A mlpg formulation for stress analysis in bi-dimensional elastic bodies
In this work, a meshfree method known as Meshless Local Petrov-Galerkin was implemented in a bidimensional linear elasticity problem. Bidimensional MLS shape functions were used in the polynomial approximation of the displacement and stress fields. The numerical integration was carried out by the Ga...
- Autores:
-
Paternina, Luis
Arrieta Ortiz, Edgardo William
Useche Vivero, Jairo
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/10040
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/10040
https://link.springer.com/chapter/10.1007/978-3-030-53021-1_61
- Palabra clave:
- MLPG
Meshfree methods
Linear elasticity
Bidimensional
LEMB
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
UTB2_ee27ad7c7628d1caa7529263c0c26f39 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/10040 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
A mlpg formulation for stress analysis in bi-dimensional elastic bodies |
title |
A mlpg formulation for stress analysis in bi-dimensional elastic bodies |
spellingShingle |
A mlpg formulation for stress analysis in bi-dimensional elastic bodies MLPG Meshfree methods Linear elasticity Bidimensional LEMB |
title_short |
A mlpg formulation for stress analysis in bi-dimensional elastic bodies |
title_full |
A mlpg formulation for stress analysis in bi-dimensional elastic bodies |
title_fullStr |
A mlpg formulation for stress analysis in bi-dimensional elastic bodies |
title_full_unstemmed |
A mlpg formulation for stress analysis in bi-dimensional elastic bodies |
title_sort |
A mlpg formulation for stress analysis in bi-dimensional elastic bodies |
dc.creator.fl_str_mv |
Paternina, Luis Arrieta Ortiz, Edgardo William Useche Vivero, Jairo |
dc.contributor.author.none.fl_str_mv |
Paternina, Luis Arrieta Ortiz, Edgardo William Useche Vivero, Jairo |
dc.subject.keywords.spa.fl_str_mv |
MLPG Meshfree methods Linear elasticity Bidimensional |
topic |
MLPG Meshfree methods Linear elasticity Bidimensional LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
In this work, a meshfree method known as Meshless Local Petrov-Galerkin was implemented in a bidimensional linear elasticity problem. Bidimensional MLS shape functions were used in the polynomial approximation of the displacement and stress fields. The numerical integration was carried out by the Gauss-Legendre scheme and the quadrature points were located using the cartesian coordinate system. The local integration domain and the influence domain had circular shapes. A comparison with the analytical solutions of a plate with a circular hole subjected to traction was done. Numerical results showed a good agreement in the displacement and stress fields. Some schemes for improving the accuracy of the solutions were proposed. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-08-11 |
dc.date.accessioned.none.fl_str_mv |
2021-02-17T20:47:06Z |
dc.date.available.none.fl_str_mv |
2021-02-17T20:47:06Z |
dc.date.submitted.none.fl_str_mv |
2021-02-17 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/lecture |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_8544 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Paternina L., Arrieta E., Useche J. (2021) A MLPG Formulation for Stress Analysis in Bi-dimensional Elastic Bodies. In: Cortes Tobar D., Hoang Duy V., Trong Dao T. (eds) AETA 2019 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application. AETA 2019. Lecture Notes in Electrical Engineering, vol 685. Springer, Cham. https://doi.org/10.1007/978-3-030-53021-1_61 |
dc.identifier.isbn.none.fl_str_mv |
978-3-030-53020-4 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/10040 |
dc.identifier.url.none.fl_str_mv |
https://link.springer.com/chapter/10.1007/978-3-030-53021-1_61 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-030-53021-1_61 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Paternina L., Arrieta E., Useche J. (2021) A MLPG Formulation for Stress Analysis in Bi-dimensional Elastic Bodies. In: Cortes Tobar D., Hoang Duy V., Trong Dao T. (eds) AETA 2019 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application. AETA 2019. Lecture Notes in Electrical Engineering, vol 685. Springer, Cham. https://doi.org/10.1007/978-3-030-53021-1_61 978-3-030-53020-4 10.1007/978-3-030-53021-1_61 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/10040 https://link.springer.com/chapter/10.1007/978-3-030-53021-1_61 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Lecture Notes in Electrical Engineering, vol 685. |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/10040/1/189.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10040/2/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10040/3/189.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10040/4/189.pdf.jpg |
bitstream.checksum.fl_str_mv |
13d4c8fba1fa3d39224ad460c719fc19 e20ad307a1c5f3f25af9304a7a7c86b6 2434ee53e2858ba1511ad9685aa5c00c 6e63d008370829f6bb3de8f4a092949b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021808035201024 |
spelling |
Paternina, Luis6c34d304-029d-465f-b4f6-9c36d6fa7bb3Arrieta Ortiz, Edgardo Williamb687f1f5-78d6-4b5e-bd6d-2564f6e4f3edUseche Vivero, Jairofa4e9db4-a773-4bc3-a3bb-c992f7e97f022021-02-17T20:47:06Z2021-02-17T20:47:06Z2020-08-112021-02-17Paternina L., Arrieta E., Useche J. (2021) A MLPG Formulation for Stress Analysis in Bi-dimensional Elastic Bodies. In: Cortes Tobar D., Hoang Duy V., Trong Dao T. (eds) AETA 2019 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application. AETA 2019. Lecture Notes in Electrical Engineering, vol 685. Springer, Cham. https://doi.org/10.1007/978-3-030-53021-1_61978-3-030-53020-4https://hdl.handle.net/20.500.12585/10040https://link.springer.com/chapter/10.1007/978-3-030-53021-1_6110.1007/978-3-030-53021-1_61Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarIn this work, a meshfree method known as Meshless Local Petrov-Galerkin was implemented in a bidimensional linear elasticity problem. Bidimensional MLS shape functions were used in the polynomial approximation of the displacement and stress fields. The numerical integration was carried out by the Gauss-Legendre scheme and the quadrature points were located using the cartesian coordinate system. The local integration domain and the influence domain had circular shapes. A comparison with the analytical solutions of a plate with a circular hole subjected to traction was done. Numerical results showed a good agreement in the displacement and stress fields. Some schemes for improving the accuracy of the solutions were proposed.application/pdfengLecture Notes in Electrical Engineering, vol 685.A mlpg formulation for stress analysis in bi-dimensional elastic bodiesinfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_8544http://purl.org/coar/version/c_970fb48d4fbd8a85MLPGMeshfree methodsLinear elasticityBidimensionalLEMBinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasInvestigadoresAtluri, S., Zhu, T.: A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22(2), 117–127 (1998). https://doi.org/10.1007/s004660050346Atluri, S., Zhu, T.L.: The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Comput. Mech. 25(2–3), 169–179 (2000). https://doi.org/10.1007/s004660050467Atluri, S., Kim, H.G., Cho, J.: A critical assessment of the truly meshless local Petrov-Galerkin (MLPG), and local boundary integral equation (LBIE) methods. Comput. Mech. 24(5), 348–372 (1999). https://doi.org/10.1007/s004660050457Abdollahifar, A., Nami, M.R., Shafiei, A.R.: A new MLPG method for elastostatic problems. Eng. Anal. Bound. Elem. 36, 451–457 (2012). https://doi.org/10.1016/j.enganabound.2011.08.008Dinis, L.M.J.S., Jorge, R.M.N., Belinha, J.: A natural neighbour meshless method with a 3D shell-like approach in the dynamic analysis of thin 3D structures. Thin-Walled Struct. 49(1), 185–196 (2011)Fazzolari, F.A., Carrera, E.: Advances in the Ritz formulation for free vibration response of doubly-curved anisotropic laminated composite shallow and deep shells. Compos. Struct. 101, 111128 (2013)Ferreira, A.J.M., Roque, C.M.C., Jorge, R.M.N.: Static and free vibration analysis of composite shells by radial basis functions. Eng. Anal. Bound. Elem. 30(9), 719–733 (2006)Martinez, T.J.A., Arrieta, O.E.W.: Element Free Galerkin (EFG) sensitivity study in structural analysis. In: IOP Conference Series: Materials Science and Engineering (2019)Mazzia, A., Ferronato, M., Pini, G., Gambolati, G.: A comparison of numerical integration rules for the meshless local Petrov-Galerkin method. Numer. Algorithm 45(1–4), 61–74 (2007). https://doi.org/10.1007/s11075-007-9110-6Mazzia, A., Pini, G.: Product Gauss quadrature rules vs. cubature rules in the meshless local Petrov-Galerkin method. J. Complex. 26, 82–101 (2010). https://doi.org/10.1016/j.jco.2009.07.002Paternina, L., Arrieta, E., Useche, J.: Analysis of plates through MLPG 3D solid elasticity. Sexto Simp. Nac. sobre Mec. de Mater. Estruct. Contin, pp. 179–187 (2018)Sadd, M.H.: Elasticity: Theory, Applications, and Numerics. Academic Press, Cambridge (2009)Useche, J.: Vibration analysis of shear deformable shallow shells using the boundary element method. Eng. Struct. 62, 65–74 (2014)Useche, J., Alvarez, H.: Elastodynamic analysis of thick multilayer composite plates by the boundary element method. CMES: Comput. Model. Eng. Sci. 107(4), 277–296 (2015)Useche, J., Medina, J.: Boundary element analysis of laminated composite shear deformable shallow shells. Compos. Struct. 199, 24–37 (2018)http://purl.org/coar/resource_type/c_c94fORIGINAL189.pdf189.pdfAbstractapplication/pdf80221https://repositorio.utb.edu.co/bitstream/20.500.12585/10040/1/189.pdf13d4c8fba1fa3d39224ad460c719fc19MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10040/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT189.pdf.txt189.pdf.txtExtracted texttext/plain829https://repositorio.utb.edu.co/bitstream/20.500.12585/10040/3/189.pdf.txt2434ee53e2858ba1511ad9685aa5c00cMD53THUMBNAIL189.pdf.jpg189.pdf.jpgGenerated Thumbnailimage/jpeg40229https://repositorio.utb.edu.co/bitstream/20.500.12585/10040/4/189.pdf.jpg6e63d008370829f6bb3de8f4a092949bMD5420.500.12585/10040oai:repositorio.utb.edu.co:20.500.12585/100402023-05-25 13:31:21.82Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |