A mixed-integer second-order cone model for optimal siting and sizing of dynamic reactive power compensators in distribution grids

The problem of the optimal placement and sizing of dynamic reactive power compensators in AC distribution networks is addressed in this paper from convex optimization. The exact mixed-integer nonlinear programming (MINLP) model is transformed into a mixed-integer second-order cone programming (MISOC...

Full description

Autores:
Gil González, Walter Julián
Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Leonardo Trujillo, Cesar
Giral-Ramírez, Diego Armando
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/11122
Acceso en línea:
https://hdl.handle.net/20.500.12585/11122
https://doi.org/10.1016/j.rineng.2022.100475
Palabra clave:
Dynamic reactive power compensators
Mixed-integer convex optimization
Radial distribution networks
Second-order cone programming
Branch optimal power flow
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_ec91521cec2c5673d8cc1b8bf246251f
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/11122
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv A mixed-integer second-order cone model for optimal siting and sizing of dynamic reactive power compensators in distribution grids
title A mixed-integer second-order cone model for optimal siting and sizing of dynamic reactive power compensators in distribution grids
spellingShingle A mixed-integer second-order cone model for optimal siting and sizing of dynamic reactive power compensators in distribution grids
Dynamic reactive power compensators
Mixed-integer convex optimization
Radial distribution networks
Second-order cone programming
Branch optimal power flow
LEMB
title_short A mixed-integer second-order cone model for optimal siting and sizing of dynamic reactive power compensators in distribution grids
title_full A mixed-integer second-order cone model for optimal siting and sizing of dynamic reactive power compensators in distribution grids
title_fullStr A mixed-integer second-order cone model for optimal siting and sizing of dynamic reactive power compensators in distribution grids
title_full_unstemmed A mixed-integer second-order cone model for optimal siting and sizing of dynamic reactive power compensators in distribution grids
title_sort A mixed-integer second-order cone model for optimal siting and sizing of dynamic reactive power compensators in distribution grids
dc.creator.fl_str_mv Gil González, Walter Julián
Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Leonardo Trujillo, Cesar
Giral-Ramírez, Diego Armando
dc.contributor.author.none.fl_str_mv Gil González, Walter Julián
Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Leonardo Trujillo, Cesar
Giral-Ramírez, Diego Armando
dc.subject.keywords.spa.fl_str_mv Dynamic reactive power compensators
Mixed-integer convex optimization
Radial distribution networks
Second-order cone programming
Branch optimal power flow
topic Dynamic reactive power compensators
Mixed-integer convex optimization
Radial distribution networks
Second-order cone programming
Branch optimal power flow
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The problem of the optimal placement and sizing of dynamic reactive power compensators in AC distribution networks is addressed in this paper from convex optimization. The exact mixed-integer nonlinear programming (MINLP) model is transformed into a mixed-integer second-order cone programming (MISOCP) model. The main advantage of the MISOCP formulation is the possibility of finding a global optimum with branch & cut combined with interior-point method due to the convex structure of the continuous part of the problem, i.e., the multi-period branch optimal power flow. The dynamic reactive power compensators are sized and dimensioned considering daily load curves and variable reactive power injections. Numerical validations are tested in the 33- and 69-bus test feeders using the CVX tool available for MATLAB with the MOSEK solver. These simulations demonstrate the effectiveness and robustness of the MISOCP approach when compared with the solution of the exact MINLP obtained in the GAMS software.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-29T13:26:15Z
dc.date.available.none.fl_str_mv 2022-09-29T13:26:15Z
dc.date.issued.none.fl_str_mv 2022-06-20
dc.date.submitted.none.fl_str_mv 2022-09-28
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Gil González, Walter & Montoya Giraldo, Oscar & Grisales-Noreña, Luis & Trujillo, Cesar & Giral-Ramírez, Diego. (2022). A mixed-integer second-order cone model for optimal siting and sizing of dynamic reactive power compensators in distribution grids. 15. 100475. 10.1016/j.rineng.2022.100475.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/11122
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.rineng.2022.100475
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Gil González, Walter & Montoya Giraldo, Oscar & Grisales-Noreña, Luis & Trujillo, Cesar & Giral-Ramírez, Diego. (2022). A mixed-integer second-order cone model for optimal siting and sizing of dynamic reactive power compensators in distribution grids. 15. 100475. 10.1016/j.rineng.2022.100475.
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/11122
https://doi.org/10.1016/j.rineng.2022.100475
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 7 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv ScienceDirect - Elsevier - Results in Engineering Vol. 15 (2022)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/11122/1/1-s2.0-S2590123022001451-main.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/11122/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/11122/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/11122/4/1-s2.0-S2590123022001451-main.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/11122/5/1-s2.0-S2590123022001451-main.pdf.jpg
bitstream.checksum.fl_str_mv 5c520cb28489a55fdeb0223087b08d8d
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
f5cab56195d19529e188e50ab3602cf5
42043ea06f3124ef9bd7eddcd81778e6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021619527450624
spelling Gil González, Walter Julián327d969f-24fd-44c9-9d9b-14591e6c7d38Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Grisales-Noreña, Luis Fernando7c27cda4-5fe4-4686-8f72-b0442c58a5d1Leonardo Trujillo, Cesar77f87549-ee43-46e6-aca9-ad4506d169f9Giral-Ramírez, Diego Armando8926006f-c361-4505-9219-92565a6b4de42022-09-29T13:26:15Z2022-09-29T13:26:15Z2022-06-202022-09-28Gil González, Walter & Montoya Giraldo, Oscar & Grisales-Noreña, Luis & Trujillo, Cesar & Giral-Ramírez, Diego. (2022). A mixed-integer second-order cone model for optimal siting and sizing of dynamic reactive power compensators in distribution grids. 15. 100475. 10.1016/j.rineng.2022.100475.https://hdl.handle.net/20.500.12585/11122https://doi.org/10.1016/j.rineng.2022.100475Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe problem of the optimal placement and sizing of dynamic reactive power compensators in AC distribution networks is addressed in this paper from convex optimization. The exact mixed-integer nonlinear programming (MINLP) model is transformed into a mixed-integer second-order cone programming (MISOCP) model. The main advantage of the MISOCP formulation is the possibility of finding a global optimum with branch & cut combined with interior-point method due to the convex structure of the continuous part of the problem, i.e., the multi-period branch optimal power flow. The dynamic reactive power compensators are sized and dimensioned considering daily load curves and variable reactive power injections. Numerical validations are tested in the 33- and 69-bus test feeders using the CVX tool available for MATLAB with the MOSEK solver. These simulations demonstrate the effectiveness and robustness of the MISOCP approach when compared with the solution of the exact MINLP obtained in the GAMS software.7 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2ScienceDirect - Elsevier - Results in Engineering Vol. 15 (2022)A mixed-integer second-order cone model for optimal siting and sizing of dynamic reactive power compensators in distribution gridsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Dynamic reactive power compensatorsMixed-integer convex optimizationRadial distribution networksSecond-order cone programmingBranch optimal power flowLEMBCartagena de IndiasR.A. Soumana, M.J. Saulo, C.M. Muriithi New control strategy for multifunctional grid-connected photovoltaic systems Res. Eng., 14 (2022), Article 100422, 10.1016/j.rineng.2022.100422O.D. Montoya, D.A. Giral-Ramírez, L.F. Grisales-Noreña Optimal economic-environmental dispatch in MT-HVDC systems via sine-cosine algorithm Res. Eng., 13 (2022), Article 100348, 10.1016/j.rineng.2022.100348J. Jardini, C. Tahan, M. Gouvea, S. Ahn, F. Figueiredo Daily load profiles for residential, commercial and industrial low voltage consumers IEEE Trans. Power Deliv., 15 (1) (2000), pp. 375-380, 10.1109/61.847276S. Rahimzadeh, M.T. Bina Looking for optimal number and placement of facts devices to manage the transmission congestion Energy Convers. Manag., 52 (1) (2011), pp. 437-446V. Tuzikova, J. Tlusty, Z. Muller A novel power losses reduction method based on a particle swarm optimization algorithm using STATCOM Energies, 11 (10) (2018), p. 2851S. Abba, B.G. Najashi, A. Rotimi, B. Musa, N. Yimen, S. Kawu, S. Lawan, M. Dagbasi Emerging harris hawks optimization based load demand forecasting and optimal sizing of stand-alone hybrid renewable energy systems– a case study of Kano and Abuja, Nigeria Res. Eng., 12 (2021), Article 100260, 10.1016/j.rineng.2021.100260L.A.G. Pareja, J.M.L. Lezama, O.G. Carmona Optimal placement of capacitors, voltage regulators, and distributed generators in electric power distribution systems Ingenieria, 25 (3) (2020), pp. 334-354, 10.14483/23448393.16925A. Ghosh, G. Ledwich Power Quality Enhancement Using Custom Power Devices Springer science & business media (2012)M. Falahi, K. Butler-Purry, M. Ehsani Dynamic reactive power control of islanded microgrids IEEE Trans. Power Syst., 28 (4) (2013), pp. 3649-3657D. Yang, S. Hong, H. Cheng, L. Yao A novel dynamic reactive power planning methodology to enhance transient voltage stability Int. Trans. Electr. Energy Syst., 27 (10) (2017), Article e2390M. Moghbel, M.A. Masoum, A. Fereidouni, S. Deilami Optimal sizing, siting and operation of custom power devices with STATCOM and APLC functions for real-time reactive power and network voltage quality control of smart grid IEEE Trans. Smart Grid, 9 (6) (2017), pp. 5564-5575W. Gil-González, O.D. Montoya, A. Rajagopalan, L.F. Grisales-Noreña, J.C. Hernández Optimal selection and location of fixed-step capacitor banks in distribution networks using a discrete version of the vortex search algorithm Energies, 13 (18) (2020), p. 4914, 10.3390/en13184914W. Gil-González, A. Molina-Cabrera, O.D. Montoya, L.F. Grisales-Noreña An MI-SDP model for optimal location and sizing of distributed generators in DC grids that guarantees the global optimum Appl. Sci., 10 (21) (2020), p. 7681, 10.3390/app10217681F. Li, J.D. Pilgrim, C. Dabeedin, A. Chebbo, R. Aggarwal Genetic algorithms for optimal reactive power compensation on the national grid system IEEE Trans. Power Syst., 20 (1) (2005), pp. 493-500L.R. De Araujo, D.R.R. Penido, S. Carneiro Jr., J.L.R. Pereira Optimal unbalanced capacitor placement in distribution systems for voltage control and energy losses minimization Elec. Power Syst. Res., 154 (2018), pp. 110-121S. Udgir, L. Srivastava, M. Pandit Optimal placement and sizing of SVC for loss minimization and voltage security improvement using differential evolution algorithm International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), IEEE (2014), pp. 1-6J. Sanam, S. Ganguly, A. Panda, C. Hemanth Optimization of energy loss cost of distribution networks with the optimal placement and sizing of dstatcom using differential evolution algorithm Arabian J. Sci. Eng., 42 (7) (2017), pp. 2851-2865A. Lakum, V. Mahajan Optimal placement and sizing of multiple active power filters in radial distribution system using grey wolf optimizer in presence of nonlinear distributed generation Elec. Power Syst. Res., 173 (2019), pp. 281-290K. Sórensen Metaheuristics—the metaphor exposed Int. Trans. Oper. Res., 22 (1) (2015), pp. 3-18F. Héliodore, A. Nakib, B. Ismail, S. Ouchraa, L. Schmitt Metaheuristics for Intelligent Electrical Networks Wiley Online Library (2017)H.Y. Benson Ümit sağlam, mixed-integer second-order cone programming: a survey Theory Driven by Influential Applications, INFORMS (2013), pp. 13-36, 10.1287/educ.2013.0115M. Farivar, S.H. Low Branch flow model: relaxations and convexification—part i IEEE Trans. Power Syst., 28 (3) (2013), pp. 2554-2564, 10.1109/tpwrs.2013.2255317O.D. Montoya Notes on the dimension of the solution space in typical electrical engineering optimization problems Ingenieria, 27 (2) (2022), Article e19310, 10.14483/23448393.19310F. Alizadeh, D. Goldfarb Second-order cone programming Math. Program., 95 (1) (2003), pp. 3-51, 10.1007/s10107-002-0339-5G. Lan Convex optimization theory First-order and Stochastic Optimization Methods for Machine Learning, Springer International Publishing (2020), pp. 21-51, 10.1007/978-3-030-39568-1_2W. Gil-González, A. Garces, O.D. Montoya, J.C. Hernández A mixed-integer convex model for the optimal placement and sizing of distributed generators in power distribution networks Appl. Sci., 11 (2) (2021), p. 627, 10.3390/app11020627W. Melo, M. Fampa, F. Raupp An overview of MINLP algorithms and their implementation in Muriqui Optimizer Ann. Oper. Res., 286 (1–2) (2018), pp. 217-241, 10.1007/s10479-018-2872-5O.D. Montoya, W. Gil-González, F.M. Serra, J.C. Hernández, A. Molina-Cabrera A second-order cone programming reformulation of the economic dispatch problem of BESS for apparent power compensation in AC distribution networks Electronics, 9 (10) (2020), p. 1677, 10.3390/electronics9101677O.D. Montoya, W. Gil-González, L. Grisales-Noreña An exact MINLP model for optimal location and sizing of DGs in distribution networks: a general algebraic modeling system approach Ain Shams Eng. J., 11 (2) (2020), pp. 409-418, 10.1016/j.asej.2019.08.011O.D. Montoya, W. Gil-González Dynamic active and reactive power compensation in distribution networks with batteries: a day-ahead economic dispatch approach Comput. Electr. Eng., 85 (2020), Article 106710, 10.1016/j.compeleceng.2020.10671http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL1-s2.0-S2590123022001451-main.pdf1-s2.0-S2590123022001451-main.pdfapplication/pdf644774https://repositorio.utb.edu.co/bitstream/20.500.12585/11122/1/1-s2.0-S2590123022001451-main.pdf5c520cb28489a55fdeb0223087b08d8dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/11122/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/11122/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT1-s2.0-S2590123022001451-main.pdf.txt1-s2.0-S2590123022001451-main.pdf.txtExtracted texttext/plain38874https://repositorio.utb.edu.co/bitstream/20.500.12585/11122/4/1-s2.0-S2590123022001451-main.pdf.txtf5cab56195d19529e188e50ab3602cf5MD54THUMBNAIL1-s2.0-S2590123022001451-main.pdf.jpg1-s2.0-S2590123022001451-main.pdf.jpgGenerated Thumbnailimage/jpeg8472https://repositorio.utb.edu.co/bitstream/20.500.12585/11122/5/1-s2.0-S2590123022001451-main.pdf.jpg42043ea06f3124ef9bd7eddcd81778e6MD5520.500.12585/11122oai:repositorio.utb.edu.co:20.500.12585/111222023-05-26 10:25:09.471Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=