Active and reactive power conditioning using SMES devices with PMW-CSC: A feedback nonlinear control approach

The active and reactive power conditioning using superconducting magnetic energy storage (SMES) systems for low-voltage distribution networks via feedback nonlinear control is proposed in this paper. The SMES system is interconnected to ac grid using a pulsed-width modulated current source converter...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8732
Acceso en línea:
https://hdl.handle.net/20.500.12585/8732
Palabra clave:
Active and reactive power compensation
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_e873a1f0fbf75f803214781757682610
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8732
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Active and reactive power conditioning using SMES devices with PMW-CSC: A feedback nonlinear control approach
title Active and reactive power conditioning using SMES devices with PMW-CSC: A feedback nonlinear control approach
spellingShingle Active and reactive power conditioning using SMES devices with PMW-CSC: A feedback nonlinear control approach
Active and reactive power compensation
title_short Active and reactive power conditioning using SMES devices with PMW-CSC: A feedback nonlinear control approach
title_full Active and reactive power conditioning using SMES devices with PMW-CSC: A feedback nonlinear control approach
title_fullStr Active and reactive power conditioning using SMES devices with PMW-CSC: A feedback nonlinear control approach
title_full_unstemmed Active and reactive power conditioning using SMES devices with PMW-CSC: A feedback nonlinear control approach
title_sort Active and reactive power conditioning using SMES devices with PMW-CSC: A feedback nonlinear control approach
dc.subject.keywords.none.fl_str_mv Active and reactive power compensation
topic Active and reactive power compensation
description The active and reactive power conditioning using superconducting magnetic energy storage (SMES) systems for low-voltage distribution networks via feedback nonlinear control is proposed in this paper. The SMES system is interconnected to ac grid using a pulsed-width modulated current source converter (PWM-CSC). The dynamical model of the system exhibits a nonlinear structure, which is eliminated by the application of a nonlinear feedback controller based of the expected behavior of the closed-loop system. The steady state analysis under time-domain reference frame to verify the stability properties on the proposed controller is used. The general control rules allow improving different objectives. The robustness and applicability of the proposed controller is tested considering unbalance and harmonic distortion in the voltage provided by the ac grid. It is also considered the possibility to use the SMES system with the proposed controller to compensate the active power oscillations of a wind-generator system. © 2019 The Authors
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-06T19:05:12Z
dc.date.available.none.fl_str_mv 2019-11-06T19:05:12Z
dc.date.issued.none.fl_str_mv 2019
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Ain Shams Engineering Journal; Vol. 10, Núm. 2; pp. 369-378
dc.identifier.issn.none.fl_str_mv 2090-4479
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8732
dc.identifier.doi.none.fl_str_mv 10.1016/j.asej.2019.01.001
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
identifier_str_mv Ain Shams Engineering Journal; Vol. 10, Núm. 2; pp. 369-378
2090-4479
10.1016/j.asej.2019.01.001
Universidad Tecnológica de Bolívar
Repositorio UTB
url https://hdl.handle.net/20.500.12585/8732
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Ain Shams University
publisher.none.fl_str_mv Ain Shams University
dc.source.none.fl_str_mv https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85061840402&doi=10.1016%2fj.asej.2019.01.001&partnerID=40&md5=ee1a857e2b9dc337d1686c09e250d5c4
Scopus 57191493648
Scopus 56919564100
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8732/1/DOI10_1016j_asej_2019_01_001.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/8732/4/DOI10_1016j_asej_2019_01_001.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/8732/5/DOI10_1016j_asej_2019_01_001.pdf.jpg
bitstream.checksum.fl_str_mv 234aad70992539c0938db450cb98c1b0
1b97c925642a9e4a006da1ecdd1fad3c
1685ba68df895e2b7d55a0ec2696e57a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021699075571712
spelling 2019-11-06T19:05:12Z2019-11-06T19:05:12Z2019Ain Shams Engineering Journal; Vol. 10, Núm. 2; pp. 369-3782090-4479https://hdl.handle.net/20.500.12585/873210.1016/j.asej.2019.01.001Universidad Tecnológica de BolívarRepositorio UTBThe active and reactive power conditioning using superconducting magnetic energy storage (SMES) systems for low-voltage distribution networks via feedback nonlinear control is proposed in this paper. The SMES system is interconnected to ac grid using a pulsed-width modulated current source converter (PWM-CSC). The dynamical model of the system exhibits a nonlinear structure, which is eliminated by the application of a nonlinear feedback controller based of the expected behavior of the closed-loop system. The steady state analysis under time-domain reference frame to verify the stability properties on the proposed controller is used. The general control rules allow improving different objectives. The robustness and applicability of the proposed controller is tested considering unbalance and harmonic distortion in the voltage provided by the ac grid. It is also considered the possibility to use the SMES system with the proposed controller to compensate the active power oscillations of a wind-generator system. © 2019 The AuthorsDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS, Department of Science, Information Technology and Innovation, Queensland GovernmentRecurso electrónicoapplication/pdfengAin Shams Universityhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85061840402&doi=10.1016%2fj.asej.2019.01.001&partnerID=40&md5=ee1a857e2b9dc337d1686c09e250d5c4Scopus 57191493648Scopus 56919564100Active and reactive power conditioning using SMES devices with PMW-CSC: A feedback nonlinear control approachinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Active and reactive power compensationGil-González, WalterMontoya, O.D.Farahani, M., A new control strategy of SMES for mitigating subsynchronous oscillations (2012) Physica C, 483, pp. 34-39Gil-González, W., Montoya, O.D., Garces, A., Control of a SMES for mitigating subsynchronous oscillations in power systems: a PBC-PI approach (2018) J Energy Storage, 20, pp. 163-172Ortega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans Power Syst, 31 (5), pp. 3369-3380Ali, M.H., Murata, T., Tamura, J., Transient stability enhancement by fuzzy logic-controlled SMES considering coordination with optimal reclosing of circuit breakers (2008) IEEE Trans Power Syst, 23 (2), pp. 631-640Farahani, M., Ganjefar, S., Solving LFC problem in an interconnected power system using superconducting magnetic energy storage (2013) Physica C, 487, pp. 60-66Shayeghi, H., Jalili, A., Shayanfar, H., A robust mixed H2/H∞ based LFC of a deregulated power system including SMES (2008) Energy Convers Manage, 49 (10), pp. 2656-2668Huang, X., Zhang, G., Xiao, L., Optimal location of SMES for improving power system voltage stability (2010) IEEE Trans Appl Supercond, 20 (3), pp. 1316-1319Shi, J., Tang, Y., Ren, L., Li, J., Cheng, S., Discretization-based decoupled state-feedback control for current Source Power Conditioning System of SMES (2008) IEEE Trans Power Del, 23 (4), pp. 2097-2104Ali, M., Wu, B., Dougal, R., An overview of SMES applications in power and energy systems (2010) IEEE Trans Sustain Energy, 1 (1), pp. 38-47Ibrahim, H., Ilinca, A., Perron, J., Energy storage systems – characteristics and comparisons (2008) Renew Sustain Energy Rev, 12 (5), pp. 1221-1250Gil-González, W., Oscar Danilo, M., Passivity-based PI control of a SMES system to support power in electrical grids: a bilinear approach (2018) J Energy Storage, 18, pp. 459-466Montoya, O.D., Gil-González, W., Garces, A., SCES integration in power grids: a PBC approach under abc, αβ0 and dq0 reference frames (2018) 2018 IEEE PES Transmission & Distribution Conference and Exhibition-Latin America (T&D-LA), pp. 1-5. , IEEEMontoya, O.D., Gil-González, W., Garcés, A., Escobar, A., Grisales, L.F., (2018), pp. 65-70. , Nonlinear control for battery energy storage systems in power grids. In: 2018 IEEE Green Technologies ConferenceLuo, X., Wang, J., Dooner, M., Clarke, J., Overview of current development in electrical energy storage technologies and the application potential in power system operation (2015) Appl Energy, 137, pp. 511-536Ferreira, H.L., Garde, R., Fulli, G., Kling, W., Lopes, J.P., Characterisation of electrical energy storage technologies (2013) Energy, 53, pp. 288-298Rehman, S., Al-Hadhrami, L.M., Alam, M.M., Pumped hydro energy storage system: a technological review (2015) Renew Sustain Energy Rev, 44, pp. 586-598Zakeri, B., Syri, S., Electrical energy storage systems: a comparative life cycle cost analysis (2015) Renew Sustain Energy Rev, 42, pp. 569-596Montoya, O., Gil-González, W., Time-domain analysis for current control in single-phase distribution networks using SMES devices with PWM-CSCs (2019) Electr Power Compon Syst, pp. 1-10Montoya, O.D., Garcés, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: supercapacitors and distributed generators (2018) J Energy Storage, 16, pp. 250-258Montoya, O.D., Garcés, A., Espinosa-Pérez, G., A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems (2018) J Energy Storage, 16, pp. 259-268Wang, S., Jin, J., Design and analysis of a fuzzy logic controlled SMES system (2014) IEEE Trans Appl Supercond, 24 (5), pp. 1-5Montoya, O.D., Gil-González, W., Garces, A., Control for EESS in three-phase microgrids under time-domain reference frame via PBC theory. IEEE Trans Circ. Syst II: Express BriefsGiraldo, E., Garcés, A., An adaptive control strategy for a wind energy conversion system based on PWM-CSC and PMSG (2014) IEEE Trans Power Syst, 29 (3), pp. 1446-1453Montoya, O.D., Gil-González, W., Garcés, A., Espinosa-Pérez, G., Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC (2018) J Energy Storage, 17, pp. 261-271Ortega, A., Milano, F., (2016), pp. 1-7. , Comparison of different control strategies for energy storage devices. In: 2016 Power Systems Computation Conference (PSCC)Liu, F., Mei, S., Xia, D., Ma, Y., Jiang, X., Lu, Q., Experimental evaluation of nonlinear robust control for SMES to improve the transient stability of power systems (2004) IEEE Trans Energy Convers, 19 (4), pp. 774-782Tan, Y.L., Wang, Y., (1998), 1, pp. 171-176. , Stability enhancement using SMES and robust nonlinear control. In: Energy Management and Power Delivery, 1998. Proceedings of EMPD ’98. 1998 International Conference on vol.1. doi:Vachirasricirikul, S., Ngamroo, I., (2014), pp. 1-4. , Improved H2/H∞ control-based robust PI controller design of SMES for suppression of power fluctuation in microgrid. In: 2014 International Electrical Engineering Congress (IEECON)Lu, Q., Sun, Y., Mei, S., (2013) Nonlinear control systems and power system dynamics, 10. , Springer Science & Business MediaYi, H., Zhuo, F., Wang, F., Wang, Z., A digital hysteresis current controller for three-level neural-point-clamped inverter with mixed-levels and prediction-based sampling (2016) IEEE Trans Power Electron, 31 (5), pp. 3945-3957Flores-Bahamonde, F., Valderrama-Blavi, H., Bosque-Moncusi, J.M., García, G., Martínez-Salamero, L., Using the sliding-mode control approach for analysis and design of the boost inverter (2016) IET Power Electron, 9 (8), pp. 1625-1634Tao, C.W., Wang, C.M., Chang, C.W., A design of a dc-ac inverter using a modified ZVS-PWM auxiliary commutation pole and a DSP-based PID-like fuzzy control (2016) IEEE Trans Ind Electron, 63 (1), pp. 397-405Gil-González, W., Montoya, O.D., Garcés, A., Escobar-Mejía, A., (2017), pp. 145-150. , Supervisory LMI-based state-feedback control for current source power conditioning of SMES. In: 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech)Gil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ingeniería y Ciencia, 13 (26), pp. 147-171Kiaei, I., Lotfifard, S., Tube-based model predictive control of energy storage systems for enhancing transient stability of power systems (2018) IEEE Trans Smart Grid, 9 (6), pp. 6438-6447Nguyen, T.T., Yoo, H.J., Kim, H.M., Applying model predictive control to SMES system in microgrids for Eddy current losses reduction (2016) IEEE Trans Appl Supercond, 26 (4), pp. 1-5Hou, R., Song, H., Nguyen, T.-T., Qu, Y., Kim, H.-M., Robustness improvement of superconducting magnetic energy storage system in microgrids using an energy shaping passivity-based control strategy (2017) Energies, 10 (5), p. 671Gil-González, W., Montoya, O.D., Garcés, A., Espinosa-Pérez, G., (2017), pp. 89-95. , IDA-passivity-based control for superconducting magnetic energy storage with PWM-CSC. In: 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech)Montoya, O., Gil-González, W., Serra, F., PBC approach for SMES devices in electric distribution networks (2018) IEEE Trans Circuits Syst II, 65 (12), pp. 2003-2007Ye, Y., Kazerani, M., Quintana, V.H., Current-source converter based STATCOM: modeling and control (2005) IEEE Trans Power Deliv, 20 (2), pp. 795-800Fuchs, F.W., Kloenne, A., DC link and dynamic performance features of IPEMC (2004)Monteiro, V., Pinto, J., Exposto, B., Afonso, J.L., Comprehensive comparison of a current-source and a voltage-source converter for three-phase ev fast battery chargers (2015) 2015 9th International Conference on Compatibility and Power Electronics (CPE), pp. 173-178. , IEEEDeben Singh, M., Mehta, R.K., Singh, A.K., Integrated fuzzy-PI controlled current source converter based D-STATCOM (2016) Cogent Eng, 3 (1), p. 1138921Golestan, S., Guerrero, J.M., Vasquez, J.C., Three-phase PLLs: a review of recent advances (2017) IEEE Trans Power Electron, 32 (3), pp. 1894-1907Pham, D.H., Hunter, G., Li, L., Zhu, J., (2015), pp. 1-6. , Advanced microgrid power control through grid-connected inverters. In: 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)Khalil, H., Nonlinear systems (2002), 3rd ed. Prentice-Hall New JerseyRashid, M.H., Power electronics handbook-devices, circuits, and applications (2011), ElsevierChapman, S., (2005), Electric machinery fundamentals. Electric machinery fundamentals. McGraw-Hill Companies. Incorporated;http://purl.org/coar/resource_type/c_6501ORIGINALDOI10_1016j_asej_2019_01_001.pdfapplication/pdf2276985https://repositorio.utb.edu.co/bitstream/20.500.12585/8732/1/DOI10_1016j_asej_2019_01_001.pdf234aad70992539c0938db450cb98c1b0MD51TEXTDOI10_1016j_asej_2019_01_001.pdf.txtDOI10_1016j_asej_2019_01_001.pdf.txtExtracted texttext/plain42600https://repositorio.utb.edu.co/bitstream/20.500.12585/8732/4/DOI10_1016j_asej_2019_01_001.pdf.txt1b97c925642a9e4a006da1ecdd1fad3cMD54THUMBNAILDOI10_1016j_asej_2019_01_001.pdf.jpgDOI10_1016j_asej_2019_01_001.pdf.jpgGenerated Thumbnailimage/jpeg111378https://repositorio.utb.edu.co/bitstream/20.500.12585/8732/5/DOI10_1016j_asej_2019_01_001.pdf.jpg1685ba68df895e2b7d55a0ec2696e57aMD5520.500.12585/8732oai:repositorio.utb.edu.co:20.500.12585/87322023-05-26 10:21:15.195Repositorio Institucional UTBrepositorioutb@utb.edu.co