Bioprospecting of extremophilic perchlorate‑reducing bacteria: report of promising Bacillus spp. isolated from sediments of the bay of Cartagena, Colombia

Three extremophile bacterial strains (BBCOL-009, BBCOL-014 and BBCOL-015), capable of degrading high concentrations of perchlorate at a range of pH (6.5 to 10.0), were isolated from Colombian Caribbean Coast sediments. Morphological features included Gram negative strain bacilli with sizes averaged...

Full description

Autores:
Acevedo-Barrios, Rosa
Tirado‑Ballestas, Irina
Bertel‑Sevilla, Angela
Cervantes‑Ceballos, Leonor
Gallego, Jorge L.
Leal, María Angélica
Tovar, David
Olivero‑Verbel, Jesús
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12666
Acceso en línea:
https://hdl.handle.net/20.500.12585/12666
Palabra clave:
Bioremediation
Halophytes
Marine sediment
RNA 16S
Scopus
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_eff7d288c7ad6a9fc83fef9ff33cc2ad
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12666
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Bioprospecting of extremophilic perchlorate‑reducing bacteria: report of promising Bacillus spp. isolated from sediments of the bay of Cartagena, Colombia
title Bioprospecting of extremophilic perchlorate‑reducing bacteria: report of promising Bacillus spp. isolated from sediments of the bay of Cartagena, Colombia
spellingShingle Bioprospecting of extremophilic perchlorate‑reducing bacteria: report of promising Bacillus spp. isolated from sediments of the bay of Cartagena, Colombia
Bioremediation
Halophytes
Marine sediment
RNA 16S
Scopus
LEMB
title_short Bioprospecting of extremophilic perchlorate‑reducing bacteria: report of promising Bacillus spp. isolated from sediments of the bay of Cartagena, Colombia
title_full Bioprospecting of extremophilic perchlorate‑reducing bacteria: report of promising Bacillus spp. isolated from sediments of the bay of Cartagena, Colombia
title_fullStr Bioprospecting of extremophilic perchlorate‑reducing bacteria: report of promising Bacillus spp. isolated from sediments of the bay of Cartagena, Colombia
title_full_unstemmed Bioprospecting of extremophilic perchlorate‑reducing bacteria: report of promising Bacillus spp. isolated from sediments of the bay of Cartagena, Colombia
title_sort Bioprospecting of extremophilic perchlorate‑reducing bacteria: report of promising Bacillus spp. isolated from sediments of the bay of Cartagena, Colombia
dc.creator.fl_str_mv Acevedo-Barrios, Rosa
Tirado‑Ballestas, Irina
Bertel‑Sevilla, Angela
Cervantes‑Ceballos, Leonor
Gallego, Jorge L.
Leal, María Angélica
Tovar, David
Olivero‑Verbel, Jesús
dc.contributor.author.none.fl_str_mv Acevedo-Barrios, Rosa
Tirado‑Ballestas, Irina
Bertel‑Sevilla, Angela
Cervantes‑Ceballos, Leonor
Gallego, Jorge L.
Leal, María Angélica
Tovar, David
Olivero‑Verbel, Jesús
dc.subject.keywords.spa.fl_str_mv Bioremediation
Halophytes
Marine sediment
RNA 16S
topic Bioremediation
Halophytes
Marine sediment
RNA 16S
Scopus
LEMB
dc.subject.armarc.none.fl_str_mv Scopus
LEMB
description Three extremophile bacterial strains (BBCOL-009, BBCOL-014 and BBCOL-015), capable of degrading high concentrations of perchlorate at a range of pH (6.5 to 10.0), were isolated from Colombian Caribbean Coast sediments. Morphological features included Gram negative strain bacilli with sizes averaged of 1.75 × 0.95, 2.32 × 0.65 and3.08 × 0.70 μm, respectively. The reported strains tolerate a wide range of pH (6.5 to 10.0); concentrations of NaCl (3.5 to 7.5% w/v) and KClO4− (250 to 10000 mg/L), reduction of KClO4 − from 10 to 25%. LB broth with NaCl (3.5–30% w/v) and KClO4ˉ(250-10000 mg/L) were used in independent trialsto evaluate susceptibility to salinity and perchlorate,respectively. Isolates increased their biomass at 7.5 % (w/v) NaCl with optimal development at 3.5 % NaCl. Subsequently, ClO reduction was assessed using LB medium with 3.5% NaCl and 10000 mg/L ClO4 BBCOL-009, BBCOL-014 and BBCOL-015 achieved 10%, 17%, and 25% reduction of ClO4 respectively. The 16 S rRNA gene sequence grouped them as Bacillus flexus T6186-2, Bacillus marisflavi TF-11 (T), and Bacillus vietnamensis 15 − 1 (T) respectively, with < 97.5% homology. In addition, antimicrobial resistance to ertapenem, vancomycine, amoxicillin clavulanate, penicillin, and erythromycin was present in all the isolates, indicating their high adaptability to stressful environments. The isolated strains from marine sediments in Cartagena Bay, Colombia are suitable candidates to reduce perchlorate contamination in different environments. Although the primary focus of the study of perchlorate-reducing and resistant bacteria is in the ecological and agricultural realms, from an astrobiological perspective, perchlorate-resistant bacteria serve as models for astrobiological investigations.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-12-12
dc.date.accessioned.none.fl_str_mv 2024-04-22T16:49:51Z
dc.date.available.none.fl_str_mv 2024-04-22T16:49:51Z
dc.date.submitted.none.fl_str_mv 2024-04-22
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Acevedo-Barrios, R., Tirado-Ballestas, I., Bertel-Sevilla, A. et al. Bioprospecting of extremophilic perchlorate-reducing bacteria: report of promising Bacillus spp. isolated from sediments of the bay of Cartagena, Colombia. Biodegradation (2024). https://doi.org/10.1007/s10532-024-10079-0
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12666
dc.identifier.doi.none.fl_str_mv 10.1007/s10532-024-10079-0
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Acevedo-Barrios, R., Tirado-Ballestas, I., Bertel-Sevilla, A. et al. Bioprospecting of extremophilic perchlorate-reducing bacteria: report of promising Bacillus spp. isolated from sediments of the bay of Cartagena, Colombia. Biodegradation (2024). https://doi.org/10.1007/s10532-024-10079-0
10.1007/s10532-024-10079-0
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12666
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 20 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Colombia, Bolívar, Cartagena
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.publisher.discipline.spa.fl_str_mv Ingeniería Ambiental
dc.source.spa.fl_str_mv Biodegradation
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12666/1/Acevedo-Barrios_et_al-2024-Biodegradation.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12666/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12666/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12666/4/Acevedo-Barrios_et_al-2024-Biodegradation.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12666/5/Acevedo-Barrios_et_al-2024-Biodegradation.pdf.jpg
bitstream.checksum.fl_str_mv 1a05e4dbf3c185aabafafe2a045c45f0
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
c116611679eb7b82e169fc53121eb8f8
0dc82599253b28a3682ff521c10d8143
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021789979770880
spelling Acevedo-Barrios, Rosabcae3c53-60bb-47b1-bf6b-2a314645eb75Tirado‑Ballestas, Irinaa64c07a4-58a6-4d8b-86f8-0230ba696d16Bertel‑Sevilla, Angela3f5b1994-4d28-43b5-9881-3dfa2491bb0bCervantes‑Ceballos, Leonor98a5dde8-a21b-4b8d-b2d1-83736201a813Gallego, Jorge L.1a4d56d1-cf5b-4a37-bf7f-063c6c452b4dLeal, María Angélicaffea7f08-0512-42e9-ba95-d2f54f6dc19bTovar, Davidc16d4a5b-15da-45f1-917d-258a97e1a7e2Olivero‑Verbel, Jesús13f634ce-4c2a-44b0-90ab-6bcfb029c715Colombia, Bolívar, Cartagena2024-04-22T16:49:51Z2024-04-22T16:49:51Z2023-12-122024-04-22Acevedo-Barrios, R., Tirado-Ballestas, I., Bertel-Sevilla, A. et al. Bioprospecting of extremophilic perchlorate-reducing bacteria: report of promising Bacillus spp. isolated from sediments of the bay of Cartagena, Colombia. Biodegradation (2024). https://doi.org/10.1007/s10532-024-10079-0https://hdl.handle.net/20.500.12585/1266610.1007/s10532-024-10079-0Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThree extremophile bacterial strains (BBCOL-009, BBCOL-014 and BBCOL-015), capable of degrading high concentrations of perchlorate at a range of pH (6.5 to 10.0), were isolated from Colombian Caribbean Coast sediments. Morphological features included Gram negative strain bacilli with sizes averaged of 1.75 × 0.95, 2.32 × 0.65 and3.08 × 0.70 μm, respectively. The reported strains tolerate a wide range of pH (6.5 to 10.0); concentrations of NaCl (3.5 to 7.5% w/v) and KClO4− (250 to 10000 mg/L), reduction of KClO4 − from 10 to 25%. LB broth with NaCl (3.5–30% w/v) and KClO4ˉ(250-10000 mg/L) were used in independent trialsto evaluate susceptibility to salinity and perchlorate,respectively. Isolates increased their biomass at 7.5 % (w/v) NaCl with optimal development at 3.5 % NaCl. Subsequently, ClO reduction was assessed using LB medium with 3.5% NaCl and 10000 mg/L ClO4 BBCOL-009, BBCOL-014 and BBCOL-015 achieved 10%, 17%, and 25% reduction of ClO4 respectively. The 16 S rRNA gene sequence grouped them as Bacillus flexus T6186-2, Bacillus marisflavi TF-11 (T), and Bacillus vietnamensis 15 − 1 (T) respectively, with < 97.5% homology. In addition, antimicrobial resistance to ertapenem, vancomycine, amoxicillin clavulanate, penicillin, and erythromycin was present in all the isolates, indicating their high adaptability to stressful environments. The isolated strains from marine sediments in Cartagena Bay, Colombia are suitable candidates to reduce perchlorate contamination in different environments. Although the primary focus of the study of perchlorate-reducing and resistant bacteria is in the ecological and agricultural realms, from an astrobiological perspective, perchlorate-resistant bacteria serve as models for astrobiological investigations.Universidad Tecnológica de Bolívar20 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2BiodegradationBioprospecting of extremophilic perchlorate‑reducing bacteria: report of promising Bacillus spp. isolated from sediments of the bay of Cartagena, Colombiainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BioremediationHalophytesMarine sedimentRNA 16SScopusLEMBCartagena de IndiasCampus TecnológicoIngeniería AmbientalPúblico generalAcevedo Barrios RL, Hernández Rocha I, Puentes Martinez D et al (2023) Psychrobacter sp: perchlorate reducing bacteria, isolated from marine sediments from Margarita Bay, Antarctica. In: Proceedings of the 21th LACCEI International Multi-Conference for Engineering, and Technology (LACCEI 2023): Leadership in Education and Innovation in Engineering in the Framework of Global Transformations: Integration and Alliances for Integral Development. Latin American and Caribbean Consortium of Engineering Institutions. https:// doi. org/ 10. 18687/ LACCE I2023.1. 1. 995Acevedo-Barrios R, Olivero-Verbel J (2021) Perchlorate contamination: sources, effects, and technologies for Remediation. In: de Voogt P (ed) Reviews of environmental contamination and toxicology volume 256. Springer International Publishing, Cham, pp 103–120Acevedo-Barrios R, Bertel-Sevilla A, Alonso-Molina J, Olivero- Verbel J (2016) Perchlorate tolerant bacteria from saline environments at the Caribbean region of Colombia. Toxicol Lett 259:S103. https:// doi. org/ 10. 1016/J. TOXLET. 2016. 07. 257Acevedo-Barrios R, Bertel-Sevilla A, Alonso-Molina J, Olivero-Verbel J (2019) Perchlorate reducing Bacteria from Hypersaline soils of the Colombian caribbean. Int J Microbiol 2019:1–13. https:// doi. org/ 10. 1155/ 2019/ 69818 65Acevedo-Barrios R, Rubiano-Labrador C, Navarro-Narvaez D et al (2022) Perchlorate-reducing bacteria from Antarctic Marine sediments. Environ Monit Assess 194:654. https:// doi. org/ 10. 1007/ s10661- 022- 10328-wAdams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, biostimulation and bioaugmention: a review. Int J Environ Bioremediat Biodegradation 3(1):28–39. https:// doi. org/ 10. 12691/ ijebb-3- 1-5Albuquerque L, Tiago I, Taborda M et al (2008) Bacillus isabeliae sp. nov., a halophilic bacterium isolated from a sea salt evaporation pond. Int J Syst Evol Microbiol 58:226– 230. https:// doi. org/ 10. 1099/ ijs.0. 65217-0Alonso JL, Cuesta G, Ramírez GW, Morenilla JJ, Bernácer I, Lloret RM (2009) Manual de técnicas avanzadas para la identificación y control de bacterias filamentosas. EPSAR-Generalitat ValencianaAshour MSED, Mansy MS, Eissa ME (2011) Microbiological environmental monitoring in pharmaceutical facility. Egypt Acad J Biol Sci G Microbiol 3(1):63–74. https:// doi. org/ 10. 21608/ eajbsg. 2011. 16696Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32:180. https:// doi. org/ 10. 1007/ s11274- 016- 2137-xBahamdain L, Fahmy F, Lari S, Aly M (2015) Characterization of some Bacillus strains obtained from marine habitats using different taxonomical methods. Life Sci J 12(4):58–63. http:// www. lifes cienc esite. comBelal AAM, Kelany MS, Hamed MM, El-Fattah LSA (2020) Selected bacterial communities associated with macrobenthic fauna assemblages at the Timsah Lake and the Western Lagoon’s sediments, Suez Canal, Egypt. Egypt J Aquat Res 46:137–143. https:// doi. org/ 10. 1016/j. ejar. 2020. 02. 003Beneduzi A, Peres D, Vargas LK et al (2008) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Appl Soil Ecol 39:311–320. https:// doi. org/ 10. 1016/j. apsoil. 2008. 01. 006Bertel-Sevilla A, Cervantes-Ceballos L, Tirado-Ballestas I et al (2020) Biodegradation of biodiesel-oil by Cellulosimicrobium sp. Isolated from Colombian caribbean soils. Environ Technol 41:2337–2349. https:// doi. org/ 10. 1080/ 09593 330. 2018. 15647 98Biemer JJ (1973) Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method. Annals Clin Lab Sci 3(2):135–140Boone DR, Castenholz RW, Garrity GM et al (2005) Bergey’s Manual® of systematic bacteriology. Springer Science & Business Media, BostonBorden RC (2007) Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier. J Contam Hydrol 94:13–33. https:// doi. org/ 10. 1016/j. jconh yd. 2007. 06. 002Breed RS, Murray EGD, Smith NR (1957) Bergey’s Manual of. Determinative bacteriol, 7th edn. Williams Wilkins Co BaltimCang Y, Roberts DJ, Clifford DA (2004) Development of cultures capable of reducing perchlorate and nitrate in high salt solutions. Water Res 38:3322–3330. https:// doi. org/ 10. 1016/j. watres. 2004. 04. 020Carlström CI, Lucas LN, Rohde RA et al (2016) Characterization of an anaerobic marine microbial community exposed to combined fluxes of perchlorate and salinity. Appl Microbiol Biotechnol 100:9719–9732. https:// doi. org/ 10. 1007/ s00253- 016- 7780-Clavijo J, Royero J (2000) Mapa Geológico Del Departamento De Bolívar. Escala 1:400000Coelho SL, de Magalhães A, Marbach VC, Cazetta PAS ML (2016) A new alkalophilic isolate of Bacillus as a producer of cyclodextrin glycosyltransferase using cassava flour. Braz J Microbiol 47:120–128. https:// doi. org/ 10. 1016/j. bjm. 2015. 11. 018Dalmaso GZL, Ferreira D, Vermelho AB (2015) Marine extremophiles: a source of hydrolases for Biotechnological Applications. Mar Drugs 13:1925–1965. https:// doi. org/ 10. 3390/ md130 41925DasSarma S, DasSarma P, Laye VJ, Schwieterman EW (2020) Extremophilic models for astrobiology: haloarchaeal survival strategies and pigments for remote sensing. Extremophiles 24:31–41. https:// doi. org/ 10. 1007/ s00792- 019- 01126-3Davies J, Davies D (2010) Origins and Evolution of Antibiotic Resistance. Microbiol Mol Biol Rev 74:417–433. https:// doi. org/ 10. 1128/ mmbr. 00016- 10Divyashree MS, Shamala TR, Rastogi NK (2009) Isolation of polyhydroxyalkanoate from hydrolyzed cells of Bacillus flexus using aqueous two-phase system containing polyethylene glycol and phosphate. Biotechnol Bioprocess Eng 14:482–489. https:// doi. org/ 10. 1007/ s12257- 008- 0119-zDong X, Yu K, Jia X et al (2022) Perchlorate reduction kinetics and genome-resolved metagenomics identify metabolic interactions in acclimated saline lake perchloratereducing consortia. Water Res 227:119343. https:// doi. org/ 10. 1016/j. watres. 2022. 11934Durval IJB, Resende AHM, Figueiredo MA et al (2019) Studies on biosurfactants produced using Bacillus cereus isolated from seawater with biotechnological potential for marine oil-spill bioremediation. J Surfactants Deterg 22:349–363. https:// doi. org/ 10. 1002/ jsde. 12218Elisashvili V, Kachlishvili E, Chikindas ML (2019) Recent advances in the physiology of spore formation for Bacillus probiotic production. Probiotics Antimicrob Proteins 11:731–747. https:// doi. org/ 10. 1007/ s12602- 018- 9492-xFang C, Naidu R (2023) A review of perchlorate contamination: analysis and remediation strategies. Chemosphere 338:139562. https:// doi. org/ 10. 1016/j. chemo sphere. 2023. 139562Farley KA, Martin P, Archer PD et al (2016) Light and variable 37Cl/35Cl ratios in rocks from Gale Crater, Mars: possible signature of perchlorate. Earth Planet Sci Lett 438:14–24. https:// doi. org/ 10. 1016/j. epsl. 2015. 12. 013Feitkenhauer H, Müller R, MAuml;rkl H (2003) Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 6070°C by Thermus and Bacillus spp. Biodegradation 14:367–372. https:// doi. org/ 10. 1023/A: 10273 57615 649Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368– 376. https:// doi. org/ 10. 1007/ bf017 34359Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https:// doi. org/ 10. 1111/j. 1558- 5646. 1985. tb004 20.xFitch WM (1971) Toward defining the course of evolution: Minimum Change for a specific Tree Topology. Syst Biol 20:406–416. https:// doi. org/ 10. 1093/ sysbio/ 20.4. 406Flores N, Hoyos S, Venegas M et al (2020) Haloterrigena sp. Strain SGH1, a Bacterioruberin-Rich, Perchlorate-Tolerant Halophilic Archaeon isolated from Halite Microbial communities, Atacama Desert, Chile. Front Microbiol 11:324. https:// doi. org/ 10. 3389/ fmicb. 2020. 00324Gal H, Ronen Z, Weisbrod N et al (2008) Perchlorate biodegradation in contaminated soils and the deep unsaturated zone. Soil Biol Biochem 40:1751–1757. https:// doi. org/ 10. 1016/j. soilb io. 2008. 02. 015Garrity GM (2001) Bergey’s Manual® of systematic bacteriology. Springer Science & Business MediaGaspari F, Paitan Y, Mainini M et al (2005) Myxobacteria isolated in Israel as potential source of new anti-infectives. J Appl Microbiol 98:429–439. https:// doi. org/ 10. 1111/j. 1365- 2672. 2004. 02477.xGavrilescu M, Demnerová K, Aamand J et al (2015) Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol 32:147–156. https:// doi. org/ 10. 1016/j. nbt. 2014. 01. 001Guadie A, Tizazu S, Melese M et al (2017) Biodecolorization of textile azo dye using Bacillus sp. strain CH12 isolated from alkaline lake. Biotechnol Rep 15:92–100. https:// doi. org/ 10. 1016/j. btre. 2017. 06. 007Harrison JP, Gheeraert N, Tsigelnitskiy D, Cockell CS (2013) The limits for life under multiple extremes. Trends Microbiol 21(4):204–212. https:// doi. org/ 10. 1016/j. tim. 2013. 01. 006Hatzinger PB, Whittier MC, Arkins MD et al (2002) In-Situ and Ex-situ Bioremediation options for Treating Perchlorate in Groundwater. Remediat J 12:69–86. https:// doi. org/ 10. 1002/ rem. 10026Hong HA, Khaneja R, Tam NMK et al (2009) Bacillus subtilis isolated from the human gastrointestinal tract. Res Microbiol 160:134–143. https:// doi. org/ 10. 1016/j. resmic. 2008. 11. 002Huang X, Madan A (1999) CAP3: a DNA sequence Assembly Program. Genome Res 9:868–877. https:// doi. org/ 10. 1101/ gr.9. 9. 868Iizuka T, Tokura M, Jojima Y et al (2006) Enrichment and phylogenetic analysis of moderately thermophilic myxobacteria from Hot Springs in Japan. Microbes Environ 21:189–199. https:// doi. org/ 10. 1264/ jsme2. 21. 189Istock CA, Graumann P (2008) Review of Bacillus: Cellular and Molecular Biology, Peter Graumann. Q Rev Biol 83:117–117. https:// doi. org/ 10. 1086/ 586951Jacob JJ, Sumana S, Jayasri MA, Suthindhiran K (2018) Isolation, characterization and kinetics of Perchlorate reducing Magnetospirillum Species. Geomicrobiol J 35:120–126. https:// doi. org/ 10. 1080/ 01490 451. 2017. 13387 96Kim OS, Cho YJ, Lee K et al (2012) Introducing EzTaxon-e: a prokaryotic 16s rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721. https:// doi. org/ 10. 1099/ ijs.0. 038075-0Kim H-W, Hong SH, Choi H (2020) Effect of Nitrate and Perchlorate on Selenate reduction in a sequencing batch Reactor. Processes 8:344. https:// doi. org/ 10. 3390/ pr803 0344Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111– 120. https:// doi. org/ 10. 1007/ bf017 31581Koneman EW, Allen SD, Janda WM, Schreckenberger PC, Winn WC (2006) Diagnostico Microbiologico Texto Y Atlas a color. 6 edicion. Medica PanamericanaLayton C, Maldonado E, Monroy L et al (2011) Bacillus spp.; perspectiva de su efecto biocontrolador mediante antibiosis en cultivos afectados por fitopatógenos. Nova 9:177–187. https:// doi. org/ 10. 22490/ 24629 448. 501Le Borgne S, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and archaea. Microb Physiol 15:74–92. https:// doi. org/ 10. 1159/ 00012 1323Leal MA, Tovar D, Valbuena M et al (2023) The Transdisciplinary Nature of Astrobiology as a Transversal Axis of the Educational processes at the Planetarium of Bogota. Rev Mex Astron Astrofısica Ser Conf RMxAC 55:29–34. https:// doi. org/ 10. 22201/ ia. 14052 059p. 2023. 55. 06Lee JC, Lim JM, Park DJ et al (2006) Bacillus seohaeanensis sp. nov., a halotolerant bacterium that contains L-lysine in its cell wall. Int J Syst Evol Microbiol 56:1893– 1898. https:// doi. org/ 10. 1099/ ijs.0. 64237-0Lee CW, Ng AY, Narayanan K et al (2009) Isolation and characterization of culturable bacteria from tropical coastal waters. Cienc Mar 35:153–167Lee S-H, Hwang J-H, Kabra AN et al (2015) Perchlorate reduction from a highly concentrated aqueous solution by bacterium Rhodococcus sp. YSPW03. Environ Sci Pollut Res 22:18839–18848. https:// doi. org/ 10. 1007/ s11356- 015- 5072-8Lee JY, Kim H, Jeong Y, Kang C-H (2021) Lactic acid bacteria exert a hepatoprotective effect against ethanol-induced liver injury in HepG2 cells. Microorganisms 9:1844. https:// doi. org/ 10. 3390/ micro organ isms9 091844Lei Z, Qiu P, Ye R et al (2014) Bacillus shacheensis sp. nov., a moderately halophilic bacterium isolated from a salinealkali soil. J Gen Appl Microbiol 60:101–105. https:// doi. org/ 10. 2323/ jgam. 60. 101Liu JL, Wong MH (2013) Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int 59:208–224. https:// doi. org/ 10. 1016/j. envint. 2013. 06. 012Liu Y, Tang H, Lin Z, Xu P (2015) Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol Adv 33:1484–1492. https:// doi. org/ 10. 1016/j. biote chadv. 2015. 06. 001Losi ME, Giblin T, Hosangadi V, Frankenberger WT Jr (2002) Bioremediation of perchlorate-contaminated Groundwater using a packed Bed Biological Reactor. Bioremediat J 6:97–103. https:// doi. org/ 10. 1080/ 10588 33020 89512 06Lucena-Padrós H, Ruiz-Barba JL (2016) Diversity and enumeration of halophilic and alkaliphilic bacteria in spanish- style green table-olive fermentations. Food Microbiol 53:53–62. https:// doi. org/ 10. 1016/j. fm. 2015. 09. 006Lundberg ME, Becker EC, Choe S (2013) MstX and a putative Potassium Channel facilitate Biofilm formation in Bacillus subtilis. PLoS ONE 8:e60993. https:// doi. org/ 10. 1371/ journ al. pone. 00609 93Ma Y, You F, Parry D, Urban A, Huang L (2023) Adaptive growth and acidogenic fermentation performance of haloalkaliphilic bacterial communities enriched from biofilms colonising strongly alkaline and saline bauxite residue. Sci Total Environ 856:159131. https:// doi. org/ 10. 1016/j. scito tenv. 2022. 159131Mandal A, Das K, Roy S et al (2013) In vivo assessment of bacteriotherapy on acetaminophen-induced uremic rats. J Nephrol 26:228–236. https:// doi. org/ 10. 5301/ jn. 50001 29Marín LF, Jaramillo B (2015) Aislamiento De Bacterias degradadoras de pesticidas organofosforados encontrados en suelos y en leche bovina. Rev Chil Nutr 42:179–185. https:// doi. org/ 10. 4067/ S0717- 75182 01500 02000 10Martin PE, Farley KA, Douglas Archer P Jr et al (2020) Reevaluation of perchlorate in gale crater rocks suggests geologically recent perchlorate addition. J Geophys Res Planet. https:// doi. org/ 10. 1029/ 2019J E0061 56Masika WS, Moonsamy G, Mandree P et al (2020) Biodegradation of petroleum hydrocarbon waste using consortia of Bacillus sp. Bioremediat J 25:72–79. https:// doi. org/ 10. 1080/ 10889 868. 2020. 18423 22Miranda CAC, Martins OB, Clementino MM (2008) Specieslevel identification of Bacillus strains isolates from marine sediments by conventional biochemical, 16S rRNA gene sequencing and inter-tRNA gene sequence lengths analysis. Antonie Van Leeuwenhoek 93:297– 304. https:// doi. org/ 10. 1007/ s10482- 007- 9204-0Mohapatra RK, Parhi PK, Pandey S et al (2019) Active and passive biosorption of pb(II)using live and dead biomass of marine bacterium Bacillus xiamenensis PbRPSD202: kinetics and isotherm studies. J Environ Manage 247:121–134. https:// doi. org/ 10. 1016/j. jenvm an. 2019. 06. 073Mukhtar S, Mehnaz S, Mirza MS, Malik KA (2019) Isolation and characterization of bacteria associated with the rhizosphere of halophytes (Salsola Stocksii and Atriplex amnicola) for production of hydrolytic enzymes. Braz J Microbiol 50:85–97. https:// doi. org/ 10. 1007/ s42770- 019- 00044-yMurray PR, Zeitinger JR, Krogstad DJ (1982) Reliability of Disc Diffusion susceptibility testing. Infect Control Hosp Epidemiol 3:230–237. https:// doi. org/ 10. 1017/ S0195 94170 00561 50Nam JH, Ventura JRS, Yeom IT et al (2016) A novel perchlorate- and nitrate-reducing bacterium, Azospira sp. PMJ. Appl Microbiol Biotechnol 100:6055–6068. https:// doi. org/ 10. 1007/ s00253- 016- 7401-3Nicholson WL, McCoy LE, Kerney KR et al (2012) Aqueous extracts of a Mars analogue regolith that mimics the Phoenix landing site do not inhibit spore germination or growth of model spacecraft contaminants Bacillus subtilis 168 and Bacillus pumilus SAFR-032. Icarus 220:904–910. https:// doi. org/ 10. 1016/j. icarus. 2012. 06. 033Noguchi H, Uchino M, Shida O et al (2004) Bacillus vietnamensis sp. nov., a moderately halotolerant, aerobic, endospore-forming bacterium isolated from Vietnamese fish sauce. Int J Syst Evol Microbiol 54:2117–2120. https:// doi. org/ 10. 1099/ ijs.0. 02895-0Nor SJ, Lee SH, Cho KS et al (2011) Microbial treatment of high-strength perchlorate wastewater. Bioresour Technol 102:835–841. https:// doi. org/ 10. 1016/j. biort ech. 2010. 08. 127Nozawa-Inoue M, Scow KM, Rolston DE (2005) Reduction of perchlorate and nitrate by microbial communities in vadose soil. Appl Environ Microbiol 71:3928–3934. https:// doi. org/ 10. 1128/ AEM. 71.7. 3928- 3934. 2005Oguntoyinbo FA (2007) Monitoring of marine Bacillus diversity among the bacteria community of sea water. Afr J Biotechnol 6Oyetibo GO, Chien M-F, Ikeda-Ohtsubo W et al (2017) Biodegradation of crude oil and phenanthrene by heavy metal resistant Bacillus subtilis isolated from a multipolluted industrial wastewater creek. Int Biodeterior Biodegrad 120:143–151. https:// doi. org/ 10. 1016/j. ibiod. 2017. 02. 021Oze C, Beisel J, Dabsys E et al (2021) Perchlorate and agriculture on Mars. Soil Syst 5:37. https:// doi. org/ 10. 3390/ soils ystem s5030 037Priest FG, Goodfellow M, Todd C (1988) A Numerical classification of the Genus Bacillus. Microbiology 134:1847–1882. https:// doi. org/ 10. 1099/ 00221 287- 134-7- 1847Reimer L (2000) Scanning Electron Microscopy: physics of image formation and microanalysis, second edition. Meas Sci Technol. https:// doi. org/ 10. 1088/ 0957- 0233/ 11/ 12/ 703Reller LB, Weinstein M, Jorgensen JH, Ferraro MJ (2009) Antimicrobial susceptibility testing: a review of General principles and Contemporary practices. Clin Infect Dis 49:1749–1755. https:// doi. org/ 10. 1086/ 647952Romero-Murillo P, Gallego JL, Leignel V (2023) Marine Pollution and advances in Biomonitoring in Cartagena Bay in the Colombian Caribbean. Toxics 11:631Roy JK, Mukherjee AK (2013) Applications of a high maltose forming, thermo-stable α-amylase from an extremely alkalophilic Bacillus licheniformis strain AS08E in food and laundry detergent industries. Biochem Eng J 77:220–230. https:// doi. org/ 10. 1016/j. bej. 2013. 06. 012Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https:// doi. org/ 10. 1093/ oxfor djour nals. molbev. a0404 54Sanchez-Gonzalez M, Blanco‐Gamez A, Escalante A et al (2011) Isolation and characterization of new facultative alkaliphilic Bacillus flexus strains from maize processing waste water (nejayote). Lett Appl Microbiol 52:413–419. https:// doi. org/ 10. 1111/j. 1472- 765X. 2011. 03021.xSaravanan A, Kumar PS, Duc PA, Rangasamy G (2023) Strategies for microbial bioremediation of environmental pollutants from industrial wastewater: a sustainable approach. Chemosphere 313:137323. https:// doi. org/ 10. 1016/j. chemo sphere. 2022. 137323Schieber J, Minitti ME, Sullivan R et al (2020) Engraved on the rocks—aeolian abrasion of Martian mudstone exposures and their relationship to modern wind patterns in Gale Crater, Mars. Depositional Rec 6:625–647. https:// doi. org/ 10. 1002/ dep2. 110Schuerger AC, Mancinelli RL, Kern RG et al (2003) Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments:: implications for the forward contamination of Mars. Icarus 165:253–276. https:// doi. org/ 10. 1016/ S0019- 1035(03) 00200-8Shang Y, Wang Z, Xu X et al (2018) Bio-reduction of free and laden perchlorate by the pure and mixed perchlorate reducing bacteria: considering the pH and coexisting nitrate. Chemosphere 205:475–483. https:// doi. org/ 10. 1016/j. chemo sphere. 2018. 04. 132Shete A, Mukhopadhyaya PN, Acharya A et al (2008) Aerobic reduction of perchlorate by bacteria isolated in Kerala, South India. J Appl Genet 49:425–431. https:// doi. org/ 10. 1007/ BF031 95643Shih Y-J, Wu Z-L, Hsu C-H (2024) Perchlorate decomposition on rhodium nanoclusters supported on copper crystallite (RhxCu) electrode in an electrodialysis-assisted bipolar electro-reduction system (ED-ER). Chem Eng J 481:148477. https:// doi. org/ 10. 1016/j. cej. 2023. 148477Shimkets LJ, Rafiee H (1990) CsgA, an extracellular protein essential for Myxococcus xanthus development. J Bacteriol 172:5299–5306. https:// doi. org/ 10. 1128/ jb. 172.9. 5299- 5306. 1990Shrout JD, Scheetz TE, Casavant TL, Parkin GF (2005) Isolation and characterization of autotrophic, hydrogenutilizing, perchlorate-reducing bacteria. Appl Microbiol Biotechnol 67:261–268. https:// doi. org/ 10. 1007/ s00253- 004- 1725-0Souid A, Della Croce CM, Frassinetti S et al (2021) Nutraceutical potential of Leaf Hydro-Ethanolic Extract of the Edible Halophyte Crithmum maritimum L. Molecules 26:5380. https:// doi. org/ 10. 3390/ molec ules2 61753 80Sriariyanun M, Tantayotai P, Yasurin P et al (2016) Production, purification and characterization of an ionic liquid tolerant cellulase from Bacillus sp. isolated from rice paddyfield soil. Electron J Biotechnol 19:23–28. https:// doi. org/ 10. 1016/j. ejbt. 2015. 11. 002Srinivasan A, Viraraghavan T (2009) Perchlorate: health effects and technologies for its removal from water resources. Int J Environ Res Public Health 6:1418–1442. https:// doi. org/ 10. 3390/ ijerp h6041 418Tamura K, Stecher G, Peterson D et al (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725–2729. https:// doi. org/ 10. 1093/ molbev/ mst197Thombre RS, Vaishampayan PA, Gomez F (2020) Chap. 7 - Applications of extremophiles in astrobiology. In: Salwan R, Sharma V (eds) Physiological and Biotechnological Aspects of Extremophiles. Academic Press, pp 89–104. https:// doi. org/ 10. 1016/ B978-0- 12- 818322- 9. 00007-1Van Ginkel SW, Ahn CH, Badruzzaman M et al (2008) Kinetics of nitrate and perchlorate reduction in ion-exchange brine using the membrane biofilm reactor (MBfR). Water Res 42:4197–4205. https:// doi. org/ 10. 1016/j. watres. 2008. 07. 012Wan D, Liu Y, Niu Z et al (2016) Perchlorate reduction by hydrogen autotrophic bacteria and microbial community analysis using high-throughput sequencing. Biodegradation 27:47–57Weisblum B (1995) Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 39(3):577– 585. https:// doi. org/ 10. 1128/ AAC. 39.3. 57William F (1993) Chemical studies of marine bacteria: developing a new resource. Chem Rev 93:1673–1683. https:// doi. org/ 10. 1021/ cr000 21a001Winn WC, Allen SD, Janda WM et al (2008) Bacilos Grampositivos Aerobios facultativos. Diagnóstico microbiológico: Texto Y Atlas. Médica Panamericana, España, pp 787–789Wu Z-H, Jiang D-M, Li P, Li Y-Z (2005) Exploring the diversity of myxobacteria in a soil niche by myxobacteriaspecific primers and probes. Environ Microbiol 7:1602– 1610. https:// doi. org/ 10. 1111/j. 1462- 2920. 2005. 00852.xXie T, Yang Q, Winkler MKH et al (2018) Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor: performance and microbial community structure. J Hazard Mater 357:244–252. https:// doi. org/ 10. 1016/j. jhazm at. 2018. 06. 011Yang X, Zhang H, Chan EWC, Zhang R, Chen S (2024) Transmission of azithromycin-resistant gene, erm (T), of Gram-positive bacteria origin to Klebsiella pneumoniae. Microbiol Res. https:// doi. org/ 10. 1016/j. micres. 2024. 127636Yen AS, Ming DW, Vaniman DT et al (2017) Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale Crater, Mars. Earth Planet Sci Lett 471:186–198. https:// doi. org/ 10. 1016/j. epsl. 2017. 04. 033Yilmaz T, Yurtsever A, Sahinkaya E, Uçar D (2023) Perchlorate reduction in a thiosulfate-based denitrifying membrane bioreactor. Biochem Eng J 200:109100. https:// doi. org/ 10. 1016/j. bej. 2023. 109100Yoon JH, Kim IG, Kang KH et al (2003) Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 53:1297–1303. https:// doi. org/ 10. 1099/ ijs.0. 02365-0Zhang L, Wang Y, Dai J et al (2009) H korlensis sp. nov., a moderately halotolerant bacterium isolated from a sand soil sample in China. Int J Syst Evol Microbiol 59:1787– 1792. https:// doi. org/ 10. 1099/ ijs.0. 004879-0Zhang F, Jiang X, Chai L et al (2014) Permanent draft genome sequence of Bacillus flexus strain T6186-2, a multidrugresistant bacterium isolated from a deep-subsurface oil reservoir. Mar Genomics 18:135–137. https:// doi. org/ 10. 1016/j. margen. 2014. 09. 007Zheng X, Jiang B, Lang H et al (2019) Effects of Antibiotics on Microbial communities responsible for perchlorate degradation. Water Air Soil Pollut 230:244. https:// doi. org/ 10. 1007/ s11270- 019- 4302-yZolkefli N, Ramli N, Mohamad-Zainal NSL et al (2020) Alcaligenaceae and Chromatiaceae as pollution bacterial bioindicators in palm oil mill effluent (POME) final discharge polluted rivers. Ecol Indic 111:106048. https:// doi. org/ 10. 1016/j. ecoli nd. 2019. 106048http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALAcevedo-Barrios_et_al-2024-Biodegradation.pdfAcevedo-Barrios_et_al-2024-Biodegradation.pdfapplication/pdf2140396https://repositorio.utb.edu.co/bitstream/20.500.12585/12666/1/Acevedo-Barrios_et_al-2024-Biodegradation.pdf1a05e4dbf3c185aabafafe2a045c45f0MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12666/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12666/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTAcevedo-Barrios_et_al-2024-Biodegradation.pdf.txtAcevedo-Barrios_et_al-2024-Biodegradation.pdf.txtExtracted texttext/plain79670https://repositorio.utb.edu.co/bitstream/20.500.12585/12666/4/Acevedo-Barrios_et_al-2024-Biodegradation.pdf.txtc116611679eb7b82e169fc53121eb8f8MD54THUMBNAILAcevedo-Barrios_et_al-2024-Biodegradation.pdf.jpgAcevedo-Barrios_et_al-2024-Biodegradation.pdf.jpgGenerated Thumbnailimage/jpeg8639https://repositorio.utb.edu.co/bitstream/20.500.12585/12666/5/Acevedo-Barrios_et_al-2024-Biodegradation.pdf.jpg0dc82599253b28a3682ff521c10d8143MD5520.500.12585/12666oai:repositorio.utb.edu.co:20.500.12585/126662024-04-23 00:19:41.652Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=