Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO 2 and hydroxylated SiO 2

Alkylsilane 3-mercaptopropyltrimethoxysilane (3MPT) monolayers with a functional end group -SH were used to immobilize Ag colloidal nanoparticles on photoinduced amphiphilic TiO 2 and hydroxylated SiO 2 surfaces. The differences in the adsorption of 3MPT and the immobilization of Ag colloids on both...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2010
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9118
Acceso en línea:
https://hdl.handle.net/20.500.12585/9118
Palabra clave:
3-Mercaptopropyltrimethoxysilane
Ag colloidal nanoparticles
Alkylsilanes
Amphiphilics
Experimental conditions
Functional end groups
Hydrocarbon films
Hydrophilic domains
Hydroxyl groups
Mercaptopropyltrimethoxysilane
Photo-induced
Structural differences
TiO
UV irradiation
Water contact angle
Adsorption
Colloids
Contact angle
Hydrocarbons
Hydroxylation
Monolayers
Surface properties
Titanium dioxide
X ray photoelectron spectroscopy
Silver
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_eb9b4809336e5775b8c059cc8f3694d6
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9118
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO 2 and hydroxylated SiO 2
title Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO 2 and hydroxylated SiO 2
spellingShingle Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO 2 and hydroxylated SiO 2
3-Mercaptopropyltrimethoxysilane
Ag colloidal nanoparticles
Alkylsilanes
Amphiphilics
Experimental conditions
Functional end groups
Hydrocarbon films
Hydrophilic domains
Hydroxyl groups
Mercaptopropyltrimethoxysilane
Photo-induced
Structural differences
TiO
UV irradiation
Water contact angle
Adsorption
Colloids
Contact angle
Hydrocarbons
Hydroxylation
Monolayers
Surface properties
Titanium dioxide
X ray photoelectron spectroscopy
Silver
title_short Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO 2 and hydroxylated SiO 2
title_full Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO 2 and hydroxylated SiO 2
title_fullStr Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO 2 and hydroxylated SiO 2
title_full_unstemmed Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO 2 and hydroxylated SiO 2
title_sort Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO 2 and hydroxylated SiO 2
dc.subject.keywords.none.fl_str_mv 3-Mercaptopropyltrimethoxysilane
Ag colloidal nanoparticles
Alkylsilanes
Amphiphilics
Experimental conditions
Functional end groups
Hydrocarbon films
Hydrophilic domains
Hydroxyl groups
Mercaptopropyltrimethoxysilane
Photo-induced
Structural differences
TiO
UV irradiation
Water contact angle
Adsorption
Colloids
Contact angle
Hydrocarbons
Hydroxylation
Monolayers
Surface properties
Titanium dioxide
X ray photoelectron spectroscopy
Silver
topic 3-Mercaptopropyltrimethoxysilane
Ag colloidal nanoparticles
Alkylsilanes
Amphiphilics
Experimental conditions
Functional end groups
Hydrocarbon films
Hydrophilic domains
Hydroxyl groups
Mercaptopropyltrimethoxysilane
Photo-induced
Structural differences
TiO
UV irradiation
Water contact angle
Adsorption
Colloids
Contact angle
Hydrocarbons
Hydroxylation
Monolayers
Surface properties
Titanium dioxide
X ray photoelectron spectroscopy
Silver
description Alkylsilane 3-mercaptopropyltrimethoxysilane (3MPT) monolayers with a functional end group -SH were used to immobilize Ag colloidal nanoparticles on photoinduced amphiphilic TiO 2 and hydroxylated SiO 2 surfaces. The differences in the adsorption of 3MPT and the immobilization of Ag colloids on both surfaces were studied. Under identical experimental conditions, 3MPT islands were formed on UV-exposed TiO 2 surfaces compared to continuous and flat monolayers formed on SiO 2. The significant structural differences found for monolayers of 3MPT on TiO 2 could be explained in terms of the different densities of hydroxyl groups and the microstructure of hydrophilic domains induced by UV irradiation. The surface properties were characterized using contact angle measurements and XPS. XPS showed an increase in the hydroxyl group's density and a decrease in the number of adsorbed hydrocarbon films on the TiO 2 surface as a function of the UV irradiation time. The density of the adsorbed 3MPT on TiO 2 surfaces as a function of theUVirradiation time was quantitatively related to the cosine of the water contact angles. Such a 3MPT distribution influenced the subsequent adsorption of Ag colloids and resulted in more isolated nanoparticles on the modified TiO 2 with a narrower size distribution. © 2010 American Chemical Society.
publishDate 2010
dc.date.issued.none.fl_str_mv 2010
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:59Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:59Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Langmuir; Vol. 26, Núm. 19; pp. 15161-15168
dc.identifier.issn.none.fl_str_mv 07437463
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9118
dc.identifier.doi.none.fl_str_mv 10.101/la102221v
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 7202871980
35094573000
identifier_str_mv Langmuir; Vol. 26, Núm. 19; pp. 15161-15168
07437463
10.101/la102221v
Universidad Tecnológica de Bolívar
Repositorio UTB
7202871980
35094573000
url https://hdl.handle.net/20.500.12585/9118
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84857704849&doi=10.101%2fla102221v&partnerID=40&md5=32b7f4098ad0f9868685f647dc57beb4
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9118/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021687086153728
spelling 2020-03-26T16:32:59Z2020-03-26T16:32:59Z2010Langmuir; Vol. 26, Núm. 19; pp. 15161-1516807437463https://hdl.handle.net/20.500.12585/911810.101/la102221vUniversidad Tecnológica de BolívarRepositorio UTB720287198035094573000Alkylsilane 3-mercaptopropyltrimethoxysilane (3MPT) monolayers with a functional end group -SH were used to immobilize Ag colloidal nanoparticles on photoinduced amphiphilic TiO 2 and hydroxylated SiO 2 surfaces. The differences in the adsorption of 3MPT and the immobilization of Ag colloids on both surfaces were studied. Under identical experimental conditions, 3MPT islands were formed on UV-exposed TiO 2 surfaces compared to continuous and flat monolayers formed on SiO 2. The significant structural differences found for monolayers of 3MPT on TiO 2 could be explained in terms of the different densities of hydroxyl groups and the microstructure of hydrophilic domains induced by UV irradiation. The surface properties were characterized using contact angle measurements and XPS. XPS showed an increase in the hydroxyl group's density and a decrease in the number of adsorbed hydrocarbon films on the TiO 2 surface as a function of the UV irradiation time. The density of the adsorbed 3MPT on TiO 2 surfaces as a function of theUVirradiation time was quantitatively related to the cosine of the water contact angles. Such a 3MPT distribution influenced the subsequent adsorption of Ag colloids and resulted in more isolated nanoparticles on the modified TiO 2 with a narrower size distribution. © 2010 American Chemical Society.Recurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84857704849&doi=10.101%2fla102221v&partnerID=40&md5=32b7f4098ad0f9868685f647dc57beb4Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO 2 and hydroxylated SiO 2info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb13-MercaptopropyltrimethoxysilaneAg colloidal nanoparticlesAlkylsilanesAmphiphilicsExperimental conditionsFunctional end groupsHydrocarbon filmsHydrophilic domainsHydroxyl groupsMercaptopropyltrimethoxysilanePhoto-inducedStructural differencesTiOUV irradiationWater contact angleAdsorptionColloidsContact angleHydrocarbonsHydroxylationMonolayersSurface propertiesTitanium dioxideX ray photoelectron spectroscopySilverZuo J.Torres E.Zuo, J., Nie, C.G., Gu, X., Lai, Y.K., Zong, Y., Sun, L., Lin, C.J., (2007) Mater. Lett., 61, p. 2632Tatsuma, T., Suzuki, K., (2007) Electrochem. Commun., 9, p. 574Zhang, L.Z., Yu, J.C., (2005) Catal. Commun., 6, p. 684Diebold, U., (2003) Surf. Sci. Rep., 48, p. 53MacHida, S., Sano, K., Sasaki, H., Yoshiki, M., Mori, Y., (1992) J. Chem. Soc., Chem. Commun., 1626Evanoff, D.D., Chumanov, G., (2005) ChemPhysChem, 6, p. 1221Freeman, R.G., Grabar, K.C., Allison, K.J., Bright, R.M., Davis, J.A., Guthrie, A.P., Hommer, M.B., Natan, M.J., (1995) Science, 267, p. 1629Zuo, J., Keil, P., Valtiner, M., Thissen, P., Grundmeier, G., (2008) Surf. Sci., 602, p. 3750Bierbaum, K., Grunze, M., Baski, A.A., Chi, L.F., Schrepp, W., Fuchs, H., (1995) Langmuir, 11, p. 2143Hu, M.H., Noda, S., Okubo, T., Yamaguchi, Y., Komiyama, H., (2001) Appl. Surf. Sci., 181, p. 307Natarajan, C., Nogami, G., (1996) J. Electrochem. Soc., 143, p. 1547Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., Watanabe, T., (1997) Nature, 388, p. 431Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., Watanabe, T., (1998) Adv. Mater., 10, p. 135Wang, R., Sakai, N., Fujishima, A., Watanabe, T., Hashimoto, K., (1999) J. Phys. Chem. B, 103, p. 2188Kanta, A., Sedev, R., Ralston, J., (2005) Langmuir, 21, p. 2400Lee, F.K., Andreatta, G., Benattar, J.J., (2007) Appl. Phys. Lett., 90, p. 3Sakai, N., Fujishima, A., Watanabe, T., Hashimoto, K., (2003) J. Phys. Chem. B, 107, p. 1028Seki, K., Tachiya, M., (2004) J. Phys. Chem. B, 108, p. 4806Zubkov, T., Stahl, D., Thompson, T.L., Panayotov, D., Diwald, O., Yates, J.T., (2005) J. Phys. Chem. B, 109, p. 15454White, J.M., Szanyi, J., Henderson, M.A., (2003) J. Phys. Chem. B, 107, p. 9029Chumanov, G., Sokolov, K., Cotton, T.M., (1996) J. Phys. Chem., 100, p. 5166Chumanov, G., Sokolov, K., Gregory, B.W., Cotton, T.M., (1995) J. Phys. Chem., 99, p. 9466Bright, R.M., Musick, M.D., Natan, M.J., (1998) Langmuir, 14, p. 5695Rondinini, S.B., Mussini, P.R., Crippa, F., Sello, G., (2000) Electrochem. Commun., 2, p. 491Lee, P.C., Meisel, D., (1982) J. Phys. Chem., 86, p. 3391Frydman, E., Cohen, H., Maoz, R., Sagiv, J., (1997) Langmuir, 13, p. 5089Hozumi, A., Ushiyama, K., Sugimura, H., Takai, O., (1999) Langmuir, 15, p. 7600Kresse, G., Hafner, J., (1993) Phys. Rev. B, 48, p. 13115Perdew, J.P., Wang, Y., (1992) Phys. Rev. B, 45, p. 13244Blochl, P.E., (1994) Phys. Rev. B, 50, p. 17953Diebold, U., (2003) Surf. Sci. Rep., 48, p. 53Mezhenny, S., Maksymovych, P., Thompson, T.L., Diwald, O., Stahl, D., Walck, S.D., Yates, J.T., (2003) Chem. Phys. Lett., 369, p. 152Nakamura, M., Kato, S., Aoki, T., Sirghi, L., Hatanaka, Y., (2001) J. Appl. Phys., 90, p. 3391Katsumata, K., Nakajima, A., Yoshikawa, H., Shiota, T., Yoshida, N., Watanabe, T., Kameshima, Y., Okada, K., (2005) Surf. Sci., 579, p. 123Owens, D.K., Wendt, R.C., (1969) J. Appl. Polym. Sci., 13, p. 1741Takeuchi, M., Sakamoto, K., Martra, G., Coluccia, S., Anpo, M., (2005) J. Phys. Chem. B, 109, p. 15422Szczepankiewicz, S.H., Colussi, A.J., Hoffmann, M.R., (2000) J. Phys. Chem. B, 104, p. 9842Boehm, H.P., (1971) Discuss. Faraday Soc., 264Sham, T.K., Lazarus, M.S., (1979) Chem. Phys. Lett., 68, p. 426Maksymovych, P., Mezhenny, S., Yates, J.T., (2003) Chem. Phys. Lett., 382, p. 270Uosaki, K., Yano, T., Nihonyanagi, S., (2004) J. Phys. Chem. B, 108, p. 19086Nosaka, A.Y., Kojima, E., Fujiwara, T., Yagi, H., Akutsu, H., Nosaka, Y., (2003) J. Phys. Chem. B, 107, p. 12042Gonzalezelipe, A.R., Munuera, G., Soria, J., (1979) J. Chem. Soc., Faraday Trans., 75, p. 748Munuera, G., Rivesarnau, V., Saucedo, A., (1979) J. Chem. Soc., Faraday Trans., 75, p. 736Finocchio, E., MacIs, E., Raiteri, R., Busca, G., (2007) Langmuir, 23, p. 2505Fadeev, A.Y., McCarthy, T.J., (1999) J. Am. Chem. Soc., 121, p. 12184Gamble, L., Henderson, M.A., Campbell, C.T., (1998) J. Phys. Chem. B, 102, p. 4536Helmy, R., Fadeev, A.Y., (2002) Langmuir, 18, p. 8924Ishida, T., Choi, N., Mizutani, W., Tokumoto, H., Kojima, I., Azehara, H., Hokari, H., Fujihira, M., (1999) Langmuir, 15, p. 6799Casarin, M., MacCato, C., Vittadini, A., (1998) J. Phys. Chem. B, 102, p. 10745Casarin, M., MacCato, C., Vittadini, A., (1999) J. Phys. Chem. B, 103, p. 3510Young, Y., (1805) Philos. Trans. R. Soc. London, 95, p. 65Walba, D.M., Liberko, C.A., Korblova, E., Farrow, M., Furtak, T.E., Chow, B.C., Schwartz, D.K., Clark, N.A., (2004) Liq. Cryst., 31, p. 481Shultz, A.N., Jang, W., Hetherington, W.M., Baer, D.R., Wang, L.Q., Engelhard, M.H., (1995) Surf. Sci., 339, p. 114Jribi, R., Barthel, E., Bluhm, H., Grunze, M., Koelsch, P., Verreault, D., Sondergard, E., (2009) J. Phys. Chem. C, 113, p. 8273Kern, W., (1990) J. Electrochem. Soc., 137, p. 1887Angermann, H., Korte, L., Rappich, J., Conrad, E., Sieber, I., Schmidt, M., Hubener, K., Hauschild, J., (2008) Thin Solid Films, 516, p. 6775Angermann, H., Rappich, J., Klimm, C., (2009) Cent. Eur. J. Phys., 7, p. 363Onclin, S., Ravoo, B.J., Reinhoudt, D.N., (2005) Angew. Chem., Int. Ed., 44, p. 6282Vallant, T., Brunner, H., Mayer, U., Hoffmann, H., Leitner, T., Resch, R., Friedbacher, G., (1998) J. Phys. Chem. B, 102, p. 7190Sung, M.M., Carraro, C., Yauw, O.W., Kim, Y., Maboudian, R., (2000) J. Phys. Chem. B, 104, p. 1556Nakamura, R., Ohashi, N., Imanishi, A., Osawa, T., Matsumoto, Y., Koinuma, H., Nakato, Y., (2005) J. Phys. Chem. B, 109, p. 1648Namai, Y., Matsuoka, O., (2006) J. Phys. Chem. B, 110, p. 6451Moller, R., Csaki, A., Kohler, J.M., Fritzsche, W., (2000) Nucleic Acids Res., 28. , http://pubs.acs.org, Internet at, e91Fritzsche, W., Symanzik, J., Sokolov, K., Cotton, T.M., Henderson, E., (1997) J. Colloid Interface Sci., 185, p. 466Dibbell, R.S., Soja, G.R., Hoth, R.M., Watson, D.F., (2007) Langmuir, 23, p. 3432http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9118/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9118oai:repositorio.utb.edu.co:20.500.12585/91182021-02-02 14:40:23.568Repositorio Institucional UTBrepositorioutb@utb.edu.co