Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer

Optimal energy management has become a challenging task to accomplish in today’s advanced energy systems. If energy is managed in the most optimal manner, tremendous societal benefits can be achieved such as improved economy and less environmental pollution. It is possible to operate the microgrids...

Full description

Autores:
Rajagopalan, Arul
Nagarajan, Karthik
Montoya, Oscar Danilo
Dhanasekaran, Seshathiri
Kareem, Inayathullah Abdul
Perumal, Angalaeswari Sendraya
Lakshmaiya, Natrayan
Paramasivam, Prabhu
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12396
Acceso en línea:
https://hdl.handle.net/20.500.12585/12396
Palabra clave:
Grid;
Power Sharing;
Inverters
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_edffd3d7e67f1a8f3932c73d74bc1568
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12396
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer
title Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer
spellingShingle Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer
Grid;
Power Sharing;
Inverters
LEMB
title_short Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer
title_full Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer
title_fullStr Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer
title_full_unstemmed Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer
title_sort Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer
dc.creator.fl_str_mv Rajagopalan, Arul
Nagarajan, Karthik
Montoya, Oscar Danilo
Dhanasekaran, Seshathiri
Kareem, Inayathullah Abdul
Perumal, Angalaeswari Sendraya
Lakshmaiya, Natrayan
Paramasivam, Prabhu
dc.contributor.author.none.fl_str_mv Rajagopalan, Arul
Nagarajan, Karthik
Montoya, Oscar Danilo
Dhanasekaran, Seshathiri
Kareem, Inayathullah Abdul
Perumal, Angalaeswari Sendraya
Lakshmaiya, Natrayan
Paramasivam, Prabhu
dc.subject.keywords.spa.fl_str_mv Grid;
Power Sharing;
Inverters
topic Grid;
Power Sharing;
Inverters
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Optimal energy management has become a challenging task to accomplish in today’s advanced energy systems. If energy is managed in the most optimal manner, tremendous societal benefits can be achieved such as improved economy and less environmental pollution. It is possible to operate the microgrids under grid-connected, as well as isolated modes. The authors presented a new optimization algorithm, i.e., Oppositional Gradient-based Grey Wolf Optimizer (OGGWO) in the current study to elucidate the optimal operation in microgrids that is loaded with sustainable, as well as unsustainable energy sources. With the integration of non-Renewable Energy Sources (RES) with microgrids, environmental pollution is reduced. The current study proposes this hybrid algorithm to avoid stagnation and achieve premature convergence. Having been strategized as a bi-objective optimization problem, the ultimate aim of this model’s optimal operation is to cut the costs incurred upon operations and reduce the emission of pollutants in a 24-h scheduling period. In the current study, the authors considered a Micro Turbine (MT) followed by a Wind Turbine (WT), a battery unit and a Fuel Cell (FC) as storage devices. The microgrid was assumed under the grid-connected mode. The authors validated the proposed algorithm upon three different scenarios to establish the former’s efficiency and efficacy. In addition to these, the optimization results attained from the proposed technique were also compared with that of the results from techniques implemented earlier. According to the outcomes, it can be inferred that the presented OGGWO approach outperformed other methods in terms of cost mitigation and pollution reduction. © 2022 by the authors.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-21T20:50:56Z
dc.date.available.none.fl_str_mv 2023-07-21T20:50:56Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Rajagopalan, A., Nagarajan, K., Montoya, O. D., Dhanasekaran, S., Kareem, I. A., Perumal, A. S., ... & Paramasivam, P. (2022). Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer. Energies, 15(23), 9024.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12396
dc.identifier.doi.none.fl_str_mv 10.3390/en15239024
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Rajagopalan, A., Nagarajan, K., Montoya, O. D., Dhanasekaran, S., Kareem, I. A., Perumal, A. S., ... & Paramasivam, P. (2022). Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer. Energies, 15(23), 9024.
10.3390/en15239024
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12396
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 24 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Energies
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12396/1/energies-15-09024-v2.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12396/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12396/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12396/4/energies-15-09024-v2.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12396/5/energies-15-09024-v2.pdf.jpg
bitstream.checksum.fl_str_mv ead8f1a6a1659180de73c0addd6e5628
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
c271831cf64c4cade50174a61619ad9a
4b8d75bff420b8a55d22872321671966
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021676506021888
spelling Rajagopalan, Arul6d04d6b3-17a1-49be-a90b-6ea66be6d1c6Nagarajan, Karthik25d92d9a-eed0-4d52-b32e-7bc44bf5e0f8Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Dhanasekaran, Seshathirib58811a3-16d3-4287-9957-841ec20e841aKareem, Inayathullah Abdulbb05b1f4-f4ee-4034-a892-36f1067264baPerumal, Angalaeswari Sendrayaf1424917-7a53-42bd-907a-37aed57b6ddcLakshmaiya, Natrayan31b4ebcf-9f0e-4107-9ddc-e3d142bf3967Paramasivam, Prabhu77b4465a-a5c3-4f55-b649-2c54235ded2b2023-07-21T20:50:56Z2023-07-21T20:50:56Z20222023Rajagopalan, A., Nagarajan, K., Montoya, O. D., Dhanasekaran, S., Kareem, I. A., Perumal, A. S., ... & Paramasivam, P. (2022). Multi-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizer. Energies, 15(23), 9024.https://hdl.handle.net/20.500.12585/1239610.3390/en15239024Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarOptimal energy management has become a challenging task to accomplish in today’s advanced energy systems. If energy is managed in the most optimal manner, tremendous societal benefits can be achieved such as improved economy and less environmental pollution. It is possible to operate the microgrids under grid-connected, as well as isolated modes. The authors presented a new optimization algorithm, i.e., Oppositional Gradient-based Grey Wolf Optimizer (OGGWO) in the current study to elucidate the optimal operation in microgrids that is loaded with sustainable, as well as unsustainable energy sources. With the integration of non-Renewable Energy Sources (RES) with microgrids, environmental pollution is reduced. The current study proposes this hybrid algorithm to avoid stagnation and achieve premature convergence. Having been strategized as a bi-objective optimization problem, the ultimate aim of this model’s optimal operation is to cut the costs incurred upon operations and reduce the emission of pollutants in a 24-h scheduling period. In the current study, the authors considered a Micro Turbine (MT) followed by a Wind Turbine (WT), a battery unit and a Fuel Cell (FC) as storage devices. The microgrid was assumed under the grid-connected mode. The authors validated the proposed algorithm upon three different scenarios to establish the former’s efficiency and efficacy. In addition to these, the optimization results attained from the proposed technique were also compared with that of the results from techniques implemented earlier. According to the outcomes, it can be inferred that the presented OGGWO approach outperformed other methods in terms of cost mitigation and pollution reduction. © 2022 by the authors.24 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2EnergiesMulti-Objective Optimal Scheduling of a Microgrid Using Oppositional Gradient-Based Grey Wolf Optimizerinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Grid;Power Sharing;InvertersLEMBCartagena de IndiasNagarajan, K., Rajagopalan, A., Angalaeswari, S., Natrayan, L., Mammo, W.D. Combined Economic Emission Dispatch of Microgrid with the Incorporation of Renewable Energy Sources Using Improved Mayfly Optimization Algorithm (Open Access) (2022) Computational Intelligence and Neuroscience, 2022, art. no. 6461690. Cited 35 times. http://www.hindawi.com/journals/cin doi: 10.1155/2022/6461690Karthik, N., Parvathy, A.K., Arul, R. A review of optimal operation of microgrids (2020) International Journal of Electrical and Computer Engineering, 10 (3), pp. 2842-2849. Cited 6 times. http://ijece.iaescore.com/index.php/IJECE/article/view/12673/pdf doi: 10.11591/ijece.v10i3.pp2842-2849Konstantinopoulos, S.A., Anastasiadis, A.G., Vokas, G.A., Kondylis, G.P., Polyzakis, A. Optimal management of hydrogen storage in stochastic smart microgrid operation (2018) International Journal of Hydrogen Energy, 43 (1), pp. 490-499. Cited 45 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2017.06.116Aghajani, G., Yousefi, N. Multi-objective optimal operation in a micro-grid considering economic and environmental goals (2019) Evolving Systems, 10 (2), pp. 239-248. Cited 6 times. http://www.springer.com/engineering/journal/12530 doi: 10.1007/s12530-018-9219-yLv, T., Ai, Q., Zhao, Y. A bi-level multi-objective optimal operation of grid-connected microgrids (2016) Electric Power Systems Research, 131, pp. 60-70. Cited 83 times. doi: 10.1016/j.epsr.2015.09.018Kim, H.J., Kim, M.K., Lee, J.W. A two-stage stochastic p-robust optimal energy trading management in microgrid operation considering uncertainty with hybrid demand response (2021) International Journal of Electrical Power and Energy Systems, 124, art. no. 106422. Cited 42 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2020.106422Gad, Y., Diab, H., Abdelsalam, M., Galal, Y. Smart energy management system of environmentally friendly microgrid based on grasshopper optimization technique (2020) Energies, 13 (18), art. no. 5000. Cited 13 times. https://www.mdpi.com/1996-1073/13/19/5000 doi: 10.3390/en13195000Jain, D.K., Tyagi, S.K.S., Neelakandan, S., Prakash, M., Natrayan, L. Metaheuristic Optimization-Based Resource Allocation Technique for Cybertwin-Driven 6G on IoE Environment (2022) IEEE Transactions on Industrial Informatics, 18 (7), pp. 4884-4892. Cited 55 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9424 doi: 10.1109/TII.2021.3138915Ahmed, D., Ebeed, M., Ali, A., Alghamdi, A.S., Kamel, S. Multi-objective energy management of a micro-grid considering stochastic nature of load and renewable energy resources (2021) Electronics (Switzerland), 10 (4), art. no. 403, pp. 1-22. Cited 32 times. https://www.mdpi.com/2079-9292/10/4/403/pdf doi: 10.3390/electronics10040403Mansouri, S.A., Ahmarinejad, A., Nematbakhsh, E., Javadi, M.S., Jordehi, A.R., Catalão, J.P.S. Energy management in microgrids including smart homes: A multi-objective approach (2021) Sustainable Cities and Society, 69, art. no. 102852. Cited 97 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724360/description#description doi: 10.1016/j.scs.2021.102852Mandal, S., Mandal, K.K. Optimal energy management of microgrids under environmental constraints using chaos enhanced differential evolution (2020) Renewable Energy Focus, 34, pp. 129-141. Cited 32 times. https://www.sciencedirect.com/journal/renewable-energy-focus doi: 10.1016/j.ref.2020.05.002Abdolrasol, M.G.M., Hannan, M.A., Suhail Hussain, S.M., Ustun, T.S., Sarker, M.R., Ker, P.J. Energy management scheduling for microgrids in the virtual power plant system using artificial neural networks (2021) Energies, 14 (20), art. no. 6507. Cited 20 times. https://www.mdpi.com/1996-1073/14/20/6507/pdf doi: 10.3390/en14206507Majumder, I., Dash, P.K., Dhar, S. Real-time Energy Management for PV–battery–wind based microgrid using on-line sequential Kernel Based Robust Random Vector Functional Link Network (2021) Applied Soft Computing, 101, art. no. 107059. Cited 11 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2020.107059Karthik, N., Parvathy, A.K., Arul, R., Jayapragash, R., Narayanan, S. Economic load dispatch in a microgrid using Interior Search Algorithm (2019) 2019 Innovations in Power and Advanced Computing Technologies, i-PACT 2019, art. no. 8960249. Cited 8 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8956176 ISBN: 978-153868190-9 doi: 10.1109/i-PACT44901.2019.8960249Aghajani, G.R., Shayanfar, H.A., Shayeghi, H. Demand side management in a smart micro-grid in the presence of renewable generation and demand response (2017) Energy, 126, pp. 622-637. Cited 206 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2017.03.051Jasim, A.M., Jasim, B.H., Kraiem, H., Flah, A. A Multi-Objective Demand/Generation Scheduling Model-Based Microgrid Energy Management System (Open Access) (2022) Sustainability (Switzerland), 14 (16), art. no. 10158. Cited 16 times. http://www.mdpi.com/journal/sustainability/ doi: 10.3390/su141610158Yin, N., Abbassi, R., Jerbi, H., Rezvani, A., Müller, M. A day-ahead joint energy management and battery sizing framework based on θ-modified krill herd algorithm for a renewable energy-integrated microgrid (2021) Journal of Cleaner Production, 282, art. no. 124435. Cited 27 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2020.124435Han, Y., Yang, H., Li, Q., Chen, W., Zare, F., Guerrero, J.M. Mode-triggered droop method for the decentralized energy management of an islanded hybrid PV/hydrogen/battery DC microgrid (Open Access) (2020) Energy, 199, art. no. 117441. Cited 43 times. https://www.journals.elsevier.com/energy doi: 10.1016/j.energy.2020.117441Han, Y., Zhang, G., Li, Q., You, Z., Chen, W., Liu, H. Hierarchical energy management for PV/hydrogen/battery island DC microgrid (2019) International Journal of Hydrogen Energy, pp. 5507-5516. Cited 84 times. http://www.journals.elsevier.com/international-journal-of-hydrogen-energy/ doi: 10.1016/j.ijhydene.2018.08.135Kafetzis, A., Ziogou, C., Panopoulos, K.D., Papadopoulou, S., Seferlis, P., Voutetakis, S. Energy management strategies based on hybrid automata for islanded microgrids with renewable sources, batteries and hydrogen (Open Access) (2020) Renewable and Sustainable Energy Reviews, 134, art. no. 110118. Cited 40 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2020.110118Jordehi, A.R., Javadi, M.S., Catalão, J.P.S. Energy management in microgrids with battery swap stations and var compensators (Open Access) (2020) Journal of Cleaner Production, 272, art. no. 122943. Cited 24 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2020.122943Sedighizadeh, M., Esmaili, M., Mohammadkhani, N. Stochastic multi-objective energy management in residential microgrids with combined cooling, heating, and power units considering battery energy storage systems and plug-in hybrid electric vehicles (2018) Journal of Cleaner Production, 195, pp. 301-317. Cited 120 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2018.05.103Luo, L., Abdulkareem, S.S., Rezvani, A., Miveh, M.R., Samad, S., Aljojo, N., Pazhoohesh, M. Optimal scheduling of a renewable based microgrid considering photovoltaic system and battery energy storage under uncertainty (2020) Journal of Energy Storage, 28, art. no. 101306. Cited 169 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2020.101306Farinis, G.Κ., Kanellos, F.D. Integrated energy management system for Microgrids of building prosumers (Open Access) (2021) Electric Power Systems Research, 198, art. no. 107357. Cited 25 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2021.107357Kakran, S., Chanana, S. Operation management of a renewable microgrid supplying to a residential community under the effect of incentive-based demand response program (Open Access) (2019) International Journal of Energy and Environmental Engineering, 10 (1), pp. 121-135. Cited 15 times. http://www.journal-ijeee.com/ doi: 10.1007/s40095-018-0286-4De, M., Das, G., Mandal, K.K. An effective energy flow management in grid-connected solar–wind-microgrid​ system incorporating economic and environmental generation scheduling using a meta-dynamic approach-based multiobjective flower pollination algorithm (2021) Energy Reports, 7, pp. 2711-2726. Cited 16 times. http://www.journals.elsevier.com/energy-reports/ doi: 10.1016/j.egyr.2021.04.006Dey, B., Bhattacharyya, B., Srivastava, A., Shivam, K. Solving energy management of renewable integrated microgrid systems using crow search algorithm (Open Access) (2020) Soft Computing, 24 (14), pp. 10433-10454. Cited 32 times. http://springerlink.metapress.com/app/home/journal.asp?wasp=h83ak0wtmr5uxkah9j5m&referrer=parent&backto=browsepublicationsresults,466,533; doi: 10.1007/s00500-019-04553-8Sarshar, J., Moosapour, S.S., Joorabian, M. Multi-objective energy management of a micro-grid considering uncertainty in wind power forecasting (2017) Energy, 139, pp. 680-693. Cited 76 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2017.07.138Abdel-Basset, M., El-Shahat, D., El-henawy, I., de Albuquerque, V.H.C., Mirjalili, S. A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection (Open Access) (2020) Expert Systems with Applications, 139, art. no. 112824. Cited 200 times. https://www.journals.elsevier.com/expert-systems-with-applications doi: 10.1016/j.eswa.2019.112824Pradhan, M., Roy, P.K., Pal, T. Grey wolf optimization applied to economic load dispatch problems (Open Access) (2016) International Journal of Electrical Power and Energy Systems, 83, pp. 325-334. Cited 195 times. doi: 10.1016/j.ijepes.2016.04.034Khalilpourazari, S., Hashemi Doulabi, H., Özyüksel Çiftçioğlu, A., Weber, G.-W. Gradient-based grey wolf optimizer with Gaussian walk: Application in modelling and prediction of the COVID-19 pandemic (2021) Expert Systems with Applications, 177, art. no. 114920. Cited 58 times. https://www.journals.elsevier.com/expert-systems-with-applications doi: 10.1016/j.eswa.2021.114920Karthik, N., Parvathy, A.K., Arul, R., Padmanathan, K. Multi-objective optimal power flow using a new heuristic optimization algorithm with the incorporation of renewable energy sources (Open Access) (2021) International Journal of Energy and Environmental Engineering, 12 (4), pp. 641-678. Cited 19 times. http://www.journal-ijeee.com/ doi: 10.1007/s40095-021-00397-xhttp://purl.org/coar/resource_type/c_6501ORIGINALenergies-15-09024-v2.pdfenergies-15-09024-v2.pdfapplication/pdf3869194https://repositorio.utb.edu.co/bitstream/20.500.12585/12396/1/energies-15-09024-v2.pdfead8f1a6a1659180de73c0addd6e5628MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12396/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12396/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTenergies-15-09024-v2.pdf.txtenergies-15-09024-v2.pdf.txtExtracted texttext/plain80860https://repositorio.utb.edu.co/bitstream/20.500.12585/12396/4/energies-15-09024-v2.pdf.txtc271831cf64c4cade50174a61619ad9aMD54THUMBNAILenergies-15-09024-v2.pdf.jpgenergies-15-09024-v2.pdf.jpgGenerated Thumbnailimage/jpeg7918https://repositorio.utb.edu.co/bitstream/20.500.12585/12396/5/energies-15-09024-v2.pdf.jpg4b8d75bff420b8a55d22872321671966MD5520.500.12585/12396oai:repositorio.utb.edu.co:20.500.12585/123962023-07-22 00:18:24.155Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=