Generating dynamic fuzzy models for prediction problems

In this paper we present a new method to generate interpretable fuzzy systems from training data. A fuzzy system is developed for nonlinear systems modeling and for system state forecasting. The antecedent partition uses triangular sets with 0.5 interpolations avoiding the presence of complex overla...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2009
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9125
Acceso en línea:
https://hdl.handle.net/20.500.12585/9125
Palabra clave:
Dynamic systems
Fuzzy identification
Interpretability
Least squares method
Bench-mark problems
Dynamic systems
Fuzzy identification
Fuzzy literature
Fuzzy models
Input-output
Interpretability
Least square methods
Least squares method
NARMAX model
Prediction problem
System state
Time series forecasting
Training data
Triangular sets
Composite structures
Data processing
Dynamic programming
Fuzzy systems
Hybrid systems
Nonlinear systems
Time series
Fuzzy logic
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_edea773fae6bf04990d707d96e6906be
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9125
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Generating dynamic fuzzy models for prediction problems
title Generating dynamic fuzzy models for prediction problems
spellingShingle Generating dynamic fuzzy models for prediction problems
Dynamic systems
Fuzzy identification
Interpretability
Least squares method
Bench-mark problems
Dynamic systems
Fuzzy identification
Fuzzy literature
Fuzzy models
Input-output
Interpretability
Least square methods
Least squares method
NARMAX model
Prediction problem
System state
Time series forecasting
Training data
Triangular sets
Composite structures
Data processing
Dynamic programming
Fuzzy systems
Hybrid systems
Nonlinear systems
Time series
Fuzzy logic
title_short Generating dynamic fuzzy models for prediction problems
title_full Generating dynamic fuzzy models for prediction problems
title_fullStr Generating dynamic fuzzy models for prediction problems
title_full_unstemmed Generating dynamic fuzzy models for prediction problems
title_sort Generating dynamic fuzzy models for prediction problems
dc.subject.keywords.none.fl_str_mv Dynamic systems
Fuzzy identification
Interpretability
Least squares method
Bench-mark problems
Dynamic systems
Fuzzy identification
Fuzzy literature
Fuzzy models
Input-output
Interpretability
Least square methods
Least squares method
NARMAX model
Prediction problem
System state
Time series forecasting
Training data
Triangular sets
Composite structures
Data processing
Dynamic programming
Fuzzy systems
Hybrid systems
Nonlinear systems
Time series
Fuzzy logic
topic Dynamic systems
Fuzzy identification
Interpretability
Least squares method
Bench-mark problems
Dynamic systems
Fuzzy identification
Fuzzy literature
Fuzzy models
Input-output
Interpretability
Least square methods
Least squares method
NARMAX model
Prediction problem
System state
Time series forecasting
Training data
Triangular sets
Composite structures
Data processing
Dynamic programming
Fuzzy systems
Hybrid systems
Nonlinear systems
Time series
Fuzzy logic
description In this paper we present a new method to generate interpretable fuzzy systems from training data. A fuzzy system is developed for nonlinear systems modeling and for system state forecasting. The antecedent partition uses triangular sets with 0.5 interpolations avoiding the presence of complex overlapping that happens in other methods. Singleton consequents are employed and least square method is used to adjust the consequents. This approach is not a hybrid system and does not employ other techniques, like neural network or genetic algorithm. Two benchmark problems have been used to illustrate our approach: the first one is an input-output NARMAX model, which is one of the most popular models in the neural and fuzzy literature; the second one is the chaotic, nonperiodic and nonconvergence Mackey-Glass series, commonly used to evaluate a time series forecasting scheme. ©2009 IEEE.
publishDate 2009
dc.date.issued.none.fl_str_mv 2009
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:00Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:00Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Annual Conference of the North American Fuzzy Information Processing Society - NAFIPS
dc.identifier.isbn.none.fl_str_mv 9781424445776
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9125
dc.identifier.doi.none.fl_str_mv 10.1109/NAFIPS.2009.5156422
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 35104582500
35104250500
identifier_str_mv Annual Conference of the North American Fuzzy Information Processing Society - NAFIPS
9781424445776
10.1109/NAFIPS.2009.5156422
Universidad Tecnológica de Bolívar
Repositorio UTB
35104582500
35104250500
url https://hdl.handle.net/20.500.12585/9125
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferenceplace.none.fl_str_mv Cincinnati, OH
dc.relation.conferencedate.none.fl_str_mv 14 June 2009 through 17 June 2009
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-70350426514&doi=10.1109%2fNAFIPS.2009.5156422&partnerID=40&md5=acd20cb69276fbda7287db513a2967e9
Scopus2-s2.0-70350426514
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 2009 Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2009
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9125/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021768349745152
spelling 2020-03-26T16:33:00Z2020-03-26T16:33:00Z2009Annual Conference of the North American Fuzzy Information Processing Society - NAFIPS9781424445776https://hdl.handle.net/20.500.12585/912510.1109/NAFIPS.2009.5156422Universidad Tecnológica de BolívarRepositorio UTB3510458250035104250500In this paper we present a new method to generate interpretable fuzzy systems from training data. A fuzzy system is developed for nonlinear systems modeling and for system state forecasting. The antecedent partition uses triangular sets with 0.5 interpolations avoiding the presence of complex overlapping that happens in other methods. Singleton consequents are employed and least square method is used to adjust the consequents. This approach is not a hybrid system and does not employ other techniques, like neural network or genetic algorithm. Two benchmark problems have been used to illustrate our approach: the first one is an input-output NARMAX model, which is one of the most popular models in the neural and fuzzy literature; the second one is the chaotic, nonperiodic and nonconvergence Mackey-Glass series, commonly used to evaluate a time series forecasting scheme. ©2009 IEEE.Minist. Commun. Inf. Technol. AzerbaijanRecurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-70350426514&doi=10.1109%2fNAFIPS.2009.5156422&partnerID=40&md5=acd20cb69276fbda7287db513a2967e9Scopus2-s2.0-703504265142009 Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2009Generating dynamic fuzzy models for prediction problemsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fDynamic systemsFuzzy identificationInterpretabilityLeast squares methodBench-mark problemsDynamic systemsFuzzy identificationFuzzy literatureFuzzy modelsInput-outputInterpretabilityLeast square methodsLeast squares methodNARMAX modelPrediction problemSystem stateTime series forecastingTraining dataTriangular setsComposite structuresData processingDynamic programmingFuzzy systemsHybrid systemsNonlinear systemsTime seriesFuzzy logicCincinnati, OH14 June 2009 through 17 June 2009Contreras J.Acuña O.Wang, L.-X., Mendel, J.M., Generating fuzzy rules by learning form examples (1992) IEEE Transactions System, Man and Cybernetics, 22, pp. 1414-1427. , NovYu, W., Ortiz-Rodriguez, F., Moreno-Armendariz, M., Hierarchical Fuzzy CMAC for Nonlinear System Modeling (2008) IEEE Trans. Fuzzy Systems, 16 (5), pp. 1302-1314. , OctSugeno, M., Yasukawa, T., A fuzzy logic based approach to qualitative modeling (1993) Transactions on Fuzzy Systems, 1 (1), pp. 7-31Bezdek, J.C., (1987) Pattern recognition with Fuzzy Objective Function Algorithms, , Ed. Plenum PressGuztafson, E.E., Kessel, W.C., Fuzzy Clustering with a Fuzzy Covariance Matrix (1979) IEEE CDC, pp. 503-516. , San Diego, California, ppNauck, D., Kruse, R., Nefclass - a neuro-fuzzy approach for the classification of data (1995) Proceedings of the Symposium on Applied ComputingNauck, D., Kruse, D.R., Neuro-fuzzy systems for function approximation (1999) Fuzzy Sets and System, 101 (2), pp. 261-271. , JanPaiva, R.P., Dourado, A., Interpretability and Learning in Neuro-Fuzzy Systems (2004) Fuzzy Sets and System, 147, pp. 17-38Espinosa, J., Vandewalle, J., Constructing Fuzzy Models with Linguistic Integrity from Numerical Data-Afreli Algorithm (2000) IEEE Trans. Fuzzy Systems, 8 (5), pp. 591-600. , OctSudkamp, T., Knapp, A., Knapp, J., Model Generation by Domain Refinement and Rule Reduction (2003) IEEE Trans. on System, Man and Cybernetics, 33 (1). , FebMarsili-Libelli, S., Fuzzy Prediction of Algal Blooms in the Orbetello Lagoon (2004) Environmental Modelling & Software, 19, pp. 799-8008Wang, W., Vrbanek, J., An Evolving Fuzzy Predictor for Industrial Applications (2008) IEEE Trans. Fuzzy Systems, 16 (6), pp. 1439-1449Stach, W., Kurgan, L., Pedrycz, W., Numerical and Linguistic Prediction of Time Series with the Use of Fuzzy Cognitive Maps (2008) IEEE Trans. Fuzzy Systems, 16 (1), pp. 61-72Liu, X., Kwan, B.K., Foo, S.Y., (2003) Time Series Prediction Based on Fuzzy Principles, , Preprint, Department of Electrical and Computer Engineering, Florida State UniversityContreras, J., Misa, R., Murillo, L., Obtención de Modelos Borrosos Interpretables de Procesos Dinámicos (2008) RIAI: Revista Iberoamericana de Automática e Informática Industrial, 5 (3), pp. 70-77. , JulContreras, J., Misa, R., Murillo, L., Interpretable Fuzzy Models from Data and Adaptive Fuzzy Control: A New Approach (2007) IEEE International Conference on Fuzzy Systems, pp. 1591-1596. , IEEE Computational Intelligence Society. Pags, JulJuang, C.-F., A TSK Type Recurrent Fuzzy Network for Dynamic Systems Processing by Neural Network and Genetic Algorithm (2002) IEEE Trans. Fuzzy Systems, 10 (2), pp. 155-170. , AprChae, Y., Oh, K., Lee, W., Kang, G., Transformation of TSK fuzzy system into fuzzy system with singleton consequents and its application (1999) IEEE International Conference on Fuzzy Systems, 2, pp. 969-973. , IEEE Computational Intelligence SocietyPedriycz, W., Why Triangular Membership Functions?, IEEE Trans (1994) Fuzzy Sets and System, 64, pp. 21-30Meghdadi, A.H., Akbarzadeh-T, M.-R., Fuzzy Modeling of Nonlinear Stochastic System by Learning from Example (2001) 9th IFSA World Congress and 20th NAFIPS International Conference, pp. 2746-2751. , Pp, Julhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9125/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9125oai:repositorio.utb.edu.co:20.500.12585/91252021-02-02 15:19:35.967Repositorio Institucional UTBrepositorioutb@utb.edu.co