Synthesis, characterization and catecholase biomimetic activity of novel cobalt(II), copper(II), and iron(II) complexes bearing phenylene-bisbenzimidazole ligand

Transition metal complexes of Co(II), Cu(II), and Fe(II) bearing a rigid symmetrical 2,20 -(1,2-phenylene)bis (1H-benzimidazole) ligand, PhBIm2, were synthesized and fully characterized by ESI-MS, FT-IR, 1 H NMR (for paramagnetic species), UV–Vis spectroscopy and microanalytical techniques. Besides...

Full description

Autores:
Chirinos, Juan
Ibarra, Darmenia
Morillo, Ángel
Llovera, Ligia
González, Teresa
Zárraga, Jeannette
Larreal, Oswaldo
Guerra, Mayamarú
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10355
Acceso en línea:
https://hdl.handle.net/20.500.12585/10355
https://doi.org/10.1016/j.poly.2021.115232
Palabra clave:
Catechol
Quinone
2,2′-(1,2-phenylene)bis(1H-benzimidazole)
Transition metal complexes
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_e8e3407fbdbbcdc345d1e9fdac4e021c
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10355
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Synthesis, characterization and catecholase biomimetic activity of novel cobalt(II), copper(II), and iron(II) complexes bearing phenylene-bisbenzimidazole ligand
title Synthesis, characterization and catecholase biomimetic activity of novel cobalt(II), copper(II), and iron(II) complexes bearing phenylene-bisbenzimidazole ligand
spellingShingle Synthesis, characterization and catecholase biomimetic activity of novel cobalt(II), copper(II), and iron(II) complexes bearing phenylene-bisbenzimidazole ligand
Catechol
Quinone
2,2′-(1,2-phenylene)bis(1H-benzimidazole)
Transition metal complexes
LEMB
title_short Synthesis, characterization and catecholase biomimetic activity of novel cobalt(II), copper(II), and iron(II) complexes bearing phenylene-bisbenzimidazole ligand
title_full Synthesis, characterization and catecholase biomimetic activity of novel cobalt(II), copper(II), and iron(II) complexes bearing phenylene-bisbenzimidazole ligand
title_fullStr Synthesis, characterization and catecholase biomimetic activity of novel cobalt(II), copper(II), and iron(II) complexes bearing phenylene-bisbenzimidazole ligand
title_full_unstemmed Synthesis, characterization and catecholase biomimetic activity of novel cobalt(II), copper(II), and iron(II) complexes bearing phenylene-bisbenzimidazole ligand
title_sort Synthesis, characterization and catecholase biomimetic activity of novel cobalt(II), copper(II), and iron(II) complexes bearing phenylene-bisbenzimidazole ligand
dc.creator.fl_str_mv Chirinos, Juan
Ibarra, Darmenia
Morillo, Ángel
Llovera, Ligia
González, Teresa
Zárraga, Jeannette
Larreal, Oswaldo
Guerra, Mayamarú
dc.contributor.author.none.fl_str_mv Chirinos, Juan
Ibarra, Darmenia
Morillo, Ángel
Llovera, Ligia
González, Teresa
Zárraga, Jeannette
Larreal, Oswaldo
Guerra, Mayamarú
dc.subject.keywords.spa.fl_str_mv Catechol
Quinone
2,2′-(1,2-phenylene)bis(1H-benzimidazole)
Transition metal complexes
topic Catechol
Quinone
2,2′-(1,2-phenylene)bis(1H-benzimidazole)
Transition metal complexes
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Transition metal complexes of Co(II), Cu(II), and Fe(II) bearing a rigid symmetrical 2,20 -(1,2-phenylene)bis (1H-benzimidazole) ligand, PhBIm2, were synthesized and fully characterized by ESI-MS, FT-IR, 1 H NMR (for paramagnetic species), UV–Vis spectroscopy and microanalytical techniques. Besides the cobalt complex was subject of X-ray structural analysis. The molecular crystal structure of the PhBIm2Co(II)Cl2 complex revealed the metal center in a pseudo-tetrahedral environment with not significant lengthening or compressing of the bonds in the PhBIm2 framework upon chelation of the ligand. All complexes catalyze the aerobic oxidation of o-catechol to o-quinone under mild conditions. The results show that the oxidation rate depends on the electronic stabilizing effect to the metal center rather than the steric hindrance of the ligand. Kinetic parameters (Vmax, kcat, KM) were estimated by mean of the Michaelis–Menten model and Lineweaver–Burk plot. Catechol oxidation rates of complexes 2–4 are in the same order of magnitudes of mononuclear and dinuclear Cu(II) complexes bearing imidazole-based ligands but lower than observed for the catecholase enzyme
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-08-06T12:29:17Z
dc.date.available.none.fl_str_mv 2021-08-06T12:29:17Z
dc.date.issued.none.fl_str_mv 2021-04-24
dc.date.submitted.none.fl_str_mv 2021-08-05
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Juan Chirinos, Darmenia Ibarra, Ángel Morillo, Ligia Llovera, Teresa González, Jeannette Zárraga, Oswaldo Larreal, Mayamarú Guerra, Synthesis, characterization and catecholase biomimetic activity of novel cobalt(II), copper(II), and iron(II) complexes bearing phenylene-bis-benzimidazole ligand, Polyhedron, Volume 203, 2021, 115232, ISSN 0277-5387, https://doi.org/10.1016/j.poly.2021.115232.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10355
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.poly.2021.115232
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Juan Chirinos, Darmenia Ibarra, Ángel Morillo, Ligia Llovera, Teresa González, Jeannette Zárraga, Oswaldo Larreal, Mayamarú Guerra, Synthesis, characterization and catecholase biomimetic activity of novel cobalt(II), copper(II), and iron(II) complexes bearing phenylene-bis-benzimidazole ligand, Polyhedron, Volume 203, 2021, 115232, ISSN 0277-5387, https://doi.org/10.1016/j.poly.2021.115232.
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10355
https://doi.org/10.1016/j.poly.2021.115232
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.format.size.none.fl_str_mv 7 páginas
dc.coverage.spatial.none.fl_str_mv Colombia
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Polyhedron, Volume 203, 2021.
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10355/1/Polyhedron%202021-%201-s2.0-S027753872100214X-mai_Mayamaru%20Guerra%20De%20S.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10355/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10355/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10355/4/Polyhedron%202021-%201-s2.0-S027753872100214X-mai_Mayamaru%20Guerra%20De%20S.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10355/5/Polyhedron%202021-%201-s2.0-S027753872100214X-mai_Mayamaru%20Guerra%20De%20S.pdf.jpg
bitstream.checksum.fl_str_mv 7e9fedfc6c4efc58de59568db652530b
e20ad307a1c5f3f25af9304a7a7c86b6
4460e5956bc1d1639be9ae6146a50347
2ec6b420722df7e7bb7b5694e0240773
37fb2c9bb71fd3eefda695352c277862
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021596167274496
spelling Chirinos, Juan01b06af8-ee35-43ab-bf60-561c77754563Ibarra, Darmeniad46e2807-e9b6-462f-bda4-09b38eea3e07Morillo, Ángel146c10d7-40ed-4592-85bb-92715c8dd361Llovera, Ligia8ebde7b3-0bcd-4cab-8644-fba0f1e771a8González, Teresae72c2089-9e9b-4061-9a43-b2f0798be6f6Zárraga, Jeannette7b88e84a-c331-45bd-8abc-bf361420ccc9Larreal, Oswaldocbf27a84-4d7f-447c-81e0-5fe7a43be796Guerra, Mayamarú5af72308-bd11-495a-86d4-0817f8961b6cColombia2021-08-06T12:29:17Z2021-08-06T12:29:17Z2021-04-242021-08-05Juan Chirinos, Darmenia Ibarra, Ángel Morillo, Ligia Llovera, Teresa González, Jeannette Zárraga, Oswaldo Larreal, Mayamarú Guerra, Synthesis, characterization and catecholase biomimetic activity of novel cobalt(II), copper(II), and iron(II) complexes bearing phenylene-bis-benzimidazole ligand, Polyhedron, Volume 203, 2021, 115232, ISSN 0277-5387, https://doi.org/10.1016/j.poly.2021.115232.https://hdl.handle.net/20.500.12585/10355https://doi.org/10.1016/j.poly.2021.115232Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarTransition metal complexes of Co(II), Cu(II), and Fe(II) bearing a rigid symmetrical 2,20 -(1,2-phenylene)bis (1H-benzimidazole) ligand, PhBIm2, were synthesized and fully characterized by ESI-MS, FT-IR, 1 H NMR (for paramagnetic species), UV–Vis spectroscopy and microanalytical techniques. Besides the cobalt complex was subject of X-ray structural analysis. The molecular crystal structure of the PhBIm2Co(II)Cl2 complex revealed the metal center in a pseudo-tetrahedral environment with not significant lengthening or compressing of the bonds in the PhBIm2 framework upon chelation of the ligand. All complexes catalyze the aerobic oxidation of o-catechol to o-quinone under mild conditions. The results show that the oxidation rate depends on the electronic stabilizing effect to the metal center rather than the steric hindrance of the ligand. Kinetic parameters (Vmax, kcat, KM) were estimated by mean of the Michaelis–Menten model and Lineweaver–Burk plot. Catechol oxidation rates of complexes 2–4 are in the same order of magnitudes of mononuclear and dinuclear Cu(II) complexes bearing imidazole-based ligands but lower than observed for the catecholase enzymeapplication/pdf7 páginasenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Polyhedron, Volume 203, 2021.Synthesis, characterization and catecholase biomimetic activity of novel cobalt(II), copper(II), and iron(II) complexes bearing phenylene-bisbenzimidazole ligandinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1CatecholQuinone2,2′-(1,2-phenylene)bis(1H-benzimidazole)Transition metal complexesLEMBCartagena de IndiasInvestigadoresB. Kaim, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, John Wiley, 1994.T. Klabunde, C. Eicken, J.C. Sacchettini, B. Krebs, Crystal structure of a plant catechol oxidase containing a dicopper center, Nat. Struct. Biol. 5 (1998) 1084– 1090.M. Boice, F. Borcheta, A. Cunningham, J. Trent, Cosmestic compositions containing quinones and their topical use on skin and hair, US20180116928A1. (2018).T. Deming, Y. Miaoer, Synthesis and crosslinking of catechol containing copolypeptides, USOO6506577B1. (2003).G. Maier, C. Bernt, A. Butler, Catechol oxidation: Considerations in the design of wet adhesive materials, Biomater. Sci. 6 (2018) 332–339, https://doi.org/ 10.1039/c7bm00884h.J. Yang, M. Stuart, M. Kamperman, Jack of all trades: Versatile catechol crosslinking mechanisms, Chem. Soc. Rev. 43 (2014) 8271–8298, https://doi. org/10.1039/c4cs00185k.J. Bolton, T. Dunlap, Formation and biological targets of quinones: Cytotoxic versus cytoprotective effects, Chem. Res. Toxicol. 30 (2017) 13–37, https://doi. org/10.1021/acs.chemrestox.6b00256.B. Kim, D. Oh, S. Kim, J. Seo, D. Hwang, A. Masic, D. Han, H. Cha, Musselmimetic protein-based adhesive hydrogel, Biomacromol. 15 (2014) 1579– 1585, https://doi.org/10.1021/bm4017308.R. Marion, N. Saleh, N. Le Poul, D. Floner, O. Lavastre, F. Geneste, Rate enhancement of the catechol oxidase activity of a series of biomimetic monocopper(ii) complexes by introduction of non-coordinating groups in Ntripodal ligands, New J. Chem. 36 (2012) 1828–1835, https://doi.org/10.1039/ c2nj40265c.P. Wang, G. Yap, C. Riordan, Five-coordinate MII-semiquinonate (M = Fe, Mn, Co) complexes: Reactivity models of the catechol dioxygenases, Chem. Commun. 50 (2014) 5871–5873, https://doi.org/10.1039/c3cc49143aE. Mentasti, E. Pelizzetti, Reactions between iron(III) and catechol (odihydroxybenzene). Part I. Equilibria and kinetics of complex formation in aqueous acid solution, J. Chem. Soc. Dalt. Trans. (1973) 2605–2608, https://doi. org/10.1039/DT9730002605.P. Kamau, R. Jordan, Kinetic study of the oxidation of catechol by aqueous copper(II), Inorg. Chem. 41 (2002) 3076–3083, https://doi.org/10.1021/ ic010978c.S. Dey, A. Mukherjee, The synthesis, characterization and catecholase activity of dinuclear cobalt(II/III) complexes of an O-donor rich Schiff base ligand, New J. Chem. 38 (2014) 4985–4995, https://doi.org/10.1039/c4nj00715h.M. Das, B. Kumar, K.R. Tiwari, P. Mandal, D. Nayak, R. Ganguly, S. Mukhopadhyay, Investigation on chemical protease, nuclease and catecholase activity of two copper complexes with flexidentate Schiff base ligands, Inorg. Chim. Acta 469 (2018) 111–122, https://doi.org/10.1016/j. ica.2017.09.013.A. Sarkar, A. Chakraborty, A. Adhikary, S. Maity, A. Mandal, D. Samanta, P. Ghosh, D. Das, Exploration of catecholase-like activity of a series of magnetically coupled transition metal complexes of Mn, Co and Ni: new insights into solution state behavior of Mn complex, Dalton Trans. 48 (2019) 14164–14177.I.A. Koval, P. Gamez, C. Belle, K. Selmeczi, J. Reedijk, Synthetic models of the active site of catechol oxidase: mechanistic studies, Chem Soc Rev 35 (2006) 814–840, https://doi.org/10.1039/b516250p.S.K. Dey, A. Mukherjee, Catechol oxidase and phenoxazinone synthase: Biomimetic functional models and mechanistic studies, Coord. Chem. Rev. 310 (2016) 80–115, https://doi.org/10.1016/j.ccr.2015.11.002.L. Martins, E. Souza, T. Fernandez, B. De Souza, S. Rachinski, C. Pinheiro, R. Faria, A. Casellato, S. Machado, A. Mangrich, M. Scarpellini, Binuclear CuII Table 3 Kinetic parameters for aerobic oxidation of o-catechol to o-quinone with complexes 2–4. kcat 103 (s1 ) St Error KM (mM) St Error Vmax 103 (mM s1 ) St Error kcat/KM (M1 s 1 ) Ref. 2 6.10 0.73 118 21.3 6.10 21.3 0.0517 This work 3 1.57 0.13 110 9.9 1.57 9.9 0.014 This work 4 1.41 0.61 623 38.4 1.41 32.4 0.0023 This work a [CoL2]Cl 32.78 – 1.8 7.50x10-4 3.28 5.62x10-7 18.21 [55] b [Co3(OMe)4L2]ClO4 922 – 7.81 5.27x10-3 1.5 4.47x10-5 118.05 [56] c [Cu2(L)2(H2O)2] 866.67 – 4.3 – 104.6 – 201.55 [22] d CuLCl2 3.1 – 1.62 – – – 1.9 [9] e CuLCl2 60.1 – 0.28 – 1.30 – 214.64 [57] f CuLCl2 108.9 – 0.45 – 2.36 – 242 [57] h (L)FeIII(l-Ophenoxo)FeIII] 1.21 – 7.20 – – – 0.17 [58] a HL = (E)-2-((3-(2-hydroxyethylthio)propylimino)methyl)phenol; b H2L = N,N0 -dimethyl-N,N0 -bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine; c H2L = 2-[(2-hydroxy-5-R-benzyl)amino]cyclohexane-1-carboxylic acid; d L = 6-(((1H-Pyrazol-1-yl)methyl)(thiophen-2-ylmethyl)amino)hexan-1-ol; e L = [(2-(pyridyl-2-yl)ethyl)((1-methylimidazol-2-yl)methyl)]imine; f L = [(2-(pyridyl-2-yl)ethyl)((1-methylimidazol-2-yl)methyl)]amine; h L = [(bbpmp)(H2O)(Cl)FeIII(l-Ophenoxo)FeIII(H2O)(Cl)]Cl J. Chirinos, D. Ibarra, Á. Morillo et al. Polyhedron 203 (2021) 115232 6 complexes as catalysts for hydrocarbon and catechol oxidation reactions with hydrogen peroxide and molecular oxygen, J. Braz. Chem. Soc. 21 (2010) 1218– 1229, https://doi.org/10.1590/S0103-50532010000700009.A. Ramadan, S. Shaban, M. Ibrahim, M. El-Hendawy, H. Eissa, S. Al-Harbi, Copper(II) complexes containing pyridine-based and phenolatebased systems: Synthesis, characterization, DFT study, biomimetic catalytic activity of catechol oxidase and phenoxazinone synthase, J. Chin. Chem. Soc. (2019) 1– 17, https://doi.org/10.1002/jccs.201900113.M. Louloudi, K. Mitopoulou, E. Evaggelou, Y. Deligiannakis, N. Hadjiliadis, Homogeneous and heterogenized copper(II) complexes as catechol oxidation catalysts, J. Mol. Catal. A Chem. 198 (2003) 231–240, https://doi.org/10.1016/ S1381-1169(02)00692-1.C. Belle, K. Selmeczi, S. Torelli, J.L. Pierre, Chemical tools for mechanistic studies related to catechol oxidase activity, Comptes Rendus Chim. 10 (2007) 271–283, https://doi.org/10.1016/j.crci.2006.10.007.B. Sreenivasulu, F. Zhao, S. Gao, J.J. Vittal, Synthesis, structures and catecholase activity of a new series of dicopper(II) complexes of reduced Schiff base ligands, Eur. J. Inorg. Chem. (2006) 2656–2670, https://doi.org/10.1002/ ejic.200600022.S. Sarkar, W.R. Lee, C.S. Hong, H.I. Lee, Tetrameric self-assembly of a Cu(II) complex containing schiff-base ligand and its unusually high catecholase-like activity, Bull. Korean Chem. Soc. 34 (2013) 2731–2736, https://doi.org/ 10.5012/bkcs.2013.34.9.2731D. Dey, S. Das, H. Yadav, A. Ranjani, L. Gyathri, S. Roy, P. Guin, D. Dhanasekaran, A. Choudhury, M. Abdulkader, B. Biswas, Design of a mononuclear copper(II)- phenanthroline complex: Catechol oxidation, DNA cleavage and antitumor properties, Polyhedron 106 (2016) 106–114, https://doi.org/10.1016/j. poly.2015.12.055.B. Jacobsen, J. Chirinos, G. Vernon, Diene polymerisation, WO 2007/015074 Al. (2007).J. Zi, M. Moszner, E. Kwaskowska-che, Reactions of the hexaaquarhodium (III) cation with bis(benzimidazol-2-ylmethyl) methylamine and PPh3: syntheses and properties of new hydrido- and carbonylrhodium complexes, Inorganica Chim. Acta. 357 (2004) 2483–2493, https://doi.org/10.1016/j.ica.2003.10.020.R. Cariou, J. Chirinos, V. Gibson, G. Jacobsen, A. Tomov, G. Britovsek, A. White, The effect of the central donor in bis(benzimidazole)-based cobalt catalysts for the selective cis-1,4-polymerisation of butadiene, Dalt. Trans. 39 (2010), https://doi.org/10.1039/c0dt00402b.A. Tomov, J. Nobbs, J. Chirinos, P. Saini, R. Malinowski, S. Ho, C. Young, D. McGuinness, A. White, M. Elsegood, G. Britovsek, Alternating a-olefin distributions via single and double insertions in chromium-catalyzed ethylene oligomerization, Organometallics 36 (2017), https://doi.org/ 10.1021/acs.organomet.6b00671.J. Braden, R. Cariou, J. Shabaker, R. Taylor, Rapid transfer hydrogenation of acetophenone using ruthenium catalysts bearing commercially available and readily accessible nitrogen and phosphorous donor ligands, Appl. Catal. A 570 (2019) 367–375, https://doi.org/10.1016/j.apcata.2018.11.031.W. Yang, Y. Chen, W. Sun, Correlating cobalt net charges with catalytic activities of the 2-(Benzimidazolyl)-6-(1-aryliminoethyl) pyridylcobalt complexes toward ethylene polymerization, Macromol. React. Eng. 9 (2015) 473–479, https://doi.org/10.1002/mren.201400064.P. Selvam, P. Radhika, S. Janagaraj, A. Kumar, Synthesis of novel 2-substituted benzimidazole derivatives as potential anti microbial agents, Research in Biotechnology 2 (2011) 50–57.P. Mathur, Activation of peroxyl and molecular oxygen using bisbenzimidazole diamide copper (II) compounds, J. Chem. Sci. 118 (2006) 553–568, https://doi.org/10.1007/BF02703953C. Matthews S. Heath M. Elsegood W. Clegg A. Leese J. Lockhart Differential binding of a facultative tridentate ligand 4-(benzimidazol-2-yl)-3- thiabutanoic acid to Cu J. Chem. Soc., Dalt. Trans. (1998) 1973–1977C. Icsel, V. Yilmaz, S . Aydinlik, M. Aygun, New manganese(II), iron(II), cobalt(II), nickel(II) and copper(II) saccharinate complexes of 2,6-bis(2-benzimidazolyl) pyridine as potential anticancer agents, Eur. J. Med. Chem. (2020), https://doi. org/10.1016/j.ejmech.2020.112535.R. Esteghamat-Panah, H. Hadadzadeh, H. Farrokhpour, J. Simpson, A. Abdolmaleki, F. Abyar, Synthesis, structure, DNA/protein binding, and cytotoxic activity of a rhodium(III) complex with 2,6-Bis(2-benzimidazolyl) pyridine, Eur. J. Med. Chem. 15 (2017) 658–971, https://doi.org/10.1016/j. ejmech.2016.11.005.K. Mandal, Oxidase Studies of Substituted Catechols using Copper (II) Complex of Bis (2-benzimidazolylmethyl) ether, Int. J. Sci. Res. 3 (2014) 1303–1305. https://www.ijsr.net/archive/v3i7/MDIwMTQxMjgx.pdf.A. Martínez, I.D. Membrillo, V. Ugalde-Saldívar, L. Gasque, Dinuclear copper complexes with imidazole derivative ligands: A theoretical study related to catechol oxidase activity, J. Phys. Chem. B. 116 (2012) 8038–8044, https://doi. org/10.1021/jp300444m.E. Mijangos, J. Reedijkb, L. Gasque, Copper(II) complexes of a polydentate imidazole-based ligand. pH effect on magnetic coupling and catecholase activity, Dalton Trans. (2008) 1857–1863, https://doi.org/10.1039/B714283H.L. Dudd, E. Venardou, E. Garcia-Verdugo, P. Licence, A. Blake, C. Wilson, M. Poliakoff, Synthesis of benzimidazoles in high-temperature water, Green Chem. 5 (2003) 187–192, https://doi.org/10.1039/b212394k.D. Evans, Paramagnetic Susceptibility, etc., Paramagnetic Susceptibility, etc. 2003 400. The determination of the pararnagnetic susceptibility, J. Chem. Soc. 1959 (2003) 2003–2005.Crystal Clear. Crystal Structure, RigakuMSC. Texas, USA, 2004, (n.d.).G. Sheldrick, A short history of SHELX, Acta Crystallogr. Sect. A Found. Crystallogr. 64 (2008) 112–122, https://doi.org/10.1107/S0108767307043930.G. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr. Sect. C Struct. Chem. 71 (2015) 3–8, https://doi.org/10.1107/S2053229614024218.A. Spek, Single-crystal structure validation with the program PLATON, J. Appl. Crystallogr. 36 (2003) 7–13, https://doi.org/10.1107/S0021889802022112D. Dey, S. Das, H.R. Yadav, A. Ranjani, L. Gyathri, S. Roy, P.S. Guin, D. Dhanasekaran, A.R. Choudhury, M.A. Akbarsha, B. Biswas, Design of a mononuclear copper(II)-phenanthroline complex: Catechol oxidation, DNA cleavage and antitumor properties, Polyhedron 106 (2016) 106–114, https:// doi.org/10.1016/j.poly.2015.12.055.Y. Toubi, R. Touzani, S. Radi, S. El Kadiri, Synthesis, characterization and catecholase activity of copper (II) complexes with bispyrazole tri-podal Ligands, J. Mater. Environ. Sci. 3 (2012) 328–341.A. Lever, Inorganic electronic spectroscopy, 2nd edition., Elsevier, New York, 1984.S. Satyanarayana, K. Nagasundara, Synthesis and spectral properties of the complexes of cobalt(II), nickel(II), copper (II), zinc(II), and cadmium(II) with 2- (Thiomethyl-20 -benzimidazolyl)-benzimidazole, Synth. React. Inorg. Met.-Org. Chem. 34 (2004) 883–895, https://doi.org/10.1081/SIM-120037514M. Amirnasr, A. Mahmoudkhani, A. Gorji, S. Dehghanpour, H. Bijanzadeh, Cobalt(II), nickel(II), and zinc(II) complexes with bidentate N,N-bis(bphenylcinnamaldehyde)-1,2-diiminoethane Schiff base: synthesis and structures, Polyhedron 21 (2002) 2733-2742.https://doi.org/10.1016/S0277- 5387(02)01277-9J. Scepaniak, T. Harris, C. Vogel, J. Sutter, K. Meyer, J. Smith, Spin crossover in a four-coordinate iron(II) complex, J. Am. Chem. Soc. 133 (2011) 3824–3827, https://doi.org/10.1021/ja2003473.W. Geary, The use of conductivity measurements in organic solvents for the characterisation of coordination compounds, Coord. Chem. Rev. 7 (1971) 81– 122, https://doi.org/10.1016/S0010-8545(00)80009-0.L. Michaelis, M. Menten, R. Goody, K. Johnson, Die kinetik der invertinwirkung (translated: The kinetics of invertase action), Biochemistry 50 (39) (2011) 8264–8269, https://doi.org/10.1021/bi201284u.R. Roskoski, B. Ridge, H. Shoe, Michaelis-Menten Kinetics, Elsevier Inc., 2015. https://doi.org/10.1016/B978-0-12-801238-3.05143-6H. Lineweaver, D. Burk, B.H. Lineweaver, D. Burk, The determination of Enzyme Dissociation Constants, J. Am. Chem. Soc 56 (1934) 658–666, https://doi.org/ 10.1021/ja01318a036.A. Ghosh, C. Purohit, R. Ghosh, Synthesis and structural characterization of a cobalt(III) complex with an (N, S, O) donor Schiff base ligand: Catechol oxidase and phenoxazinone synthase activities, Polyhedron 155 (2018) 194–201, https://doi.org/10.1016/j.poly.2018.08.021.I. Ali, B. Mandal, R. Saha, R. Ghosh, M. Chandra Majee, D. Mondal, P. Mitra, D. Mandal, Mono and tri-nuclear cobalt(III) complexes with sterically constrained phenol based N2O2 ligand: Synthesis, structure and catechol oxidase activity, Polyhedron 180 (2020), https://doi.org/10.1016/j. poly.2020.114429 114429.F. Ferre, J. Resende, J. Schultz, A. Mangrich, R. Faria, A. Rocha, M. Scarpellini, Catalytic promiscuity of mononuclear copper(II) complexes in mild conditions: Catechol and cyclohexane oxidations, Polyhedron 123 (2017) 293–304, https://doi.org/10.1016/j.poly.2016.11.045.T. Camargo, F. Maia, C. Chaves, B. De Souza, A. Bortoluzzi, N. Castilho, T. Bortolotto, H. Terenzi, E.E. Castellano, W. Haase, Z. Tomkowicz, R. Peralta, A. Neves, Synthesis, characterization, hydrolase and catecholase activity of a dinuclear iron(III) complex: Catalytic promiscuity, J. Inorg. Biochem. 146 (2015) 77–88,http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALPolyhedron 2021- 1-s2.0-S027753872100214X-mai_Mayamaru Guerra De S.pdfPolyhedron 2021- 1-s2.0-S027753872100214X-mai_Mayamaru Guerra De S.pdfapplication/pdf792313https://repositorio.utb.edu.co/bitstream/20.500.12585/10355/1/Polyhedron%202021-%201-s2.0-S027753872100214X-mai_Mayamaru%20Guerra%20De%20S.pdf7e9fedfc6c4efc58de59568db652530bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10355/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10355/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52TEXTPolyhedron 2021- 1-s2.0-S027753872100214X-mai_Mayamaru Guerra De S.pdf.txtPolyhedron 2021- 1-s2.0-S027753872100214X-mai_Mayamaru Guerra De S.pdf.txtExtracted texttext/plain42521https://repositorio.utb.edu.co/bitstream/20.500.12585/10355/4/Polyhedron%202021-%201-s2.0-S027753872100214X-mai_Mayamaru%20Guerra%20De%20S.pdf.txt2ec6b420722df7e7bb7b5694e0240773MD54THUMBNAILPolyhedron 2021- 1-s2.0-S027753872100214X-mai_Mayamaru Guerra De S.pdf.jpgPolyhedron 2021- 1-s2.0-S027753872100214X-mai_Mayamaru Guerra De S.pdf.jpgGenerated Thumbnailimage/jpeg103301https://repositorio.utb.edu.co/bitstream/20.500.12585/10355/5/Polyhedron%202021-%201-s2.0-S027753872100214X-mai_Mayamaru%20Guerra%20De%20S.pdf.jpg37fb2c9bb71fd3eefda695352c277862MD5520.500.12585/10355oai:repositorio.utb.edu.co:20.500.12585/103552021-08-07 02:10:37.072Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=