A mlpg formulation for stress analysis in bi-dimensional elastic bodies

In this work, a meshfree method known as Meshless Local Petrov-Galerkin was implemented in a bidimensional linear elasticity problem. Bidimensional MLS shape functions were used in the polynomial approximation of the displacement and stress fields. The numerical integration was carried out by the Ga...

Full description

Autores:
Paternina, Luis
Arrieta Ortiz, Edgardo William
Useche Vivero, Jairo
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10040
Acceso en línea:
https://hdl.handle.net/20.500.12585/10040
https://link.springer.com/chapter/10.1007/978-3-030-53021-1_61
Palabra clave:
MLPG
Meshfree methods
Linear elasticity
Bidimensional
LEMB
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id UTB2_ee27ad7c7628d1caa7529263c0c26f39
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10040
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv A mlpg formulation for stress analysis in bi-dimensional elastic bodies
title A mlpg formulation for stress analysis in bi-dimensional elastic bodies
spellingShingle A mlpg formulation for stress analysis in bi-dimensional elastic bodies
MLPG
Meshfree methods
Linear elasticity
Bidimensional
LEMB
title_short A mlpg formulation for stress analysis in bi-dimensional elastic bodies
title_full A mlpg formulation for stress analysis in bi-dimensional elastic bodies
title_fullStr A mlpg formulation for stress analysis in bi-dimensional elastic bodies
title_full_unstemmed A mlpg formulation for stress analysis in bi-dimensional elastic bodies
title_sort A mlpg formulation for stress analysis in bi-dimensional elastic bodies
dc.creator.fl_str_mv Paternina, Luis
Arrieta Ortiz, Edgardo William
Useche Vivero, Jairo
dc.contributor.author.none.fl_str_mv Paternina, Luis
Arrieta Ortiz, Edgardo William
Useche Vivero, Jairo
dc.subject.keywords.spa.fl_str_mv MLPG
Meshfree methods
Linear elasticity
Bidimensional
topic MLPG
Meshfree methods
Linear elasticity
Bidimensional
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description In this work, a meshfree method known as Meshless Local Petrov-Galerkin was implemented in a bidimensional linear elasticity problem. Bidimensional MLS shape functions were used in the polynomial approximation of the displacement and stress fields. The numerical integration was carried out by the Gauss-Legendre scheme and the quadrature points were located using the cartesian coordinate system. The local integration domain and the influence domain had circular shapes. A comparison with the analytical solutions of a plate with a circular hole subjected to traction was done. Numerical results showed a good agreement in the displacement and stress fields. Some schemes for improving the accuracy of the solutions were proposed.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-08-11
dc.date.accessioned.none.fl_str_mv 2021-02-17T20:47:06Z
dc.date.available.none.fl_str_mv 2021-02-17T20:47:06Z
dc.date.submitted.none.fl_str_mv 2021-02-17
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/lecture
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_8544
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Paternina L., Arrieta E., Useche J. (2021) A MLPG Formulation for Stress Analysis in Bi-dimensional Elastic Bodies. In: Cortes Tobar D., Hoang Duy V., Trong Dao T. (eds) AETA 2019 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application. AETA 2019. Lecture Notes in Electrical Engineering, vol 685. Springer, Cham. https://doi.org/10.1007/978-3-030-53021-1_61
dc.identifier.isbn.none.fl_str_mv 978-3-030-53020-4
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10040
dc.identifier.url.none.fl_str_mv https://link.springer.com/chapter/10.1007/978-3-030-53021-1_61
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-030-53021-1_61
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Paternina L., Arrieta E., Useche J. (2021) A MLPG Formulation for Stress Analysis in Bi-dimensional Elastic Bodies. In: Cortes Tobar D., Hoang Duy V., Trong Dao T. (eds) AETA 2019 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application. AETA 2019. Lecture Notes in Electrical Engineering, vol 685. Springer, Cham. https://doi.org/10.1007/978-3-030-53021-1_61
978-3-030-53020-4
10.1007/978-3-030-53021-1_61
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10040
https://link.springer.com/chapter/10.1007/978-3-030-53021-1_61
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Lecture Notes in Electrical Engineering, vol 685.
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10040/1/189.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10040/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10040/3/189.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10040/4/189.pdf.jpg
bitstream.checksum.fl_str_mv 13d4c8fba1fa3d39224ad460c719fc19
e20ad307a1c5f3f25af9304a7a7c86b6
2434ee53e2858ba1511ad9685aa5c00c
6e63d008370829f6bb3de8f4a092949b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021808035201024
spelling Paternina, Luis6c34d304-029d-465f-b4f6-9c36d6fa7bb3Arrieta Ortiz, Edgardo Williamb687f1f5-78d6-4b5e-bd6d-2564f6e4f3edUseche Vivero, Jairofa4e9db4-a773-4bc3-a3bb-c992f7e97f022021-02-17T20:47:06Z2021-02-17T20:47:06Z2020-08-112021-02-17Paternina L., Arrieta E., Useche J. (2021) A MLPG Formulation for Stress Analysis in Bi-dimensional Elastic Bodies. In: Cortes Tobar D., Hoang Duy V., Trong Dao T. (eds) AETA 2019 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application. AETA 2019. Lecture Notes in Electrical Engineering, vol 685. Springer, Cham. https://doi.org/10.1007/978-3-030-53021-1_61978-3-030-53020-4https://hdl.handle.net/20.500.12585/10040https://link.springer.com/chapter/10.1007/978-3-030-53021-1_6110.1007/978-3-030-53021-1_61Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarIn this work, a meshfree method known as Meshless Local Petrov-Galerkin was implemented in a bidimensional linear elasticity problem. Bidimensional MLS shape functions were used in the polynomial approximation of the displacement and stress fields. The numerical integration was carried out by the Gauss-Legendre scheme and the quadrature points were located using the cartesian coordinate system. The local integration domain and the influence domain had circular shapes. A comparison with the analytical solutions of a plate with a circular hole subjected to traction was done. Numerical results showed a good agreement in the displacement and stress fields. Some schemes for improving the accuracy of the solutions were proposed.application/pdfengLecture Notes in Electrical Engineering, vol 685.A mlpg formulation for stress analysis in bi-dimensional elastic bodiesinfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_8544http://purl.org/coar/version/c_970fb48d4fbd8a85MLPGMeshfree methodsLinear elasticityBidimensionalLEMBinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasInvestigadoresAtluri, S., Zhu, T.: A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22(2), 117–127 (1998). https://doi.org/10.1007/s004660050346Atluri, S., Zhu, T.L.: The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Comput. Mech. 25(2–3), 169–179 (2000). https://doi.org/10.1007/s004660050467Atluri, S., Kim, H.G., Cho, J.: A critical assessment of the truly meshless local Petrov-Galerkin (MLPG), and local boundary integral equation (LBIE) methods. Comput. Mech. 24(5), 348–372 (1999). https://doi.org/10.1007/s004660050457Abdollahifar, A., Nami, M.R., Shafiei, A.R.: A new MLPG method for elastostatic problems. Eng. Anal. Bound. Elem. 36, 451–457 (2012). https://doi.org/10.1016/j.enganabound.2011.08.008Dinis, L.M.J.S., Jorge, R.M.N., Belinha, J.: A natural neighbour meshless method with a 3D shell-like approach in the dynamic analysis of thin 3D structures. Thin-Walled Struct. 49(1), 185–196 (2011)Fazzolari, F.A., Carrera, E.: Advances in the Ritz formulation for free vibration response of doubly-curved anisotropic laminated composite shallow and deep shells. Compos. Struct. 101, 111128 (2013)Ferreira, A.J.M., Roque, C.M.C., Jorge, R.M.N.: Static and free vibration analysis of composite shells by radial basis functions. Eng. Anal. Bound. Elem. 30(9), 719–733 (2006)Martinez, T.J.A., Arrieta, O.E.W.: Element Free Galerkin (EFG) sensitivity study in structural analysis. In: IOP Conference Series: Materials Science and Engineering (2019)Mazzia, A., Ferronato, M., Pini, G., Gambolati, G.: A comparison of numerical integration rules for the meshless local Petrov-Galerkin method. Numer. Algorithm 45(1–4), 61–74 (2007). https://doi.org/10.1007/s11075-007-9110-6Mazzia, A., Pini, G.: Product Gauss quadrature rules vs. cubature rules in the meshless local Petrov-Galerkin method. J. Complex. 26, 82–101 (2010). https://doi.org/10.1016/j.jco.2009.07.002Paternina, L., Arrieta, E., Useche, J.: Analysis of plates through MLPG 3D solid elasticity. Sexto Simp. Nac. sobre Mec. de Mater. Estruct. Contin, pp. 179–187 (2018)Sadd, M.H.: Elasticity: Theory, Applications, and Numerics. Academic Press, Cambridge (2009)Useche, J.: Vibration analysis of shear deformable shallow shells using the boundary element method. Eng. Struct. 62, 65–74 (2014)Useche, J., Alvarez, H.: Elastodynamic analysis of thick multilayer composite plates by the boundary element method. CMES: Comput. Model. Eng. Sci. 107(4), 277–296 (2015)Useche, J., Medina, J.: Boundary element analysis of laminated composite shear deformable shallow shells. Compos. Struct. 199, 24–37 (2018)http://purl.org/coar/resource_type/c_c94fORIGINAL189.pdf189.pdfAbstractapplication/pdf80221https://repositorio.utb.edu.co/bitstream/20.500.12585/10040/1/189.pdf13d4c8fba1fa3d39224ad460c719fc19MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10040/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT189.pdf.txt189.pdf.txtExtracted texttext/plain829https://repositorio.utb.edu.co/bitstream/20.500.12585/10040/3/189.pdf.txt2434ee53e2858ba1511ad9685aa5c00cMD53THUMBNAIL189.pdf.jpg189.pdf.jpgGenerated Thumbnailimage/jpeg40229https://repositorio.utb.edu.co/bitstream/20.500.12585/10040/4/189.pdf.jpg6e63d008370829f6bb3de8f4a092949bMD5420.500.12585/10040oai:repositorio.utb.edu.co:20.500.12585/100402023-05-25 13:31:21.82Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=