Determination of the Voltage Stability Index in DC Networks with CPLs: A GAMS Implementation

This paper addresses the voltage collapse analysis in direct-current (DC) power grids via nonlinear optimization approach. The formulation of this problem corresponds to an optimization problem, where the objective function is the maximization of the loadability consumption at all the constant power...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9175
Acceso en línea:
https://hdl.handle.net/20.500.12585/9175
Palabra clave:
Direct-current networks
General algebraic modeling system
Nonlinear optimization
Optimal power flow analysis
Voltage stability margin
Algebra
Convex optimization
DC power transmission
Electric load flow
Electric power transmission networks
Nonlinear programming
Algebraic modeling
Direct current
Non-linear optimization
Optimal power flows
Voltage stability margins
Voltage measurement
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_ec4c810ae19663f2092ba56188b13db1
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9175
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Determination of the Voltage Stability Index in DC Networks with CPLs: A GAMS Implementation
title Determination of the Voltage Stability Index in DC Networks with CPLs: A GAMS Implementation
spellingShingle Determination of the Voltage Stability Index in DC Networks with CPLs: A GAMS Implementation
Direct-current networks
General algebraic modeling system
Nonlinear optimization
Optimal power flow analysis
Voltage stability margin
Algebra
Convex optimization
DC power transmission
Electric load flow
Electric power transmission networks
Nonlinear programming
Algebraic modeling
Direct current
Non-linear optimization
Optimal power flows
Voltage stability margins
Voltage measurement
title_short Determination of the Voltage Stability Index in DC Networks with CPLs: A GAMS Implementation
title_full Determination of the Voltage Stability Index in DC Networks with CPLs: A GAMS Implementation
title_fullStr Determination of the Voltage Stability Index in DC Networks with CPLs: A GAMS Implementation
title_full_unstemmed Determination of the Voltage Stability Index in DC Networks with CPLs: A GAMS Implementation
title_sort Determination of the Voltage Stability Index in DC Networks with CPLs: A GAMS Implementation
dc.contributor.editor.none.fl_str_mv Figueroa-Garcia J.C.
Duarte-Gonzalez M.
Jaramillo-Isaza S.
Orjuela-Canon A.D.
Diaz-Gutierrez Y.
dc.subject.keywords.none.fl_str_mv Direct-current networks
General algebraic modeling system
Nonlinear optimization
Optimal power flow analysis
Voltage stability margin
Algebra
Convex optimization
DC power transmission
Electric load flow
Electric power transmission networks
Nonlinear programming
Algebraic modeling
Direct current
Non-linear optimization
Optimal power flows
Voltage stability margins
Voltage measurement
topic Direct-current networks
General algebraic modeling system
Nonlinear optimization
Optimal power flow analysis
Voltage stability margin
Algebra
Convex optimization
DC power transmission
Electric load flow
Electric power transmission networks
Nonlinear programming
Algebraic modeling
Direct current
Non-linear optimization
Optimal power flows
Voltage stability margins
Voltage measurement
description This paper addresses the voltage collapse analysis in direct-current (DC) power grids via nonlinear optimization approach. The formulation of this problem corresponds to an optimization problem, where the objective function is the maximization of the loadability consumption at all the constant power loads, subject to the conventional power flow balance equations. To solve this nonlinear non-convex optimization problem a large-scale nonlinear optimization package known as General Algebraic Modeling System (GAMS) is employed. Different nonlinear solvers available in GAMS are used to confirm that the optimal solution has been reached. A small 4-node test system is used to illustrate the GAMS implementation. Finally, two test systems with 21 and 33 nodes respectively, are used for simulation purposes in order to confirm both the effectiveness and robustness of the nonlinear model, and the proposed GAMS solution methodology. © 2019, Springer Nature Switzerland AG.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:08Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:08Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Communications in Computer and Information Science; Vol. 1052, pp. 552-564
dc.identifier.isbn.none.fl_str_mv 9783030310189
dc.identifier.issn.none.fl_str_mv 18650929
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9175
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-030-31019-6_46
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57210212368
56919564100
55791991200
identifier_str_mv Communications in Computer and Information Science; Vol. 1052, pp. 552-564
9783030310189
18650929
10.1007/978-3-030-31019-6_46
Universidad Tecnológica de Bolívar
Repositorio UTB
57210212368
56919564100
55791991200
url https://hdl.handle.net/20.500.12585/9175
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 16 October 2019 through 18 October 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075642857&doi=10.1007%2f978-3-030-31019-6_46&partnerID=40&md5=f8f593d3e5e1016ef067f60414ba465e
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 6th Workshop on Engineering Applications, WEA 2019
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9175/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021732265099264
spelling Figueroa-Garcia J.C.Duarte-Gonzalez M.Jaramillo-Isaza S.Orjuela-Canon A.D.Diaz-Gutierrez Y.Amin W.T.Montoya O.D.Grisales-Noreña L.F.2020-03-26T16:33:08Z2020-03-26T16:33:08Z2019Communications in Computer and Information Science; Vol. 1052, pp. 552-564978303031018918650929https://hdl.handle.net/20.500.12585/917510.1007/978-3-030-31019-6_46Universidad Tecnológica de BolívarRepositorio UTB572102123685691956410055791991200This paper addresses the voltage collapse analysis in direct-current (DC) power grids via nonlinear optimization approach. The formulation of this problem corresponds to an optimization problem, where the objective function is the maximization of the loadability consumption at all the constant power loads, subject to the conventional power flow balance equations. To solve this nonlinear non-convex optimization problem a large-scale nonlinear optimization package known as General Algebraic Modeling System (GAMS) is employed. Different nonlinear solvers available in GAMS are used to confirm that the optimal solution has been reached. A small 4-node test system is used to illustrate the GAMS implementation. Finally, two test systems with 21 and 33 nodes respectively, are used for simulation purposes in order to confirm both the effectiveness and robustness of the nonlinear model, and the proposed GAMS solution methodology. © 2019, Springer Nature Switzerland AG.Recurso electrónicoapplication/pdfengSpringerhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075642857&doi=10.1007%2f978-3-030-31019-6_46&partnerID=40&md5=f8f593d3e5e1016ef067f60414ba465e6th Workshop on Engineering Applications, WEA 2019Determination of the Voltage Stability Index in DC Networks with CPLs: A GAMS Implementationinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fDirect-current networksGeneral algebraic modeling systemNonlinear optimizationOptimal power flow analysisVoltage stability marginAlgebraConvex optimizationDC power transmissionElectric load flowElectric power transmission networksNonlinear programmingAlgebraic modelingDirect currentNon-linear optimizationOptimal power flowsVoltage stability marginsVoltage measurement16 October 2019 through 18 October 2019Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925Georgilakis, P.S., Hatziargyriou, N.D., Optimal distributed generation placement in power distribution networks: Models, methods, and future research (2013) IEEE Trans. Power Syst., 28 (3), pp. 3420-3428Samper, M.E., Reta, R.A., Regulatory analysis of distributed generation installed by distribution utilities (2015) IEEE Lat. Am. Trans., 13 (3), pp. 665-672Elsayed, A.T., Mohamed, A.A., Mohammed, O.A., DC microgrids and distribution systems: An overview (2015) Electr. Power Syst. Res., 119, pp. 407-417Planas, E., Andreu, J., Gárate, J.I., Martínez De Alegría, I., Ibarra, E., AC and DC technology in microgrids: A review (2015) Renew. Sustain. Energy Rev., 43, pp. 726-749Montoya, O.D., Grisales-Noreña, L., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Electr. Power Syst. Res., 163, pp. 375-381Montoya, O.D., Gil-González, W., Garces, A., Optimal power flow on DC microgrids: A quadratic convex approximation (2019) IEEE Trans. Circuits Syst. II, 66 (6), pp. 1018-1022Justo, J.J., Mwasilu, F., Lee, J., Jung, J.-W., AC-microgrids versus DC-microgrids with distributed energy resources: A review (2013) Renew. Sustain. Energy Rev., 24, pp. 387-405Nasirian, V., Moayedi, S., Davoudi, A., Lewis, F.L., Distributed cooperative control of DC microgrids (2015) IEEE Trans. Power Electron., 30 (4), pp. 2288-2303Papadimitriou, C., Zountouridou, E., Hatziargyriou, N., Review of hierarchical control in DC microgrids (2015) Electr. Power Syst. Res., 122, pp. 159-167. , http://www.sciencedirect.com/science/article/pii/S0378779615000073Velasquez, O.S., Montoya, O.D., Garrido, V.M., Grisales-Noreña, L.F., Optimal power flow in direct-current power grids via black hole optimization (2019) AEEE Adv. Electr. Electron. Eng., 17 (1), pp. 24-32. , http://advances.utc.sk/index.php/AEEE/article/view/3069Garcés, A., On the convergence of newton’s method in power flow studies for DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5770-5777Montoya, O.D., Gil-González, W., Garrido, V.M., Voltage stability margin in DC grids with CPLs: A recursive newton-raphson approximation (2019) IEEE Trans. Circuits Syst. II, pp. 1-1Simpson-Porco, J.W., Dörfler, F., Bullo, F., On resistive networks of constant-power devices (2015) IEEE Trans. Circuits Syst. II, 62 (8), pp. 811-815Barabanov, N., Ortega, R., Griñó, R., Polyak, B., On existence and stability of equilibria of linear time-invariant systems with constant power loads (2016) IEEE Trans. Circuits Syst. I, 63 (1), pp. 114-121Niazi, G., Lalwani, M., PSO based optimal distributed generation placement and sizing in power distribution networks: A comprehensive review (2017) 2017 International Conference on Computer, Communications and Electronics (Comptelix), pp. 305-311. , pp., JulyRajalakshmi, J., Durairaj, S., Review on optimal distributed generation placement using particle swarm optimization algorithms (2016) 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS), pp. 1-6Grisales-Noreña, L.F., Gonzalez-Montoya, D., Ramos-Paja, C.A., Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (1018), pp. 1-27Montoya, O.D., Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model (2019) IEEE Trans. Circuits Syst. II, 66 (4), pp. 642-646Vatani, M., Solati Alkaran, D., Sanjari, M.J., Gharehpetian, G.B., Multiple distributed generation units allocation in distribution network for loss reduction based on a combination of analytical and genetic algorithm methods (2016) IET Gener. Transm. Distrib., 10 (1), pp. 66-72Yuan, H., Li, F., Wei, Y., Zhu, J., Novel linearized power flow and linearized OPF models for active distribution networks with application in distribution LMP (2018) IEEE Trans. Smart Grid, 9 (1), pp. 438-448Salomonsson, D., Soder, L., Sannino, A., Protection of low-voltage DC microgrids (2009) IEEE Trans. Power Del., 24 (3), pp. 1045-1053Montoya, O.D., Gil-González, W., Grisales-Noreña, L.F., Optimal power dispatch of DGs in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem (2018) WSEAS Trans. Power Syst., 13 (33), pp. 335-346. , http://www.wseas.org/multimedia/journals/power/2018/a665116-598.pdfLi, J., Liu, F., Wang, Z., Low, S.H., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5496-5506Montoya, O.D., Gil-González, W., Garces, A., Sequential quadratic programming models for solving the OPF problem in DC grids (2019) Electr. Power Syst. Res., 169, pp. 18-23Montoya, O.D., Solving a classical optimization problem using GAMS optimizer package: Economic dispatch problem implementation (2017) Ing. Cienc., 13 (26), pp. 39-63(2019) Gams Free Demo Version, , https://www.gams.com/download/, MarchNordman, B., Christensen, K., DC local power distribution: Technology, deployment, and pathways to success (2016) IEEE Electrific. Mag., 4 (2), pp. 29-36http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9175/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9175oai:repositorio.utb.edu.co:20.500.12585/91752021-02-02 15:29:18.002Repositorio Institucional UTBrepositorioutb@utb.edu.co