Current PI Control for PV Systems in DC Microgrids: A PBC Design
This paper proposes a passive PI control for applications of photovoltaic (PV) systems integrated with boost DC-DC converters. The proposed controller guarantees asymptotically stability in closed-loop for the boost DC-DC converter using Lyapunov theory. In addition, the proposed controller is robus...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9145
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9145
- Palabra clave:
- Boost converter
Current control mode
Lyapunov theory
Passive PI control
Photovoltaic systems
Controllers
Electric current control
Electric inverters
Lyapunov methods
MATLAB
Photovoltaic cells
Power electronics
Power quality
Two term control systems
Boost converter
Current control modes
Lyapunov theories
Photovoltaic systems
PI control
DC-DC converters
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_ec2d016986d7ddf196779debbdad5110 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9145 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Current PI Control for PV Systems in DC Microgrids: A PBC Design |
title |
Current PI Control for PV Systems in DC Microgrids: A PBC Design |
spellingShingle |
Current PI Control for PV Systems in DC Microgrids: A PBC Design Boost converter Current control mode Lyapunov theory Passive PI control Photovoltaic systems Controllers Electric current control Electric inverters Lyapunov methods MATLAB Photovoltaic cells Power electronics Power quality Two term control systems Boost converter Current control modes Lyapunov theories Photovoltaic systems PI control DC-DC converters |
title_short |
Current PI Control for PV Systems in DC Microgrids: A PBC Design |
title_full |
Current PI Control for PV Systems in DC Microgrids: A PBC Design |
title_fullStr |
Current PI Control for PV Systems in DC Microgrids: A PBC Design |
title_full_unstemmed |
Current PI Control for PV Systems in DC Microgrids: A PBC Design |
title_sort |
Current PI Control for PV Systems in DC Microgrids: A PBC Design |
dc.subject.keywords.none.fl_str_mv |
Boost converter Current control mode Lyapunov theory Passive PI control Photovoltaic systems Controllers Electric current control Electric inverters Lyapunov methods MATLAB Photovoltaic cells Power electronics Power quality Two term control systems Boost converter Current control modes Lyapunov theories Photovoltaic systems PI control DC-DC converters |
topic |
Boost converter Current control mode Lyapunov theory Passive PI control Photovoltaic systems Controllers Electric current control Electric inverters Lyapunov methods MATLAB Photovoltaic cells Power electronics Power quality Two term control systems Boost converter Current control modes Lyapunov theories Photovoltaic systems PI control DC-DC converters |
description |
This paper proposes a passive PI control for applications of photovoltaic (PV) systems integrated with boost DC-DC converters. The proposed controller guarantees asymptotically stability in closed-loop for the boost DC-DC converter using Lyapunov theory. In addition, the proposed controller is robust to parametric uncertainties and unmodeled dynamics since it does not depend on the system parameters. The current control mode is selected for the PV system since it is modeled as a current source, where its current is computed as a function of solar irradiance and the cells temperature. The current reference is calculated to a perturbing and observe MPPT algorithm with a current-mode controlled to extract the maximum power available in this solar source. The PI-PBC applied to the boost DC-DC converter is compared with a classical PI approach for validating its effectiveness and the robustness. Simulation results are performed in MATLAB/Simulink with a switching frequency of 5 kHz. © 2019 IEEE. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:03Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:03Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
2019 IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019 - Proceedings |
dc.identifier.isbn.none.fl_str_mv |
9781728116266 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9145 |
dc.identifier.doi.none.fl_str_mv |
10.1109/PEPQA.2019.8851555 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57191493648 36449223500 56919564100 |
identifier_str_mv |
2019 IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019 - Proceedings 9781728116266 10.1109/PEPQA.2019.8851555 Universidad Tecnológica de Bolívar Repositorio UTB 57191493648 36449223500 56919564100 |
url |
https://hdl.handle.net/20.500.12585/9145 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
30 May 2019 through 31 May 2019 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073445605&doi=10.1109%2fPEPQA.2019.8851555&partnerID=40&md5=a13ac8632f64968e10ad5ce1b7ff3a01 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
4th IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9145/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021730150121472 |
spelling |
2020-03-26T16:33:03Z2020-03-26T16:33:03Z20192019 IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019 - Proceedings9781728116266https://hdl.handle.net/20.500.12585/914510.1109/PEPQA.2019.8851555Universidad Tecnológica de BolívarRepositorio UTB571914936483644922350056919564100This paper proposes a passive PI control for applications of photovoltaic (PV) systems integrated with boost DC-DC converters. The proposed controller guarantees asymptotically stability in closed-loop for the boost DC-DC converter using Lyapunov theory. In addition, the proposed controller is robust to parametric uncertainties and unmodeled dynamics since it does not depend on the system parameters. The current control mode is selected for the PV system since it is modeled as a current source, where its current is computed as a function of solar irradiance and the cells temperature. The current reference is calculated to a perturbing and observe MPPT algorithm with a current-mode controlled to extract the maximum power available in this solar source. The PI-PBC applied to the boost DC-DC converter is compared with a classical PI approach for validating its effectiveness and the robustness. Simulation results are performed in MATLAB/Simulink with a switching frequency of 5 kHz. © 2019 IEEE.Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS C2018P020 Department of Science, Information Technology and Innovation, Queensland Government, DSITIThis work was supported in part by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program under Grant 727-2015, in part by the Uni-versidad Tecnologica de Pereira, and in part by the Universidad Tecnologica de Bolivar under Project C2018P020.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073445605&doi=10.1109%2fPEPQA.2019.8851555&partnerID=40&md5=a13ac8632f64968e10ad5ce1b7ff3a014th IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019Current PI Control for PV Systems in DC Microgrids: A PBC Designinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fBoost converterCurrent control modeLyapunov theoryPassive PI controlPhotovoltaic systemsControllersElectric current controlElectric invertersLyapunov methodsMATLABPhotovoltaic cellsPower electronicsPower qualityTwo term control systemsBoost converterCurrent control modesLyapunov theoriesPhotovoltaic systemsPI controlDC-DC converters30 May 2019 through 31 May 2019Gil-González, WalterGarces A.Montoya O.D.Kouro, S., Leon, J.I., Vinnikov, D., Franquelo, L.G., Grid-connected photovoltaic systems: An overview of recent research and emerging pv converter technology (2015) IEEE Industrial Electronics Magazine, 9 (1), pp. 47-61Rauf, S., Khan, N., Application of dc-ac hybrid grid and solar photovoltaic generation with battery storage using smart grid (2017) International Journal of Photoenergy, 2017Pandey, A., Tyagi, V., Jeyraj, A., Selvaraj, L., Rahim, N., Tagi, S., Recent advances in solar photovoltaic systems for emerging trends and advanced applications (2016) Renewable and Sustainable Energy Reviews, 53, pp. 859-884Kadir, A., Fazliana, A., Khatib, T., Elmenreich, W., Integrating photovoltaic systems in power system: Power quality impacts and optimal planning challenges (2014) International Journal of Photoenergy, 2014Espinoza-Trejo, D.R., Barcenas-Barcenas, E., Campos-Delgado, D.U., De Angelo, C.H., Voltage-oriented input-output linearization controller as maximum power point tracking technique for photovoltaic systems (2015) IEEE Transactions on Industrial Electronics, 62 (6), pp. 3499-3507Kakosimos, P.E., Kladas, A.G., Manias, S.N., Fast photovoltaicsystem voltage-or current-oriented mppt employing a predictive digital current-controlled converter (2013) IEEE Transactions on Industrial Electronics, 60 (12), pp. 5673-5685Velazquez, I.O., Perez, G.R.E., Giraldo, O.D.M., Ruiz, A.G., Norena, L.F.G., Current control mode in pv systems integrated with dc-dc converters for mppt: An ida-pbc approach (2018) Green Technologies Conference (GreenTech), 2018, pp. 1-6. , IEEEBianconi, E., Calvente, J., Giral, R., Mamarelis, E., Petrone, G., Ramos-Paja, C.A., Spagnuolo, G., Vitelli, M., A fast current-based mppt technique employing sliding mode control (2013) IEEE Transactions on Industrial Electronics, 60 (3), pp. 1168-1178De Brito, M.A.G., Galotto, L., Sampaio, L.P., Melo, G.D.A.E., Canesin, C.A., Evaluation of the main mppt techniques for photovoltaic applications (2013) IEEE Transactions on Industrial Electronics, 60 (3), pp. 1156-1167Shahdadi, A., Khajeh, A., Barakati, S.M., A new slip surface sliding mode controller to implement mppt method in photovoltaic system (2018) Power Electronics, Drives Systems and Technologies Conference (PEDSTC) 2018 9th Annual, pp. 212-217. , IEEESolodovnik, E.V., Liu, S., Dougal, R.A., Power controller design for maximum power tracking in solar installations (2004) IEEE Transactions on Power Electronics, 19 (5), pp. 1295-1304. , SeptChiu, C.-S., Ouyang, Y.-L., Robust maximum power tracking control of uncertain photovoltaic systems: A unified ts fuzzy model-based approach (2011) IEEE Transactions on Control Systems Technology, 19 (6), pp. 1516-1526Kakosimos, P.E., Kladas, A.G., Implementation of photovoltaic array mppt through fixed step predictive control technique (2011) Renewable Energy, 36 (9), pp. 2508-2514Metry, M., Shadmand, M.B., Balog, R.S., Abu-Rub, H., Mppt of photovoltaic systems using sensorless current-based model predictive control (2017) IEEE Trans. Ind. Appl, 53 (2), pp. 1157-1167Montoya, O.D., Gil-Gonzalez, W., Garces, A., Espinosa-Perez, G., Indirect ida-pbc for active and reactive power support in distribution networks using smes systems with pwm-csc (2018) J. Energy Storage, 17, pp. 261-271Hernandez-Gomez, M., Ortega, R., Lamnabhi-Lagarrigue, F., Escobar, G., Adaptive pi stabilization of switched power converters (2010) IEEE Trans. Control Syst. Technol., 18 (3), pp. 688-698Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based pi control of bilinear systems: Application to the interleaved boost and modular multilevel converters (2015) Control Engineering Practice, 43, pp. 109-119Gil-Gonzalez, W., Montoya, O.D., Garces, A., Control of a smes for mitigating subsynchronous oscillations in power systems: A pbc-pi approach (2018) J. Energy Storage, 20, pp. 163-172Gil-Gonzalez, W., Montoya, O.D., Passivity-based pi control of a smes system to support power in electrical grids: A bilinear approach (2018) Journal of Energy Storage, 18, pp. 459-466Tan, C.W., Green, T.C., Hernandez-Aramburo, C.A., An improved maximum power point tracking algorithm with current-mode control for photovoltaic applications (2005) Power Electronics and Drives Systems 2005. PEDS 2005. International Conference on, 1, pp. 489-494. , IEEEhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9145/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9145oai:repositorio.utb.edu.co:20.500.12585/91452023-05-26 10:23:12.098Repositorio Institucional UTBrepositorioutb@utb.edu.co |