python libraries and tailored algorithms for specific attributes. This approach ensures precise computation of a diverse array of attributes crucial for comprehensive analysis of solar images.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-28T20:34:49Z
dc.date.available.none.fl_str_mv 2023-11-28T20:34:49Z
dc.date.issued.none.fl_str_mv 2023-11-17
dc.date.submitted.none.fl_str_mv 2023-11-27
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv M. Tarazona-Alvarado, D. Sierra-Porta, Dataset for Sun dynamics from topological features, Data in Brief, Volume 51, 2023, 109728, ISSN 2352-3409, https://doi.org/10.1016/j.dib.2023.109728. https://www.sciencedirect.com/science/article/pii/S2352340923007990
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12571
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.dib.2023.109728
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv M. Tarazona-Alvarado, D. Sierra-Porta, Dataset for Sun dynamics from topological features, Data in Brief, Volume 51, 2023, 109728, ISSN 2352-3409, https://doi.org/10.1016/j.dib.2023.109728. https://www.sciencedirect.com/science/article/pii/S2352340923007990
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12571
https://doi.org/10.1016/j.dib.2023.109728
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv CC0 1.0 Universal
rights_invalid_str_mv http://creativecommons.org/publicdomain/zero/1.0/
CC0 1.0 Universal
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 6 paginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv SciencieDirect
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12571/1/Paper_SunsTopo_Dataset%20%281%29.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12571/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12571/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12571/4/Paper_SunsTopo_Dataset%20%281%29.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12571/5/Paper_SunsTopo_Dataset%20%281%29.pdf.jpg
bitstream.checksum.fl_str_mv a1e2350491711a440d0a3a44807b4c74
42fd4ad1e89814f5e4a476b409eb708c
e20ad307a1c5f3f25af9304a7a7c86b6
a717ae097327a0addf803a15eb01e6a3
8b05c338c8f53dba9680df1668d60c13
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021574010863616
spelling Tarazona Alvarado, Miguelef024c8f-0c62-47e6-90e1-9de2e2566b23Sierra Porta, David62fe46fe-2160-4eac-8b0c-89e7fd6ce2932023-11-28T20:34:49Z2023-11-28T20:34:49Z2023-11-172023-11-27M. Tarazona-Alvarado, D. Sierra-Porta, Dataset for Sun dynamics from topological features, Data in Brief, Volume 51, 2023, 109728, ISSN 2352-3409, https://doi.org/10.1016/j.dib.2023.109728. https://www.sciencedirect.com/science/article/pii/S2352340923007990https://hdl.handle.net/20.500.12585/12571https://doi.org/10.1016/j.dib.2023.109728Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe present study presents an extensive dataset meticulously curated from solar images sourced from the Solar and Heliospheric Observatory (SOHO), encompassing a range of spectral bands. This collaborative effort spans multiple disciplines and culminates in a robust and automated methodology that traverses the entire spectrum from solar imaging to the computation of spectral parameters and relevant characteristics. The significance of this undertaking lies in the profound insights yielded by the dataset. Encompassing diverse spectral bands and employing topological features, the dataset captures the multifaceted dynamics of solar activity, fostering interdisciplinary correlations and analyses with other solar phenomena. Consequently, the data's intrinsic value is greatly enhanced, affording researchers in solar physics, space climatology, and related fields the means to unravel intricate processes. To achieve this, an open-source Python library script has been developed, consolidating three pivotal stages: image acquisition, image processing, and parameter calculation. Originally conceived as discrete modules, these steps have been unified into a single script, streamlining the entire process. Applying this script to various solar image types has generated multiple datasets, subsequently synthesized into a comprehensive compilation through a data mining procedures. During the image processing phase, conventional libraries like OpenCV and Python's image analysis tools were harnessed to refine images for analysis. In contrast, image acquisition utilized established URL libraries in Python, facilitating direct access to original SOHO repository images and eliminating the need for local storage. The computation of spectral parameters involved a fusion of standard Python libraries and tailored algorithms for specific attributes. This approach ensures precise computation of a diverse array of attributes crucial for comprehensive analysis of solar images.6 paginasapplication/pdfenghttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccessCC0 1.0 Universalhttp://purl.org/coar/access_right/c_abf2SciencieDirectDataset for Sun dynamics from topological featuresinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Sun´s dynamicsSpectral featuresImage processingSpace weatherLEMBCartagena de IndiasPúblico generalV Domingo, Bernhard Fleck, and AI Poland. Soho: the solar and heliospheric observatory. Space Science Reviews, 72:81–84, 1995.Jørgen Schou, Philip H Scherrer, Rock Irvin Bush, Richard Wachter, Savita Couvidat, Maria Cristina Rabello-Soares, RS Bogart, JT Hoeksema, Y Liu, TL Duvall, et al. Design and ground calibration of the helioseismic and magnetic imager (hmi) instrument on the solar dynamics observatory (sdo). Solar Physics, 275:229–259, 2012Philip Hanby Scherrer, Jesper Schou, RI Bush, AG Kosovichev, RS Bogart, JT Hoeksema, Y Liu, TL Duvall, J Zhao, AM Title, et al. The helioseismic and magnetic imager (hmi) investigation for the solar dynamics observatory (sdo). Solar Physics, 275:207–227, 2012J-P Delaboudiniere, GE Artzner, J Brunaud, Alan H Gabriel, Jean-François Hochedez, F Millier, XY Song, B Au, KP Dere, Russell A Howard, et al. Eit: extreme-ultraviolet imaging telescope for the soho mission. The SOHO Mission, pages 291–312, 1995.John L Kohl, R Esser, Larry D Gardner, Shadia Habbal, Peter S Daigneau, EF Dennis, GU Nystrom, A Panasyuk, JC Raymond, PL Smith, et al. The ultraviolet coronagraph spectrometer for the solar and heliospheric observatory. The SOHO Mission, pages 313–356, 1995Hideyuki Tamura, Shunji Mori, and Takashi Yamawaki. Textural features corresponding to visual perception. IEEE Transactions on Systems, man, and cybernetics, 8(6):460–473, 1978.D Sierra-Porta. On the fractal properties of cosmic rays and sun dynamics cross-correlations. Astrophysics and Space Science, 367(12):116, 2022.David Sierra-Porta and Andy-Rafael Domínguez-Monterroza. Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis. Physica A: Statistical Mechanics and its Applications, 607:128159, 2022.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALPaper_SunsTopo_Dataset (1).pdfPaper_SunsTopo_Dataset (1).pdfArtículo principalapplication/pdf3808270https://repositorio.utb.edu.co/bitstream/20.500.12585/12571/1/Paper_SunsTopo_Dataset%20%281%29.pdfa1e2350491711a440d0a3a44807b4c74MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.utb.edu.co/bitstream/20.500.12585/12571/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12571/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTPaper_SunsTopo_Dataset (1).pdf.txtPaper_SunsTopo_Dataset (1).pdf.txtExtracted texttext/plain26170https://repositorio.utb.edu.co/bitstream/20.500.12585/12571/4/Paper_SunsTopo_Dataset%20%281%29.pdf.txta717ae097327a0addf803a15eb01e6a3MD54THUMBNAILPaper_SunsTopo_Dataset (1).pdf.jpgPaper_SunsTopo_Dataset (1).pdf.jpgGenerated Thumbnailimage/jpeg2840https://repositorio.utb.edu.co/bitstream/20.500.12585/12571/5/Paper_SunsTopo_Dataset%20%281%29.pdf.jpg8b05c338c8f53dba9680df1668d60c13MD5520.500.12585/12571oai:repositorio.utb.edu.co:20.500.12585/125712023-11-29 00:26:49.817Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=