Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO 2 and hydroxylated SiO 2
Alkylsilane 3-mercaptopropyltrimethoxysilane (3MPT) monolayers with a functional end group -SH were used to immobilize Ag colloidal nanoparticles on photoinduced amphiphilic TiO 2 and hydroxylated SiO 2 surfaces. The differences in the adsorption of 3MPT and the immobilization of Ag colloids on both...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2010
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9118
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9118
- Palabra clave:
- 3-Mercaptopropyltrimethoxysilane
Ag colloidal nanoparticles
Alkylsilanes
Amphiphilics
Experimental conditions
Functional end groups
Hydrocarbon films
Hydrophilic domains
Hydroxyl groups
Mercaptopropyltrimethoxysilane
Photo-induced
Structural differences
TiO
UV irradiation
Water contact angle
Adsorption
Colloids
Contact angle
Hydrocarbons
Hydroxylation
Monolayers
Surface properties
Titanium dioxide
X ray photoelectron spectroscopy
Silver
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_eb9b4809336e5775b8c059cc8f3694d6 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9118 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO 2 and hydroxylated SiO 2 |
title |
Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO 2 and hydroxylated SiO 2 |
spellingShingle |
Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO 2 and hydroxylated SiO 2 3-Mercaptopropyltrimethoxysilane Ag colloidal nanoparticles Alkylsilanes Amphiphilics Experimental conditions Functional end groups Hydrocarbon films Hydrophilic domains Hydroxyl groups Mercaptopropyltrimethoxysilane Photo-induced Structural differences TiO UV irradiation Water contact angle Adsorption Colloids Contact angle Hydrocarbons Hydroxylation Monolayers Surface properties Titanium dioxide X ray photoelectron spectroscopy Silver |
title_short |
Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO 2 and hydroxylated SiO 2 |
title_full |
Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO 2 and hydroxylated SiO 2 |
title_fullStr |
Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO 2 and hydroxylated SiO 2 |
title_full_unstemmed |
Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO 2 and hydroxylated SiO 2 |
title_sort |
Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO 2 and hydroxylated SiO 2 |
dc.subject.keywords.none.fl_str_mv |
3-Mercaptopropyltrimethoxysilane Ag colloidal nanoparticles Alkylsilanes Amphiphilics Experimental conditions Functional end groups Hydrocarbon films Hydrophilic domains Hydroxyl groups Mercaptopropyltrimethoxysilane Photo-induced Structural differences TiO UV irradiation Water contact angle Adsorption Colloids Contact angle Hydrocarbons Hydroxylation Monolayers Surface properties Titanium dioxide X ray photoelectron spectroscopy Silver |
topic |
3-Mercaptopropyltrimethoxysilane Ag colloidal nanoparticles Alkylsilanes Amphiphilics Experimental conditions Functional end groups Hydrocarbon films Hydrophilic domains Hydroxyl groups Mercaptopropyltrimethoxysilane Photo-induced Structural differences TiO UV irradiation Water contact angle Adsorption Colloids Contact angle Hydrocarbons Hydroxylation Monolayers Surface properties Titanium dioxide X ray photoelectron spectroscopy Silver |
description |
Alkylsilane 3-mercaptopropyltrimethoxysilane (3MPT) monolayers with a functional end group -SH were used to immobilize Ag colloidal nanoparticles on photoinduced amphiphilic TiO 2 and hydroxylated SiO 2 surfaces. The differences in the adsorption of 3MPT and the immobilization of Ag colloids on both surfaces were studied. Under identical experimental conditions, 3MPT islands were formed on UV-exposed TiO 2 surfaces compared to continuous and flat monolayers formed on SiO 2. The significant structural differences found for monolayers of 3MPT on TiO 2 could be explained in terms of the different densities of hydroxyl groups and the microstructure of hydrophilic domains induced by UV irradiation. The surface properties were characterized using contact angle measurements and XPS. XPS showed an increase in the hydroxyl group's density and a decrease in the number of adsorbed hydrocarbon films on the TiO 2 surface as a function of the UV irradiation time. The density of the adsorbed 3MPT on TiO 2 surfaces as a function of theUVirradiation time was quantitatively related to the cosine of the water contact angles. Such a 3MPT distribution influenced the subsequent adsorption of Ag colloids and resulted in more isolated nanoparticles on the modified TiO 2 with a narrower size distribution. © 2010 American Chemical Society. |
publishDate |
2010 |
dc.date.issued.none.fl_str_mv |
2010 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:59Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:59Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Langmuir; Vol. 26, Núm. 19; pp. 15161-15168 |
dc.identifier.issn.none.fl_str_mv |
07437463 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9118 |
dc.identifier.doi.none.fl_str_mv |
10.101/la102221v |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
7202871980 35094573000 |
identifier_str_mv |
Langmuir; Vol. 26, Núm. 19; pp. 15161-15168 07437463 10.101/la102221v Universidad Tecnológica de Bolívar Repositorio UTB 7202871980 35094573000 |
url |
https://hdl.handle.net/20.500.12585/9118 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84857704849&doi=10.101%2fla102221v&partnerID=40&md5=32b7f4098ad0f9868685f647dc57beb4 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9118/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021687086153728 |
spelling |
2020-03-26T16:32:59Z2020-03-26T16:32:59Z2010Langmuir; Vol. 26, Núm. 19; pp. 15161-1516807437463https://hdl.handle.net/20.500.12585/911810.101/la102221vUniversidad Tecnológica de BolívarRepositorio UTB720287198035094573000Alkylsilane 3-mercaptopropyltrimethoxysilane (3MPT) monolayers with a functional end group -SH were used to immobilize Ag colloidal nanoparticles on photoinduced amphiphilic TiO 2 and hydroxylated SiO 2 surfaces. The differences in the adsorption of 3MPT and the immobilization of Ag colloids on both surfaces were studied. Under identical experimental conditions, 3MPT islands were formed on UV-exposed TiO 2 surfaces compared to continuous and flat monolayers formed on SiO 2. The significant structural differences found for monolayers of 3MPT on TiO 2 could be explained in terms of the different densities of hydroxyl groups and the microstructure of hydrophilic domains induced by UV irradiation. The surface properties were characterized using contact angle measurements and XPS. XPS showed an increase in the hydroxyl group's density and a decrease in the number of adsorbed hydrocarbon films on the TiO 2 surface as a function of the UV irradiation time. The density of the adsorbed 3MPT on TiO 2 surfaces as a function of theUVirradiation time was quantitatively related to the cosine of the water contact angles. Such a 3MPT distribution influenced the subsequent adsorption of Ag colloids and resulted in more isolated nanoparticles on the modified TiO 2 with a narrower size distribution. © 2010 American Chemical Society.Recurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84857704849&doi=10.101%2fla102221v&partnerID=40&md5=32b7f4098ad0f9868685f647dc57beb4Comparison of adsorption of mercaptopropyltrimethoxysilane on amphiphilic TiO 2 and hydroxylated SiO 2info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb13-MercaptopropyltrimethoxysilaneAg colloidal nanoparticlesAlkylsilanesAmphiphilicsExperimental conditionsFunctional end groupsHydrocarbon filmsHydrophilic domainsHydroxyl groupsMercaptopropyltrimethoxysilanePhoto-inducedStructural differencesTiOUV irradiationWater contact angleAdsorptionColloidsContact angleHydrocarbonsHydroxylationMonolayersSurface propertiesTitanium dioxideX ray photoelectron spectroscopySilverZuo J.Torres E.Zuo, J., Nie, C.G., Gu, X., Lai, Y.K., Zong, Y., Sun, L., Lin, C.J., (2007) Mater. Lett., 61, p. 2632Tatsuma, T., Suzuki, K., (2007) Electrochem. Commun., 9, p. 574Zhang, L.Z., Yu, J.C., (2005) Catal. Commun., 6, p. 684Diebold, U., (2003) Surf. Sci. Rep., 48, p. 53MacHida, S., Sano, K., Sasaki, H., Yoshiki, M., Mori, Y., (1992) J. Chem. Soc., Chem. Commun., 1626Evanoff, D.D., Chumanov, G., (2005) ChemPhysChem, 6, p. 1221Freeman, R.G., Grabar, K.C., Allison, K.J., Bright, R.M., Davis, J.A., Guthrie, A.P., Hommer, M.B., Natan, M.J., (1995) Science, 267, p. 1629Zuo, J., Keil, P., Valtiner, M., Thissen, P., Grundmeier, G., (2008) Surf. Sci., 602, p. 3750Bierbaum, K., Grunze, M., Baski, A.A., Chi, L.F., Schrepp, W., Fuchs, H., (1995) Langmuir, 11, p. 2143Hu, M.H., Noda, S., Okubo, T., Yamaguchi, Y., Komiyama, H., (2001) Appl. Surf. Sci., 181, p. 307Natarajan, C., Nogami, G., (1996) J. Electrochem. Soc., 143, p. 1547Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., Watanabe, T., (1997) Nature, 388, p. 431Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., Watanabe, T., (1998) Adv. Mater., 10, p. 135Wang, R., Sakai, N., Fujishima, A., Watanabe, T., Hashimoto, K., (1999) J. Phys. Chem. B, 103, p. 2188Kanta, A., Sedev, R., Ralston, J., (2005) Langmuir, 21, p. 2400Lee, F.K., Andreatta, G., Benattar, J.J., (2007) Appl. Phys. Lett., 90, p. 3Sakai, N., Fujishima, A., Watanabe, T., Hashimoto, K., (2003) J. Phys. Chem. B, 107, p. 1028Seki, K., Tachiya, M., (2004) J. Phys. Chem. B, 108, p. 4806Zubkov, T., Stahl, D., Thompson, T.L., Panayotov, D., Diwald, O., Yates, J.T., (2005) J. Phys. Chem. B, 109, p. 15454White, J.M., Szanyi, J., Henderson, M.A., (2003) J. Phys. Chem. B, 107, p. 9029Chumanov, G., Sokolov, K., Cotton, T.M., (1996) J. Phys. Chem., 100, p. 5166Chumanov, G., Sokolov, K., Gregory, B.W., Cotton, T.M., (1995) J. Phys. Chem., 99, p. 9466Bright, R.M., Musick, M.D., Natan, M.J., (1998) Langmuir, 14, p. 5695Rondinini, S.B., Mussini, P.R., Crippa, F., Sello, G., (2000) Electrochem. Commun., 2, p. 491Lee, P.C., Meisel, D., (1982) J. Phys. Chem., 86, p. 3391Frydman, E., Cohen, H., Maoz, R., Sagiv, J., (1997) Langmuir, 13, p. 5089Hozumi, A., Ushiyama, K., Sugimura, H., Takai, O., (1999) Langmuir, 15, p. 7600Kresse, G., Hafner, J., (1993) Phys. Rev. B, 48, p. 13115Perdew, J.P., Wang, Y., (1992) Phys. Rev. B, 45, p. 13244Blochl, P.E., (1994) Phys. Rev. B, 50, p. 17953Diebold, U., (2003) Surf. Sci. Rep., 48, p. 53Mezhenny, S., Maksymovych, P., Thompson, T.L., Diwald, O., Stahl, D., Walck, S.D., Yates, J.T., (2003) Chem. Phys. Lett., 369, p. 152Nakamura, M., Kato, S., Aoki, T., Sirghi, L., Hatanaka, Y., (2001) J. Appl. Phys., 90, p. 3391Katsumata, K., Nakajima, A., Yoshikawa, H., Shiota, T., Yoshida, N., Watanabe, T., Kameshima, Y., Okada, K., (2005) Surf. Sci., 579, p. 123Owens, D.K., Wendt, R.C., (1969) J. Appl. Polym. Sci., 13, p. 1741Takeuchi, M., Sakamoto, K., Martra, G., Coluccia, S., Anpo, M., (2005) J. Phys. Chem. B, 109, p. 15422Szczepankiewicz, S.H., Colussi, A.J., Hoffmann, M.R., (2000) J. Phys. Chem. B, 104, p. 9842Boehm, H.P., (1971) Discuss. Faraday Soc., 264Sham, T.K., Lazarus, M.S., (1979) Chem. Phys. Lett., 68, p. 426Maksymovych, P., Mezhenny, S., Yates, J.T., (2003) Chem. Phys. Lett., 382, p. 270Uosaki, K., Yano, T., Nihonyanagi, S., (2004) J. Phys. Chem. B, 108, p. 19086Nosaka, A.Y., Kojima, E., Fujiwara, T., Yagi, H., Akutsu, H., Nosaka, Y., (2003) J. Phys. Chem. B, 107, p. 12042Gonzalezelipe, A.R., Munuera, G., Soria, J., (1979) J. Chem. Soc., Faraday Trans., 75, p. 748Munuera, G., Rivesarnau, V., Saucedo, A., (1979) J. Chem. Soc., Faraday Trans., 75, p. 736Finocchio, E., MacIs, E., Raiteri, R., Busca, G., (2007) Langmuir, 23, p. 2505Fadeev, A.Y., McCarthy, T.J., (1999) J. Am. Chem. Soc., 121, p. 12184Gamble, L., Henderson, M.A., Campbell, C.T., (1998) J. Phys. Chem. B, 102, p. 4536Helmy, R., Fadeev, A.Y., (2002) Langmuir, 18, p. 8924Ishida, T., Choi, N., Mizutani, W., Tokumoto, H., Kojima, I., Azehara, H., Hokari, H., Fujihira, M., (1999) Langmuir, 15, p. 6799Casarin, M., MacCato, C., Vittadini, A., (1998) J. Phys. Chem. B, 102, p. 10745Casarin, M., MacCato, C., Vittadini, A., (1999) J. Phys. Chem. B, 103, p. 3510Young, Y., (1805) Philos. Trans. R. Soc. London, 95, p. 65Walba, D.M., Liberko, C.A., Korblova, E., Farrow, M., Furtak, T.E., Chow, B.C., Schwartz, D.K., Clark, N.A., (2004) Liq. Cryst., 31, p. 481Shultz, A.N., Jang, W., Hetherington, W.M., Baer, D.R., Wang, L.Q., Engelhard, M.H., (1995) Surf. Sci., 339, p. 114Jribi, R., Barthel, E., Bluhm, H., Grunze, M., Koelsch, P., Verreault, D., Sondergard, E., (2009) J. Phys. Chem. C, 113, p. 8273Kern, W., (1990) J. Electrochem. Soc., 137, p. 1887Angermann, H., Korte, L., Rappich, J., Conrad, E., Sieber, I., Schmidt, M., Hubener, K., Hauschild, J., (2008) Thin Solid Films, 516, p. 6775Angermann, H., Rappich, J., Klimm, C., (2009) Cent. Eur. J. Phys., 7, p. 363Onclin, S., Ravoo, B.J., Reinhoudt, D.N., (2005) Angew. Chem., Int. Ed., 44, p. 6282Vallant, T., Brunner, H., Mayer, U., Hoffmann, H., Leitner, T., Resch, R., Friedbacher, G., (1998) J. Phys. Chem. B, 102, p. 7190Sung, M.M., Carraro, C., Yauw, O.W., Kim, Y., Maboudian, R., (2000) J. Phys. Chem. B, 104, p. 1556Nakamura, R., Ohashi, N., Imanishi, A., Osawa, T., Matsumoto, Y., Koinuma, H., Nakato, Y., (2005) J. Phys. Chem. B, 109, p. 1648Namai, Y., Matsuoka, O., (2006) J. Phys. Chem. B, 110, p. 6451Moller, R., Csaki, A., Kohler, J.M., Fritzsche, W., (2000) Nucleic Acids Res., 28. , http://pubs.acs.org, Internet at, e91Fritzsche, W., Symanzik, J., Sokolov, K., Cotton, T.M., Henderson, E., (1997) J. Colloid Interface Sci., 185, p. 466Dibbell, R.S., Soja, G.R., Hoth, R.M., Watson, D.F., (2007) Langmuir, 23, p. 3432http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9118/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9118oai:repositorio.utb.edu.co:20.500.12585/91182021-02-02 14:40:23.568Repositorio Institucional UTBrepositorioutb@utb.edu.co |