Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer
Optimal energy management has become a challenging task to accomplish in today’s advanced energy systems. If energy is managed in the most optimal manner, tremendous societal benefits can be achieved such as improved economy and less environmental pollution. It is possible to operate the microgrids...
- Autores:
-
Rajagopalan, Arul
Nagarajan, Karthik
Montoya, Oscar Danilo
Dhanasekaran, Seshathiri
Kareem, Inayathullah Abdul
Perumal, Angalaeswari Sendraya
Lakshmaiya, Natrayan
Paramasivam, Prabhu
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12396
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12396
- Palabra clave:
- Grid;
Power Sharing;
Inverters
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_edffd3d7e67f1a8f3932c73d74bc1568 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12396 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer |
title |
Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer |
spellingShingle |
Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer Grid; Power Sharing; Inverters LEMB |
title_short |
Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer |
title_full |
Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer |
title_fullStr |
Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer |
title_full_unstemmed |
Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer |
title_sort |
Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer |
dc.creator.fl_str_mv |
Rajagopalan, Arul Nagarajan, Karthik Montoya, Oscar Danilo Dhanasekaran, Seshathiri Kareem, Inayathullah Abdul Perumal, Angalaeswari Sendraya Lakshmaiya, Natrayan Paramasivam, Prabhu |
dc.contributor.author.none.fl_str_mv |
Rajagopalan, Arul Nagarajan, Karthik Montoya, Oscar Danilo Dhanasekaran, Seshathiri Kareem, Inayathullah Abdul Perumal, Angalaeswari Sendraya Lakshmaiya, Natrayan Paramasivam, Prabhu |
dc.subject.keywords.spa.fl_str_mv |
Grid; Power Sharing; Inverters |
topic |
Grid; Power Sharing; Inverters LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
Optimal energy management has become a challenging task to accomplish in today’s advanced energy systems. If energy is managed in the most optimal manner, tremendous societal benefits can be achieved such as improved economy and less environmental pollution. It is possible to operate the microgrids under grid-connected, as well as isolated modes. The authors presented a new optimization algorithm, i.e., Oppositional Gradient-based Grey Wolf Optimizer (OGGWO) in the current study to elucidate the optimal operation in microgrids that is loaded with sustainable, as well as unsustainable energy sources. With the integration of non-Renewable Energy Sources (RES) with microgrids, environmental pollution is reduced. The current study proposes this hybrid algorithm to avoid stagnation and achieve premature convergence. Having been strategized as a bi-objective optimization problem, the ultimate aim of this model’s optimal operation is to cut the costs incurred upon operations and reduce the emission of pollutants in a 24-h scheduling period. In the current study, the authors considered a Micro Turbine (MT) followed by a Wind Turbine (WT), a battery unit and a Fuel Cell (FC) as storage devices. The microgrid was assumed under the grid-connected mode. The authors validated the proposed algorithm upon three different scenarios to establish the former’s efficiency and efficacy. In addition to these, the optimization results attained from the proposed technique were also compared with that of the results from techniques implemented earlier. According to the outcomes, it can be inferred that the presented OGGWO approach outperformed other methods in terms of cost mitigation and pollution reduction. © 2022 by the authors. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-07-21T20:50:56Z |
dc.date.available.none.fl_str_mv |
2023-07-21T20:50:56Z |
dc.date.submitted.none.fl_str_mv |
2023 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Rajagopalan, A., Nagarajan, K., Montoya, O. D., Dhanasekaran, S., Kareem, I. A., Perumal, A. S., ... & Paramasivam, P. (2022). Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer. Energies, 15(23), 9024. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12396 |
dc.identifier.doi.none.fl_str_mv |
10.3390/en15239024 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Rajagopalan, A., Nagarajan, K., Montoya, O. D., Dhanasekaran, S., Kareem, I. A., Perumal, A. S., ... & Paramasivam, P. (2022). Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer. Energies, 15(23), 9024. 10.3390/en15239024 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12396 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
24 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Energies |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12396/1/energies-15-09024-v2.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12396/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12396/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12396/4/energies-15-09024-v2.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12396/5/energies-15-09024-v2.pdf.jpg |
bitstream.checksum.fl_str_mv |
ead8f1a6a1659180de73c0addd6e5628 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 c271831cf64c4cade50174a61619ad9a 4b8d75bff420b8a55d22872321671966 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021676506021888 |
spelling |
Rajagopalan, Arul6d04d6b3-17a1-49be-a90b-6ea66be6d1c6Nagarajan, Karthik25d92d9a-eed0-4d52-b32e-7bc44bf5e0f8Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Dhanasekaran, Seshathirib58811a3-16d3-4287-9957-841ec20e841aKareem, Inayathullah Abdulbb05b1f4-f4ee-4034-a892-36f1067264baPerumal, Angalaeswari Sendrayaf1424917-7a53-42bd-907a-37aed57b6ddcLakshmaiya, Natrayan31b4ebcf-9f0e-4107-9ddc-e3d142bf3967Paramasivam, Prabhu77b4465a-a5c3-4f55-b649-2c54235ded2b2023-07-21T20:50:56Z2023-07-21T20:50:56Z20222023Rajagopalan, A., Nagarajan, K., Montoya, O. D., Dhanasekaran, S., Kareem, I. A., Perumal, A. S., ... & Paramasivam, P. (2022). Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer. Energies, 15(23), 9024.https://hdl.handle.net/20.500.12585/1239610.3390/en15239024Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarOptimal energy management has become a challenging task to accomplish in today’s advanced energy systems. If energy is managed in the most optimal manner, tremendous societal benefits can be achieved such as improved economy and less environmental pollution. It is possible to operate the microgrids under grid-connected, as well as isolated modes. The authors presented a new optimization algorithm, i.e., Oppositional Gradient-based Grey Wolf Optimizer (OGGWO) in the current study to elucidate the optimal operation in microgrids that is loaded with sustainable, as well as unsustainable energy sources. With the integration of non-Renewable Energy Sources (RES) with microgrids, environmental pollution is reduced. The current study proposes this hybrid algorithm to avoid stagnation and achieve premature convergence. Having been strategized as a bi-objective optimization problem, the ultimate aim of this model’s optimal operation is to cut the costs incurred upon operations and reduce the emission of pollutants in a 24-h scheduling period. In the current study, the authors considered a Micro Turbine (MT) followed by a Wind Turbine (WT), a battery unit and a Fuel Cell (FC) as storage devices. The microgrid was assumed under the grid-connected mode. The authors validated the proposed algorithm upon three different scenarios to establish the former’s efficiency and efficacy. In addition to these, the optimization results attained from the proposed technique were also compared with that of the results from techniques implemented earlier. According to the outcomes, it can be inferred that the presented OGGWO approach outperformed other methods in terms of cost mitigation and pollution reduction. © 2022 by the authors.24 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2EnergiesMulti-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizerinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Grid;Power Sharing;InvertersLEMBCartagena de IndiasNagarajan, K., Rajagopalan, A., Angalaeswari, S., Natrayan, L., Mammo, W.D. Combined Economic Emission Dispatch of Microgrid with the Incorporation of Renewable Energy Sources Using Improved Mayfly Optimization Algorithm (Open Access) (2022) Computational Intelligence and Neuroscience, 2022, art. no. 6461690. Cited 35 times. http://www.hindawi.com/journals/cin doi: 10.1155/2022/6461690Karthik, N., Parvathy, A.K., Arul, R. A review of optimal operation of microgrids (2020) International Journal of Electrical and Computer Engineering, 10 (3), pp. 2842-2849. Cited 6 times. http://ijece.iaescore.com/index.php/IJECE/article/view/12673/pdf doi: 10.11591/ijece.v10i3.pp2842-2849Konstantinopoulos, S.A., Anastasiadis, A.G., Vokas, G.A., Kondylis, G.P., Polyzakis, A. Optimal management of hydrogen storage in stochastic smart microgrid operation (2018) International Journal of Hydrogen Energy, 43 (1), pp. 490-499. Cited 45 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2017.06.116Aghajani, G., Yousefi, N. Multi-objective optimal operation in a micro-grid considering economic and environmental goals (2019) Evolving Systems, 10 (2), pp. 239-248. Cited 6 times. http://www.springer.com/engineering/journal/12530 doi: 10.1007/s12530-018-9219-yLv, T., Ai, Q., Zhao, Y. A bi-level multi-objective optimal operation of grid-connected microgrids (2016) Electric Power Systems Research, 131, pp. 60-70. Cited 83 times. doi: 10.1016/j.epsr.2015.09.018Kim, H.J., Kim, M.K., Lee, J.W. A two-stage stochastic p-robust optimal energy trading management in microgrid operation considering uncertainty with hybrid demand response (2021) International Journal of Electrical Power and Energy Systems, 124, art. no. 106422. Cited 42 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2020.106422Gad, Y., Diab, H., Abdelsalam, M., Galal, Y. Smart energy management system of environmentally friendly microgrid based on grasshopper optimization technique (2020) Energies, 13 (18), art. no. 5000. Cited 13 times. https://www.mdpi.com/1996-1073/13/19/5000 doi: 10.3390/en13195000Jain, D.K., Tyagi, S.K.S., Neelakandan, S., Prakash, M., Natrayan, L. Metaheuristic Optimization-Based Resource Allocation Technique for Cybertwin-Driven 6G on IoE Environment (2022) IEEE Transactions on Industrial Informatics, 18 (7), pp. 4884-4892. Cited 55 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9424 doi: 10.1109/TII.2021.3138915Ahmed, D., Ebeed, M., Ali, A., Alghamdi, A.S., Kamel, S. Multi-objective energy management of a micro-grid considering stochastic nature of load and renewable energy resources (2021) Electronics (Switzerland), 10 (4), art. no. 403, pp. 1-22. Cited 32 times. https://www.mdpi.com/2079-9292/10/4/403/pdf doi: 10.3390/electronics10040403Mansouri, S.A., Ahmarinejad, A., Nematbakhsh, E., Javadi, M.S., Jordehi, A.R., Catalão, J.P.S. Energy management in microgrids including smart homes: A multi-objective approach (2021) Sustainable Cities and Society, 69, art. no. 102852. Cited 97 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724360/description#description doi: 10.1016/j.scs.2021.102852Mandal, S., Mandal, K.K. Optimal energy management of microgrids under environmental constraints using chaos enhanced differential evolution (2020) Renewable Energy Focus, 34, pp. 129-141. Cited 32 times. https://www.sciencedirect.com/journal/renewable-energy-focus doi: 10.1016/j.ref.2020.05.002Abdolrasol, M.G.M., Hannan, M.A., Suhail Hussain, S.M., Ustun, T.S., Sarker, M.R., Ker, P.J. Energy management scheduling for microgrids in the virtual power plant system using artificial neural networks (2021) Energies, 14 (20), art. no. 6507. Cited 20 times. https://www.mdpi.com/1996-1073/14/20/6507/pdf doi: 10.3390/en14206507Majumder, I., Dash, P.K., Dhar, S. Real-time Energy Management for PV–battery–wind based microgrid using on-line sequential Kernel Based Robust Random Vector Functional Link Network (2021) Applied Soft Computing, 101, art. no. 107059. Cited 11 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2020.107059Karthik, N., Parvathy, A.K., Arul, R., Jayapragash, R., Narayanan, S. Economic load dispatch in a microgrid using Interior Search Algorithm (2019) 2019 Innovations in Power and Advanced Computing Technologies, i-PACT 2019, art. no. 8960249. Cited 8 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8956176 ISBN: 978-153868190-9 doi: 10.1109/i-PACT44901.2019.8960249Aghajani, G.R., Shayanfar, H.A., Shayeghi, H. Demand side management in a smart micro-grid in the presence of renewable generation and demand response (2017) Energy, 126, pp. 622-637. Cited 206 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2017.03.051Jasim, A.M., Jasim, B.H., Kraiem, H., Flah, A. A Multi-Objective Demand/Generation Scheduling Model-Based Microgrid Energy Management System (Open Access) (2022) Sustainability (Switzerland), 14 (16), art. no. 10158. Cited 16 times. http://www.mdpi.com/journal/sustainability/ doi: 10.3390/su141610158Yin, N., Abbassi, R., Jerbi, H., Rezvani, A., Müller, M. A day-ahead joint energy management and battery sizing framework based on θ-modified krill herd algorithm for a renewable energy-integrated microgrid (2021) Journal of Cleaner Production, 282, art. no. 124435. Cited 27 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2020.124435Han, Y., Yang, H., Li, Q., Chen, W., Zare, F., Guerrero, J.M. Mode-triggered droop method for the decentralized energy management of an islanded hybrid PV/hydrogen/battery DC microgrid (Open Access) (2020) Energy, 199, art. no. 117441. Cited 43 times. https://www.journals.elsevier.com/energy doi: 10.1016/j.energy.2020.117441Han, Y., Zhang, G., Li, Q., You, Z., Chen, W., Liu, H. Hierarchical energy management for PV/hydrogen/battery island DC microgrid (2019) International Journal of Hydrogen Energy, pp. 5507-5516. Cited 84 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2018.08.135Kafetzis, A., Ziogou, C., Panopoulos, K.D., Papadopoulou, S., Seferlis, P., Voutetakis, S. Energy management strategies based on hybrid automata for islanded microgrids with renewable sources, batteries and hydrogen (Open Access) (2020) Renewable and Sustainable Energy Reviews, 134, art. no. 110118. Cited 40 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2020.110118Jordehi, A.R., Javadi, M.S., Catalão, J.P.S. Energy management in microgrids with battery swap stations and var compensators (Open Access) (2020) Journal of Cleaner Production, 272, art. no. 122943. Cited 24 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2020.122943Sedighizadeh, M., Esmaili, M., Mohammadkhani, N. Stochastic multi-objective energy management in residential microgrids with combined cooling, heating, and power units considering battery energy storage systems and plug-in hybrid electric vehicles (2018) Journal of Cleaner Production, 195, pp. 301-317. Cited 120 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2018.05.103Luo, L., Abdulkareem, S.S., Rezvani, A., Miveh, M.R., Samad, S., Aljojo, N., Pazhoohesh, M. Optimal scheduling of a renewable based microgrid considering photovoltaic system and battery energy storage under uncertainty (2020) Journal of Energy Storage, 28, art. no. 101306. Cited 169 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2020.101306Farinis, G.Κ., Kanellos, F.D. Integrated energy management system for Microgrids of building prosumers (Open Access) (2021) Electric Power Systems Research, 198, art. no. 107357. Cited 25 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2021.107357Kakran, S., Chanana, S. Operation management of a renewable microgrid supplying to a residential community under the effect of incentive-based demand response program (Open Access) (2019) International Journal of Energy and Environmental Engineering, 10 (1), pp. 121-135. Cited 15 times. http://www.journal-ijeee.com/ doi: 10.1007/s40095-018-0286-4De, M., Das, G., Mandal, K.K. An effective energy flow management in grid-connected solar–wind-microgrid system incorporating economic and environmental generation scheduling using a meta-dynamic approach-based multiobjective flower pollination algorithm (2021) Energy Reports, 7, pp. 2711-2726. Cited 16 times. http://www.journals.elsevier.com/energy-reports/ doi: 10.1016/j.egyr.2021.04.006Dey, B., Bhattacharyya, B., Srivastava, A., Shivam, K. Solving energy management of renewable integrated microgrid systems using crow search algorithm (Open Access) (2020) Soft Computing, 24 (14), pp. 10433-10454. Cited 32 times. http://springerlink.metapress.com/app/home/journal.asp?wasp=h83ak0wtmr5uxkah9j5m&referrer=parent&backto=browsepublicationsresults,466,533; doi: 10.1007/s00500-019-04553-8Sarshar, J., Moosapour, S.S., Joorabian, M. Multi-objective energy management of a micro-grid considering uncertainty in wind power forecasting (2017) Energy, 139, pp. 680-693. Cited 76 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2017.07.138Abdel-Basset, M., El-Shahat, D., El-henawy, I., de Albuquerque, V.H.C., Mirjalili, S. A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection (Open Access) (2020) Expert Systems with Applications, 139, art. no. 112824. Cited 200 times. https://www.journals.elsevier.com/expert-systems-with-applications doi: 10.1016/j.eswa.2019.112824Pradhan, M., Roy, P.K., Pal, T. Grey wolf optimization applied to economic load dispatch problems (Open Access) (2016) International Journal of Electrical Power and Energy Systems, 83, pp. 325-334. Cited 195 times. doi: 10.1016/j.ijepes.2016.04.034Khalilpourazari, S., Hashemi Doulabi, H., Özyüksel Çiftçioğlu, A., Weber, G.-W. Gradient-based grey wolf optimizer with Gaussian walk: Application in modelling and prediction of the COVID-19 pandemic (2021) Expert Systems with Applications, 177, art. no. 114920. Cited 58 times. https://www.journals.elsevier.com/expert-systems-with-applications doi: 10.1016/j.eswa.2021.114920Karthik, N., Parvathy, A.K., Arul, R., Padmanathan, K. Multi-objective optimal power flow using a new heuristic optimization algorithm with the incorporation of renewable energy sources (Open Access) (2021) International Journal of Energy and Environmental Engineering, 12 (4), pp. 641-678. Cited 19 times. http://www.journal-ijeee.com/ doi: 10.1007/s40095-021-00397-xhttp://purl.org/coar/resource_type/c_6501ORIGINALenergies-15-09024-v2.pdfenergies-15-09024-v2.pdfapplication/pdf3869194https://repositorio.utb.edu.co/bitstream/20.500.12585/12396/1/energies-15-09024-v2.pdfead8f1a6a1659180de73c0addd6e5628MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12396/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12396/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTenergies-15-09024-v2.pdf.txtenergies-15-09024-v2.pdf.txtExtracted texttext/plain80860https://repositorio.utb.edu.co/bitstream/20.500.12585/12396/4/energies-15-09024-v2.pdf.txtc271831cf64c4cade50174a61619ad9aMD54THUMBNAILenergies-15-09024-v2.pdf.jpgenergies-15-09024-v2.pdf.jpgGenerated Thumbnailimage/jpeg7918https://repositorio.utb.edu.co/bitstream/20.500.12585/12396/5/energies-15-09024-v2.pdf.jpg4b8d75bff420b8a55d22872321671966MD5520.500.12585/12396oai:repositorio.utb.edu.co:20.500.12585/123962023-07-22 00:18:24.155Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |