Generating dynamic fuzzy models for prediction problems
In this paper we present a new method to generate interpretable fuzzy systems from training data. A fuzzy system is developed for nonlinear systems modeling and for system state forecasting. The antecedent partition uses triangular sets with 0.5 interpolations avoiding the presence of complex overla...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2009
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9125
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9125
- Palabra clave:
- Dynamic systems
Fuzzy identification
Interpretability
Least squares method
Bench-mark problems
Dynamic systems
Fuzzy identification
Fuzzy literature
Fuzzy models
Input-output
Interpretability
Least square methods
Least squares method
NARMAX model
Prediction problem
System state
Time series forecasting
Training data
Triangular sets
Composite structures
Data processing
Dynamic programming
Fuzzy systems
Hybrid systems
Nonlinear systems
Time series
Fuzzy logic
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_edea773fae6bf04990d707d96e6906be |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9125 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Generating dynamic fuzzy models for prediction problems |
title |
Generating dynamic fuzzy models for prediction problems |
spellingShingle |
Generating dynamic fuzzy models for prediction problems Dynamic systems Fuzzy identification Interpretability Least squares method Bench-mark problems Dynamic systems Fuzzy identification Fuzzy literature Fuzzy models Input-output Interpretability Least square methods Least squares method NARMAX model Prediction problem System state Time series forecasting Training data Triangular sets Composite structures Data processing Dynamic programming Fuzzy systems Hybrid systems Nonlinear systems Time series Fuzzy logic |
title_short |
Generating dynamic fuzzy models for prediction problems |
title_full |
Generating dynamic fuzzy models for prediction problems |
title_fullStr |
Generating dynamic fuzzy models for prediction problems |
title_full_unstemmed |
Generating dynamic fuzzy models for prediction problems |
title_sort |
Generating dynamic fuzzy models for prediction problems |
dc.subject.keywords.none.fl_str_mv |
Dynamic systems Fuzzy identification Interpretability Least squares method Bench-mark problems Dynamic systems Fuzzy identification Fuzzy literature Fuzzy models Input-output Interpretability Least square methods Least squares method NARMAX model Prediction problem System state Time series forecasting Training data Triangular sets Composite structures Data processing Dynamic programming Fuzzy systems Hybrid systems Nonlinear systems Time series Fuzzy logic |
topic |
Dynamic systems Fuzzy identification Interpretability Least squares method Bench-mark problems Dynamic systems Fuzzy identification Fuzzy literature Fuzzy models Input-output Interpretability Least square methods Least squares method NARMAX model Prediction problem System state Time series forecasting Training data Triangular sets Composite structures Data processing Dynamic programming Fuzzy systems Hybrid systems Nonlinear systems Time series Fuzzy logic |
description |
In this paper we present a new method to generate interpretable fuzzy systems from training data. A fuzzy system is developed for nonlinear systems modeling and for system state forecasting. The antecedent partition uses triangular sets with 0.5 interpolations avoiding the presence of complex overlapping that happens in other methods. Singleton consequents are employed and least square method is used to adjust the consequents. This approach is not a hybrid system and does not employ other techniques, like neural network or genetic algorithm. Two benchmark problems have been used to illustrate our approach: the first one is an input-output NARMAX model, which is one of the most popular models in the neural and fuzzy literature; the second one is the chaotic, nonperiodic and nonconvergence Mackey-Glass series, commonly used to evaluate a time series forecasting scheme. ©2009 IEEE. |
publishDate |
2009 |
dc.date.issued.none.fl_str_mv |
2009 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:00Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:00Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Annual Conference of the North American Fuzzy Information Processing Society - NAFIPS |
dc.identifier.isbn.none.fl_str_mv |
9781424445776 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9125 |
dc.identifier.doi.none.fl_str_mv |
10.1109/NAFIPS.2009.5156422 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
35104582500 35104250500 |
identifier_str_mv |
Annual Conference of the North American Fuzzy Information Processing Society - NAFIPS 9781424445776 10.1109/NAFIPS.2009.5156422 Universidad Tecnológica de Bolívar Repositorio UTB 35104582500 35104250500 |
url |
https://hdl.handle.net/20.500.12585/9125 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferenceplace.none.fl_str_mv |
Cincinnati, OH |
dc.relation.conferencedate.none.fl_str_mv |
14 June 2009 through 17 June 2009 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-70350426514&doi=10.1109%2fNAFIPS.2009.5156422&partnerID=40&md5=acd20cb69276fbda7287db513a2967e9 Scopus2-s2.0-70350426514 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
2009 Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2009 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9125/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021768349745152 |
spelling |
2020-03-26T16:33:00Z2020-03-26T16:33:00Z2009Annual Conference of the North American Fuzzy Information Processing Society - NAFIPS9781424445776https://hdl.handle.net/20.500.12585/912510.1109/NAFIPS.2009.5156422Universidad Tecnológica de BolívarRepositorio UTB3510458250035104250500In this paper we present a new method to generate interpretable fuzzy systems from training data. A fuzzy system is developed for nonlinear systems modeling and for system state forecasting. The antecedent partition uses triangular sets with 0.5 interpolations avoiding the presence of complex overlapping that happens in other methods. Singleton consequents are employed and least square method is used to adjust the consequents. This approach is not a hybrid system and does not employ other techniques, like neural network or genetic algorithm. Two benchmark problems have been used to illustrate our approach: the first one is an input-output NARMAX model, which is one of the most popular models in the neural and fuzzy literature; the second one is the chaotic, nonperiodic and nonconvergence Mackey-Glass series, commonly used to evaluate a time series forecasting scheme. ©2009 IEEE.Minist. Commun. Inf. Technol. AzerbaijanRecurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-70350426514&doi=10.1109%2fNAFIPS.2009.5156422&partnerID=40&md5=acd20cb69276fbda7287db513a2967e9Scopus2-s2.0-703504265142009 Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2009Generating dynamic fuzzy models for prediction problemsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fDynamic systemsFuzzy identificationInterpretabilityLeast squares methodBench-mark problemsDynamic systemsFuzzy identificationFuzzy literatureFuzzy modelsInput-outputInterpretabilityLeast square methodsLeast squares methodNARMAX modelPrediction problemSystem stateTime series forecastingTraining dataTriangular setsComposite structuresData processingDynamic programmingFuzzy systemsHybrid systemsNonlinear systemsTime seriesFuzzy logicCincinnati, OH14 June 2009 through 17 June 2009Contreras J.Acuña O.Wang, L.-X., Mendel, J.M., Generating fuzzy rules by learning form examples (1992) IEEE Transactions System, Man and Cybernetics, 22, pp. 1414-1427. , NovYu, W., Ortiz-Rodriguez, F., Moreno-Armendariz, M., Hierarchical Fuzzy CMAC for Nonlinear System Modeling (2008) IEEE Trans. Fuzzy Systems, 16 (5), pp. 1302-1314. , OctSugeno, M., Yasukawa, T., A fuzzy logic based approach to qualitative modeling (1993) Transactions on Fuzzy Systems, 1 (1), pp. 7-31Bezdek, J.C., (1987) Pattern recognition with Fuzzy Objective Function Algorithms, , Ed. Plenum PressGuztafson, E.E., Kessel, W.C., Fuzzy Clustering with a Fuzzy Covariance Matrix (1979) IEEE CDC, pp. 503-516. , San Diego, California, ppNauck, D., Kruse, R., Nefclass - a neuro-fuzzy approach for the classification of data (1995) Proceedings of the Symposium on Applied ComputingNauck, D., Kruse, D.R., Neuro-fuzzy systems for function approximation (1999) Fuzzy Sets and System, 101 (2), pp. 261-271. , JanPaiva, R.P., Dourado, A., Interpretability and Learning in Neuro-Fuzzy Systems (2004) Fuzzy Sets and System, 147, pp. 17-38Espinosa, J., Vandewalle, J., Constructing Fuzzy Models with Linguistic Integrity from Numerical Data-Afreli Algorithm (2000) IEEE Trans. Fuzzy Systems, 8 (5), pp. 591-600. , OctSudkamp, T., Knapp, A., Knapp, J., Model Generation by Domain Refinement and Rule Reduction (2003) IEEE Trans. on System, Man and Cybernetics, 33 (1). , FebMarsili-Libelli, S., Fuzzy Prediction of Algal Blooms in the Orbetello Lagoon (2004) Environmental Modelling & Software, 19, pp. 799-8008Wang, W., Vrbanek, J., An Evolving Fuzzy Predictor for Industrial Applications (2008) IEEE Trans. Fuzzy Systems, 16 (6), pp. 1439-1449Stach, W., Kurgan, L., Pedrycz, W., Numerical and Linguistic Prediction of Time Series with the Use of Fuzzy Cognitive Maps (2008) IEEE Trans. Fuzzy Systems, 16 (1), pp. 61-72Liu, X., Kwan, B.K., Foo, S.Y., (2003) Time Series Prediction Based on Fuzzy Principles, , Preprint, Department of Electrical and Computer Engineering, Florida State UniversityContreras, J., Misa, R., Murillo, L., Obtención de Modelos Borrosos Interpretables de Procesos Dinámicos (2008) RIAI: Revista Iberoamericana de Automática e Informática Industrial, 5 (3), pp. 70-77. , JulContreras, J., Misa, R., Murillo, L., Interpretable Fuzzy Models from Data and Adaptive Fuzzy Control: A New Approach (2007) IEEE International Conference on Fuzzy Systems, pp. 1591-1596. , IEEE Computational Intelligence Society. Pags, JulJuang, C.-F., A TSK Type Recurrent Fuzzy Network for Dynamic Systems Processing by Neural Network and Genetic Algorithm (2002) IEEE Trans. Fuzzy Systems, 10 (2), pp. 155-170. , AprChae, Y., Oh, K., Lee, W., Kang, G., Transformation of TSK fuzzy system into fuzzy system with singleton consequents and its application (1999) IEEE International Conference on Fuzzy Systems, 2, pp. 969-973. , IEEE Computational Intelligence SocietyPedriycz, W., Why Triangular Membership Functions?, IEEE Trans (1994) Fuzzy Sets and System, 64, pp. 21-30Meghdadi, A.H., Akbarzadeh-T, M.-R., Fuzzy Modeling of Nonlinear Stochastic System by Learning from Example (2001) 9th IFSA World Congress and 20th NAFIPS International Conference, pp. 2746-2751. , Pp, Julhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9125/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9125oai:repositorio.utb.edu.co:20.500.12585/91252021-02-02 15:19:35.967Repositorio Institucional UTBrepositorioutb@utb.edu.co |