Current PI Control for PV Systems in DC Microgrids: A PBC Design

This paper proposes a passive PI control for applications of photovoltaic (PV) systems integrated with boost DC-DC converters. The proposed controller guarantees asymptotically stability in closed-loop for the boost DC-DC converter using Lyapunov theory. In addition, the proposed controller is robus...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9145
Acceso en línea:
https://hdl.handle.net/20.500.12585/9145
Palabra clave:
Boost converter
Current control mode
Lyapunov theory
Passive PI control
Photovoltaic systems
Controllers
Electric current control
Electric inverters
Lyapunov methods
MATLAB
Photovoltaic cells
Power electronics
Power quality
Two term control systems
Boost converter
Current control modes
Lyapunov theories
Photovoltaic systems
PI control
DC-DC converters
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_ec2d016986d7ddf196779debbdad5110
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9145
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Current PI Control for PV Systems in DC Microgrids: A PBC Design
title Current PI Control for PV Systems in DC Microgrids: A PBC Design
spellingShingle Current PI Control for PV Systems in DC Microgrids: A PBC Design
Boost converter
Current control mode
Lyapunov theory
Passive PI control
Photovoltaic systems
Controllers
Electric current control
Electric inverters
Lyapunov methods
MATLAB
Photovoltaic cells
Power electronics
Power quality
Two term control systems
Boost converter
Current control modes
Lyapunov theories
Photovoltaic systems
PI control
DC-DC converters
title_short Current PI Control for PV Systems in DC Microgrids: A PBC Design
title_full Current PI Control for PV Systems in DC Microgrids: A PBC Design
title_fullStr Current PI Control for PV Systems in DC Microgrids: A PBC Design
title_full_unstemmed Current PI Control for PV Systems in DC Microgrids: A PBC Design
title_sort Current PI Control for PV Systems in DC Microgrids: A PBC Design
dc.subject.keywords.none.fl_str_mv Boost converter
Current control mode
Lyapunov theory
Passive PI control
Photovoltaic systems
Controllers
Electric current control
Electric inverters
Lyapunov methods
MATLAB
Photovoltaic cells
Power electronics
Power quality
Two term control systems
Boost converter
Current control modes
Lyapunov theories
Photovoltaic systems
PI control
DC-DC converters
topic Boost converter
Current control mode
Lyapunov theory
Passive PI control
Photovoltaic systems
Controllers
Electric current control
Electric inverters
Lyapunov methods
MATLAB
Photovoltaic cells
Power electronics
Power quality
Two term control systems
Boost converter
Current control modes
Lyapunov theories
Photovoltaic systems
PI control
DC-DC converters
description This paper proposes a passive PI control for applications of photovoltaic (PV) systems integrated with boost DC-DC converters. The proposed controller guarantees asymptotically stability in closed-loop for the boost DC-DC converter using Lyapunov theory. In addition, the proposed controller is robust to parametric uncertainties and unmodeled dynamics since it does not depend on the system parameters. The current control mode is selected for the PV system since it is modeled as a current source, where its current is computed as a function of solar irradiance and the cells temperature. The current reference is calculated to a perturbing and observe MPPT algorithm with a current-mode controlled to extract the maximum power available in this solar source. The PI-PBC applied to the boost DC-DC converter is compared with a classical PI approach for validating its effectiveness and the robustness. Simulation results are performed in MATLAB/Simulink with a switching frequency of 5 kHz. © 2019 IEEE.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:03Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:03Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv 2019 IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019 - Proceedings
dc.identifier.isbn.none.fl_str_mv 9781728116266
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9145
dc.identifier.doi.none.fl_str_mv 10.1109/PEPQA.2019.8851555
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57191493648
36449223500
56919564100
identifier_str_mv 2019 IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019 - Proceedings
9781728116266
10.1109/PEPQA.2019.8851555
Universidad Tecnológica de Bolívar
Repositorio UTB
57191493648
36449223500
56919564100
url https://hdl.handle.net/20.500.12585/9145
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 30 May 2019 through 31 May 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073445605&doi=10.1109%2fPEPQA.2019.8851555&partnerID=40&md5=a13ac8632f64968e10ad5ce1b7ff3a01
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 4th IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9145/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021730150121472
spelling 2020-03-26T16:33:03Z2020-03-26T16:33:03Z20192019 IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019 - Proceedings9781728116266https://hdl.handle.net/20.500.12585/914510.1109/PEPQA.2019.8851555Universidad Tecnológica de BolívarRepositorio UTB571914936483644922350056919564100This paper proposes a passive PI control for applications of photovoltaic (PV) systems integrated with boost DC-DC converters. The proposed controller guarantees asymptotically stability in closed-loop for the boost DC-DC converter using Lyapunov theory. In addition, the proposed controller is robust to parametric uncertainties and unmodeled dynamics since it does not depend on the system parameters. The current control mode is selected for the PV system since it is modeled as a current source, where its current is computed as a function of solar irradiance and the cells temperature. The current reference is calculated to a perturbing and observe MPPT algorithm with a current-mode controlled to extract the maximum power available in this solar source. The PI-PBC applied to the boost DC-DC converter is compared with a classical PI approach for validating its effectiveness and the robustness. Simulation results are performed in MATLAB/Simulink with a switching frequency of 5 kHz. © 2019 IEEE.Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS C2018P020 Department of Science, Information Technology and Innovation, Queensland Government, DSITIThis work was supported in part by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program under Grant 727-2015, in part by the Uni-versidad Tecnologica de Pereira, and in part by the Universidad Tecnologica de Bolivar under Project C2018P020.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073445605&doi=10.1109%2fPEPQA.2019.8851555&partnerID=40&md5=a13ac8632f64968e10ad5ce1b7ff3a014th IEEE Workshop on Power Electronics and Power Quality Applications, PEPQA 2019Current PI Control for PV Systems in DC Microgrids: A PBC Designinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fBoost converterCurrent control modeLyapunov theoryPassive PI controlPhotovoltaic systemsControllersElectric current controlElectric invertersLyapunov methodsMATLABPhotovoltaic cellsPower electronicsPower qualityTwo term control systemsBoost converterCurrent control modesLyapunov theoriesPhotovoltaic systemsPI controlDC-DC converters30 May 2019 through 31 May 2019Gil-González, WalterGarces A.Montoya O.D.Kouro, S., Leon, J.I., Vinnikov, D., Franquelo, L.G., Grid-connected photovoltaic systems: An overview of recent research and emerging pv converter technology (2015) IEEE Industrial Electronics Magazine, 9 (1), pp. 47-61Rauf, S., Khan, N., Application of dc-ac hybrid grid and solar photovoltaic generation with battery storage using smart grid (2017) International Journal of Photoenergy, 2017Pandey, A., Tyagi, V., Jeyraj, A., Selvaraj, L., Rahim, N., Tagi, S., Recent advances in solar photovoltaic systems for emerging trends and advanced applications (2016) Renewable and Sustainable Energy Reviews, 53, pp. 859-884Kadir, A., Fazliana, A., Khatib, T., Elmenreich, W., Integrating photovoltaic systems in power system: Power quality impacts and optimal planning challenges (2014) International Journal of Photoenergy, 2014Espinoza-Trejo, D.R., Barcenas-Barcenas, E., Campos-Delgado, D.U., De Angelo, C.H., Voltage-oriented input-output linearization controller as maximum power point tracking technique for photovoltaic systems (2015) IEEE Transactions on Industrial Electronics, 62 (6), pp. 3499-3507Kakosimos, P.E., Kladas, A.G., Manias, S.N., Fast photovoltaicsystem voltage-or current-oriented mppt employing a predictive digital current-controlled converter (2013) IEEE Transactions on Industrial Electronics, 60 (12), pp. 5673-5685Velazquez, I.O., Perez, G.R.E., Giraldo, O.D.M., Ruiz, A.G., Norena, L.F.G., Current control mode in pv systems integrated with dc-dc converters for mppt: An ida-pbc approach (2018) Green Technologies Conference (GreenTech), 2018, pp. 1-6. , IEEEBianconi, E., Calvente, J., Giral, R., Mamarelis, E., Petrone, G., Ramos-Paja, C.A., Spagnuolo, G., Vitelli, M., A fast current-based mppt technique employing sliding mode control (2013) IEEE Transactions on Industrial Electronics, 60 (3), pp. 1168-1178De Brito, M.A.G., Galotto, L., Sampaio, L.P., Melo, G.D.A.E., Canesin, C.A., Evaluation of the main mppt techniques for photovoltaic applications (2013) IEEE Transactions on Industrial Electronics, 60 (3), pp. 1156-1167Shahdadi, A., Khajeh, A., Barakati, S.M., A new slip surface sliding mode controller to implement mppt method in photovoltaic system (2018) Power Electronics, Drives Systems and Technologies Conference (PEDSTC) 2018 9th Annual, pp. 212-217. , IEEESolodovnik, E.V., Liu, S., Dougal, R.A., Power controller design for maximum power tracking in solar installations (2004) IEEE Transactions on Power Electronics, 19 (5), pp. 1295-1304. , SeptChiu, C.-S., Ouyang, Y.-L., Robust maximum power tracking control of uncertain photovoltaic systems: A unified ts fuzzy model-based approach (2011) IEEE Transactions on Control Systems Technology, 19 (6), pp. 1516-1526Kakosimos, P.E., Kladas, A.G., Implementation of photovoltaic array mppt through fixed step predictive control technique (2011) Renewable Energy, 36 (9), pp. 2508-2514Metry, M., Shadmand, M.B., Balog, R.S., Abu-Rub, H., Mppt of photovoltaic systems using sensorless current-based model predictive control (2017) IEEE Trans. Ind. Appl, 53 (2), pp. 1157-1167Montoya, O.D., Gil-Gonzalez, W., Garces, A., Espinosa-Perez, G., Indirect ida-pbc for active and reactive power support in distribution networks using smes systems with pwm-csc (2018) J. Energy Storage, 17, pp. 261-271Hernandez-Gomez, M., Ortega, R., Lamnabhi-Lagarrigue, F., Escobar, G., Adaptive pi stabilization of switched power converters (2010) IEEE Trans. Control Syst. Technol., 18 (3), pp. 688-698Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based pi control of bilinear systems: Application to the interleaved boost and modular multilevel converters (2015) Control Engineering Practice, 43, pp. 109-119Gil-Gonzalez, W., Montoya, O.D., Garces, A., Control of a smes for mitigating subsynchronous oscillations in power systems: A pbc-pi approach (2018) J. Energy Storage, 20, pp. 163-172Gil-Gonzalez, W., Montoya, O.D., Passivity-based pi control of a smes system to support power in electrical grids: A bilinear approach (2018) Journal of Energy Storage, 18, pp. 459-466Tan, C.W., Green, T.C., Hernandez-Aramburo, C.A., An improved maximum power point tracking algorithm with current-mode control for photovoltaic applications (2005) Power Electronics and Drives Systems 2005. PEDS 2005. International Conference on, 1, pp. 489-494. , IEEEhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9145/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9145oai:repositorio.utb.edu.co:20.500.12585/91452023-05-26 10:23:12.098Repositorio Institucional UTBrepositorioutb@utb.edu.co