Genericity of Continuous Maps with Positive Metric Mean Dimension

M. Gromov introduced the mean dimension for a continuous map in the late 1990’s, which is an invariant under topological conjugacy. On the other hand, the notion of metric mean dimension for a dynamical system was introduced by Lindenstrauss and Weiss in 2000 and this refines the topological entropy...

Full description

Autores:
Muentes Acevedo, Jeovanny
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10441
Acceso en línea:
https://hdl.handle.net/20.500.12585/10441
https://doi.org/10.1007/s00025-021-01513-3
Palabra clave:
Mean dimension
Metric mean dimension
Topological entropy
Box dimension
Hausdorff dimension
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_eb2c3df0396d602aec7d1a9fdcc17982
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10441
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Genericity of Continuous Maps with Positive Metric Mean Dimension
title Genericity of Continuous Maps with Positive Metric Mean Dimension
spellingShingle Genericity of Continuous Maps with Positive Metric Mean Dimension
Mean dimension
Metric mean dimension
Topological entropy
Box dimension
Hausdorff dimension
LEMB
title_short Genericity of Continuous Maps with Positive Metric Mean Dimension
title_full Genericity of Continuous Maps with Positive Metric Mean Dimension
title_fullStr Genericity of Continuous Maps with Positive Metric Mean Dimension
title_full_unstemmed Genericity of Continuous Maps with Positive Metric Mean Dimension
title_sort Genericity of Continuous Maps with Positive Metric Mean Dimension
dc.creator.fl_str_mv Muentes Acevedo, Jeovanny
dc.contributor.author.none.fl_str_mv Muentes Acevedo, Jeovanny
dc.subject.keywords.spa.fl_str_mv Mean dimension
Metric mean dimension
Topological entropy
Box dimension
Hausdorff dimension
topic Mean dimension
Metric mean dimension
Topological entropy
Box dimension
Hausdorff dimension
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description M. Gromov introduced the mean dimension for a continuous map in the late 1990’s, which is an invariant under topological conjugacy. On the other hand, the notion of metric mean dimension for a dynamical system was introduced by Lindenstrauss and Weiss in 2000 and this refines the topological entropy for dynamical systems with infinite topological entropy. In this paper we will show if N is an n dimensional compact riemannian manifold then, for any a ∈ [0, n], the set consisting of continuous maps with metric mean dimension equal to a is dense in C0(N) and for a = n this set is residual. Furthermore, we prove some results related to the existence and, density of continuous maps, defined on Cantor sets, with positive metric mean dimension and also continous maps, defined on product spaces, with positive mean dimension.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-11-02
dc.date.accessioned.none.fl_str_mv 2022-02-08T12:30:31Z
dc.date.available.none.fl_str_mv 2022-02-08T12:30:31Z
dc.date.submitted.none.fl_str_mv 2022-02-04
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Acevedo, Jeovanny De Jesus. (2022). Genericity of Continuous Maps with Positive Metric Mean Dimension. Results in Mathematics. 77. 10.1007/s00025-021-01513-3.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10441
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s00025-021-01513-3
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Acevedo, Jeovanny De Jesus. (2022). Genericity of Continuous Maps with Positive Metric Mean Dimension. Results in Mathematics. 77. 10.1007/s00025-021-01513-3.
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10441
https://doi.org/10.1007/s00025-021-01513-3
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 30 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Colombia
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Results in Mathematics, vol. 77, N° 2 (2022)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10441/1/Acevedo2021_Article_GenericityOfContinuousMapsWith.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10441/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10441/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10441/4/Acevedo2021_Article_GenericityOfContinuousMapsWith.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10441/5/Acevedo2021_Article_GenericityOfContinuousMapsWith.pdf.jpg
bitstream.checksum.fl_str_mv cb9c6bfe2bebb7b3d0e674996ec65b11
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
2e4c700dc7caae04e90401a8c47b4f1f
f567a0743ac299b3d390223fb170fd83
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021732150804480
spelling Muentes Acevedo, Jeovannya00a2fcf-ed20-430d-a46b-2195dd9675d5Colombia2022-02-08T12:30:31Z2022-02-08T12:30:31Z2021-11-022022-02-04Acevedo, Jeovanny De Jesus. (2022). Genericity of Continuous Maps with Positive Metric Mean Dimension. Results in Mathematics. 77. 10.1007/s00025-021-01513-3.https://hdl.handle.net/20.500.12585/10441https://doi.org/10.1007/s00025-021-01513-3Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarM. Gromov introduced the mean dimension for a continuous map in the late 1990’s, which is an invariant under topological conjugacy. On the other hand, the notion of metric mean dimension for a dynamical system was introduced by Lindenstrauss and Weiss in 2000 and this refines the topological entropy for dynamical systems with infinite topological entropy. In this paper we will show if N is an n dimensional compact riemannian manifold then, for any a ∈ [0, n], the set consisting of continuous maps with metric mean dimension equal to a is dense in C0(N) and for a = n this set is residual. Furthermore, we prove some results related to the existence and, density of continuous maps, defined on Cantor sets, with positive metric mean dimension and also continous maps, defined on product spaces, with positive mean dimension.30 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Results in Mathematics, vol. 77, N° 2 (2022)Genericity of Continuous Maps with Positive Metric Mean Dimensioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Mean dimensionMetric mean dimensionTopological entropyBox dimensionHausdorff dimensionLEMBCartagena de IndiasArtin, M., Mazur, B.: On periodic points. Ann. Math., 82–99 (1965)Block, L.: Noncontinuity of topological entropy of maps of the Cantor set and of the interval. Proc. Am. Math. Soc. 50(1), 388–393 (1975)Bobok, J., Zindulka, O.: Topological entropy on zero-dimensional spaces. Fundam. Math. 162(3), 233–249 (1999)Carvalho, M., Rodrigues, F.B., Varandas, P.: Generic homeomorphisms have full metric mean dimension. Ergodic Theory Dyn. Syst., 1–25 (2019)De Melo, W., Van Sebastian, S.: One-Dimensional Dynamics, vol. 25. Springer, Berlin (2012)do Carmo., M.P.: Geometria riemanniana. Instituto de Matem´atica Pura e Aplicada (2008)Engelking, R.: “General Topology. Heldermann, Berlin.” MR1039321 (91c: 54001): 529 (1989)Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Hoboken (2004)Gromov, M.: Topological invariants of dynamical systems and spaces of holomorphic maps: I. Math. Phys. Anal. Geom. 2(4), 323–415 (1999)Gutman, Y.: Embedding topological dynamical systems with periodic points in cubical shifts. Ergodic Theory Dyn. Syst. 37(2), 512–538 (2017)Gutman, Y., Tsukamoto, M.: Embedding minimal dynamical systems into Hilbert cubes. Invent. Math. 221(1), 113–166 (2020)Hurley, M.: On proofs of the C0 general density theorem. Proc. Am. Math. Soc. 124(4), 1305–1309 (1996)Jin, L., Yixiao, Q.: Mean dimension of product spaces: a fundamental formula. arXiv preprint arXiv:2102.10358 (2021)Lindenstrauss, E.: Mean dimension, small entropy factors and an embedding theorem. Publications Math´ematiques de l‘Institut des Hautes Etudes Scientifiques ´ 89(1), 227–262 (1999)] Lindenstrauss, E., Weiss, B.: Mean topological dimension. Israel J. Math. 115(1), 1–24 (2000)Lindenstrauss, E., Tsukamoto, M.: From rate distortion theory to metric mean dimension: variational principle. IEEE Trans. Inf. Theory 64(5), 3590–3609 (2018)Lindenstrauss, E., Tsukamoto, M.: Mean dimension and an embedding problem: an example. Israel J. Math. 199(2), 573–584 (2014)Misiurewicz, M.: Horseshoes for Continuous Mappings of an Interval. Dynamical Systems, pp. 125–135. Springer, Berlin (2010)Newhouse, S.E.: Continuity properties of entropy. Ann. Math. 129(1), 215–235 (1989)Rodrigues, F.B., Jeovanny, M.A.: Mean dimension and metric mean dimension for non-autonomous dynamical systems. J. Dyn. Control Syst. 1–27 (2021)Tsukamoto, M.: Mean dimension of full shifts. Israel J. Math. 230(1), 183–193 (2019)Velozo, A., Renato, V.: Rate distortion theory, metric mean dimension and measure theoretic entropy. arXiv preprint arXiv:1707.05762 (2017)Wei, C., Wen, S., Wen, Z.: Remarks on dimensions of Cartesian product sets. Fractals 24(03), 1650031 (2016)Yano, K.: A remark on the topological entropy of homeomorphisms. Invent. Math. 59(3), 215–220 (1980)http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALAcevedo2021_Article_GenericityOfContinuousMapsWith.pdfAcevedo2021_Article_GenericityOfContinuousMapsWith.pdfapplication/pdf881691https://repositorio.utb.edu.co/bitstream/20.500.12585/10441/1/Acevedo2021_Article_GenericityOfContinuousMapsWith.pdfcb9c6bfe2bebb7b3d0e674996ec65b11MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10441/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10441/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTAcevedo2021_Article_GenericityOfContinuousMapsWith.pdf.txtAcevedo2021_Article_GenericityOfContinuousMapsWith.pdf.txtExtracted texttext/plain61553https://repositorio.utb.edu.co/bitstream/20.500.12585/10441/4/Acevedo2021_Article_GenericityOfContinuousMapsWith.pdf.txt2e4c700dc7caae04e90401a8c47b4f1fMD54THUMBNAILAcevedo2021_Article_GenericityOfContinuousMapsWith.pdf.jpgAcevedo2021_Article_GenericityOfContinuousMapsWith.pdf.jpgGenerated Thumbnailimage/jpeg47893https://repositorio.utb.edu.co/bitstream/20.500.12585/10441/5/Acevedo2021_Article_GenericityOfContinuousMapsWith.pdf.jpgf567a0743ac299b3d390223fb170fd83MD5520.500.12585/10441oai:repositorio.utb.edu.co:20.500.12585/104412022-02-09 02:59:42.673Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=