Soft-computing approaches for rescheluding problems in a manufacturing industry

Flexible manufacturing systems as technological and automated structures have a high complexity for scheduling. The decision-making process is made difficult with interruptions that may occur in the system and these problems increase the complexity to define an optimal schedule. The research propose...

Full description

Autores:
Acevedo Chedid, Jaime
Grice Reyes, Jennifer
Ospina-Mateus, Holman
Salas-Navarro, Katherinne
Santander-Mercado, Alcides
Sankar Sana, Shib
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10331
Acceso en línea:
https://hdl.handle.net/20.500.12585/10331
https://doi.org/10.1051/ro/2020077
Palabra clave:
Flexible manufacturing system
Petri net
Scheduling
Reactive scheduling
Memetics algorithm.
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_e8719eff970f225ce49da3f8b7a71a1d
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10331
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Soft-computing approaches for rescheluding problems in a manufacturing industry
title Soft-computing approaches for rescheluding problems in a manufacturing industry
spellingShingle Soft-computing approaches for rescheluding problems in a manufacturing industry
Flexible manufacturing system
Petri net
Scheduling
Reactive scheduling
Memetics algorithm.
title_short Soft-computing approaches for rescheluding problems in a manufacturing industry
title_full Soft-computing approaches for rescheluding problems in a manufacturing industry
title_fullStr Soft-computing approaches for rescheluding problems in a manufacturing industry
title_full_unstemmed Soft-computing approaches for rescheluding problems in a manufacturing industry
title_sort Soft-computing approaches for rescheluding problems in a manufacturing industry
dc.creator.fl_str_mv Acevedo Chedid, Jaime
Grice Reyes, Jennifer
Ospina-Mateus, Holman
Salas-Navarro, Katherinne
Santander-Mercado, Alcides
Sankar Sana, Shib
dc.contributor.author.none.fl_str_mv Acevedo Chedid, Jaime
Grice Reyes, Jennifer
Ospina-Mateus, Holman
Salas-Navarro, Katherinne
Santander-Mercado, Alcides
Sankar Sana, Shib
dc.subject.keywords.spa.fl_str_mv Flexible manufacturing system
Petri net
Scheduling
Reactive scheduling
Memetics algorithm.
topic Flexible manufacturing system
Petri net
Scheduling
Reactive scheduling
Memetics algorithm.
description Flexible manufacturing systems as technological and automated structures have a high complexity for scheduling. The decision-making process is made difficult with interruptions that may occur in the system and these problems increase the complexity to define an optimal schedule. The research proposes a three-stage hybrid algorithm that allows the rescheduling of operations in an FMS. The novelty of the research is presented in two approaches: first is the integration of the techniques of Petri nets, discrete simulation, and memetic algorithms and second is the rescheduling environment with machine failures to optimize the makespan and Total Weighted Tardiness. The effectiveness of the proposed Soft computing approaches was validated with the bottleneck of heuristics and the dispatch rules. The results of the proposed algorithm show significant findings with the contrasting techniques. In the first stage (scheduling), improvements are obtained between 50 and 70% on performance indicators. In the second stage (failure), four scenarios are developed that improve the variability, flexibility, and robustness of the schedules. In the final stage (rescheduling), the results show that 78% of the instances have variations of less than 10% for the initial schedule. Furthermore, 88% of the instances support rescheduling with variations of less than 2% compared to the heuristics.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-03-02
dc.date.accessioned.none.fl_str_mv 2021-07-29T18:42:33Z
dc.date.available.none.fl_str_mv 2021-07-29T18:42:33Z
dc.date.submitted.none.fl_str_mv 2021-07-28
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Jaime Acevedo-Chedid, Jennifer Grice-Reyes, Holman Ospina-Mateus, Katherinne Salas-Navarro, Alcides Santander-Mercado and Shib Sankar Sana. Soft-computing approaches for rescheduling problems in a manufacturing industry. RAIRO-Oper. Res. 55 (2021) S2125–S2159. https://doi.org/10.1051/ro/2020077
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10331
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1051/ro/2020077
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Jaime Acevedo-Chedid, Jennifer Grice-Reyes, Holman Ospina-Mateus, Katherinne Salas-Navarro, Alcides Santander-Mercado and Shib Sankar Sana. Soft-computing approaches for rescheduling problems in a manufacturing industry. RAIRO-Oper. Res. 55 (2021) S2125–S2159. https://doi.org/10.1051/ro/2020077
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10331
https://doi.org/10.1051/ro/2020077
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.format.size.none.fl_str_mv 35 páginas
dc.coverage.spatial.none.fl_str_mv Colombia
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv RAIRO-Oper. Res. 55 (2021) S2125–S2159
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10331/1/Paper%20RAIRO%20ro200107_Holman%20Ospina%20Mateus.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10331/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10331/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10331/5/Paper%20RAIRO%20ro200107_Holman%20Ospina%20Mateus.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10331/4/Paper%20RAIRO%20ro200107_Holman%20Ospina%20Mateus.pdf.jpg
bitstream.checksum.fl_str_mv 23e245a2cf066ceca3b866bb385c4b47
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
88f4e82d77196df4a3d1f7d2d98f8a40
f1a66081431e19fc369b5685bfa40df5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021762861498368
spelling Acevedo Chedid, Jaime11cdb651-1161-436d-ac47-88a330629d17Grice Reyes, Jennifer1e45bc02-fded-4031-98c3-3e399ca7f8b4Ospina-Mateus, Holman1b4b1bc0-3606-4c14-bb13-dbc9d4251891Salas-Navarro, Katherinneb358d582-e66b-4c09-8f7e-34b116ff94aeSantander-Mercado, Alcides75e70f18-d5b6-4abf-a9a3-f39699abbc14Sankar Sana, Shibd10ac6cd-87f8-493f-80ec-cf649edaf60cColombia2021-07-29T18:42:33Z2021-07-29T18:42:33Z2020-03-022021-07-28Jaime Acevedo-Chedid, Jennifer Grice-Reyes, Holman Ospina-Mateus, Katherinne Salas-Navarro, Alcides Santander-Mercado and Shib Sankar Sana. Soft-computing approaches for rescheduling problems in a manufacturing industry. RAIRO-Oper. Res. 55 (2021) S2125–S2159. https://doi.org/10.1051/ro/2020077https://hdl.handle.net/20.500.12585/10331https://doi.org/10.1051/ro/2020077Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarFlexible manufacturing systems as technological and automated structures have a high complexity for scheduling. The decision-making process is made difficult with interruptions that may occur in the system and these problems increase the complexity to define an optimal schedule. The research proposes a three-stage hybrid algorithm that allows the rescheduling of operations in an FMS. The novelty of the research is presented in two approaches: first is the integration of the techniques of Petri nets, discrete simulation, and memetic algorithms and second is the rescheduling environment with machine failures to optimize the makespan and Total Weighted Tardiness. The effectiveness of the proposed Soft computing approaches was validated with the bottleneck of heuristics and the dispatch rules. The results of the proposed algorithm show significant findings with the contrasting techniques. In the first stage (scheduling), improvements are obtained between 50 and 70% on performance indicators. In the second stage (failure), four scenarios are developed that improve the variability, flexibility, and robustness of the schedules. In the final stage (rescheduling), the results show that 78% of the instances have variations of less than 10% for the initial schedule. Furthermore, 88% of the instances support rescheduling with variations of less than 2% compared to the heuristics.application/pdf35 páginasenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2RAIRO-Oper. Res. 55 (2021) S2125–S2159Soft-computing approaches for rescheluding problems in a manufacturing industryinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Flexible manufacturing systemPetri netSchedulingReactive schedulingMemetics algorithm.Cartagena de IndiasInvestigadores] J. Acevedo and G. Mej´ıa, Programaci´on reactiva y robusta de la producci´on en un ambiente sistema de manufactura flexible: llegada de nuevas ´ordenes y cambios en la prioridad de las ´ordenes de trabajo. Maestria, Departamento de Ingenier´ıa Industrial, Universidad de los Andes (2006).N. Al-Hinai and T. El-Mekkawy, An efficient hybridized genetic algorithm architecture for the flexible job shop scheduling problem. Flexible Serv. Manuf. J. 23 (2011) 64–85.O. Ba¸sak and Y.E. Albayrak, Petri net based decision system modeling in real-time scheduling and control of flexible automotive ¨ manufacturing systems. Comput. Ind. Eng. 86 (2015) 116–126O.T. Baruwa, M.A. Piera and A. Guasch, Deadlock-free scheduling method for flexible manufacturing systems based on timed colored Petri nets and anytime heuristic search. IEEE Trans. Syst. Man Cybern. 45 (2014) 831–846.J.A. Chedid, K.S. Navarro, H.O. Mateus and A.S. Mercado, Reprogramaci´on de producci´on en cadenas de suministro colaborativas: Una revisi´on de la literatura. Espacio 38 (2017) 23.F. Chen and J. Chen, Performance modelling and evaluation of dynamic tool allocation in flexible manufacturing systems using coloured Petri nets: an object-oriented approach. Int. J. Adv. Manuf. Technol. 21 (2003) 98–109.J. Chen and F.F. Chen, Adaptive scheduling in random flexible manufacturing systems subject to machine breakdowns. Int. J. Prod. Res. 41 (2003) 1927–1951H. Cho, Petri net models for message manipulation and event monitoring in an FMS cell. Int. J. Prod. Res. 36 (1998) 231–250C. Cotta, L. Mathieson and P. Moscato, Memetic algorithms. In: Handbook of Heuristics edited by R. Mart´ı, P. M. Pardalos, M. G. C. Resende. Springer, Cham (2018) 607–638.B.K. Dey, S. Pareek, M. Tayyab and B. Sarkar, Autonomation policy to control work-in-process inventory in a smart production system. Int. J. Prod. Res. (2020) 1–23. DOI: 10.1080/00207543.2020.1722325J. Dorn, R. Kerr and G. Thalhammer, Reactive scheduling: improving the robustness of schedules and restricting the effects of shop floor disturbances by fuzzy reasoning. Int. J. Human-Comput. Stud. 42 (1995) 687–704.H.A. Elmaraghy and T.Y. Elmekkawy, Deadlock-free rescheduling in flexible manufacturing systems. CIRP Ann. 51 (2002) 371–374.M.R. Garey, D.S. Johnson and R. Sethi, The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1 (1976) 117–129P. Garg, A comparison between Memetic algorithm and Genetic algorithm for the cryptanalysis of simplified data encryption standard algorithm. Int. J. Network Secur. App. 1 (2009) 34–42.A. Gholami, R. Sheikh, N. Mizani and S.S. Sana, ABC analysis of the customers using axiomatic design and incomplete rough set. RAIRO:OR 52 (2018) 1219–1232.R. Guchhait, B.K. Dey, S. Bhuniya, B. Ganguly, B. Mandal, R.K. Bachar, B. Sarkar, H.M. Wee and K. Chaudhuri, Investment for process quality improvement and setup cost reduction in an imperfect production process with warranty policy and shortages. RAIRO:OR 54 (2020) 251–266L. Han, K. Xing, X. Chen, H. Lei and F. Wang, Deadlock-free genetic scheduling for flexible manufacturing systems using Petri nets and deadlock controllers. Int. J. Prod. Res. 52 (2014) 1557-1572.L. Han, K. Xing, X. Chen and F. Xiong, A Petri net-based particle swarm optimization approach for scheduling deadlock-prone flexible manufacturing systems. J. Intel. Manuf. 29 (2018) 1083–1096.] S.K. Hasan, R. Sarker and D. Essam, Genetic algorithm for job-shop scheduling with machine unavailability and breakdowns. Int. J. Prod. Res. 49 (2011) 4999–5015I. Hatono, K. Yamagata and H. Tamura, Modeling and online scheduling of flexible manufacturing systems using stochastic Petri nets. IEEE Trans. Softw. Eng. 17 (1991) 126–132.H. Hoos and T. Stutzle, Stochastic Local Search: Foundations and Applications. Morgan Kaufmann Publishers, San Francisco, CA (2005).B. Huang, Z. Cai, M. Zhou and J. Hao, Scheduling of FMS based on binary decision diagram and Petri net. In: IEEE 15th International Conference on Networking, Sensing and Control (ICNSC). (2018) 1–6.] G. Jamali, S.S. Sana and R. Moghdani, Hybrid improved cuckoo search algorithm and genetic algorithm for solving markovmodulated demand. RAIRO:OR 52 (2018) 473–497.A. Khanna, P. Gautam, B. Sarkar and C.K. Jaggi, Integrated vendor–buyer strategies for imperfect production systems with maintenance and warranty policy. RAIRO:OR 54 (2020) 435–450.] Y.W. Kim, T. Suzuki and T. Narikiyo, FMS scheduling based on timed Petri Net model and reactive graph search. Appl. Math. Modell. 31 (2007) 955–970.] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by simulated annealing. Science 220 (1983) 671–680R.R. Kumar, A.K. Singh and M. Tiwari, A fuzzy based algorithm to solve the machine-loading problems of a FMS and its neuro fuzzy Petri net model. Int. J. Adv. Manuf. Technol. 23 (2004) 318–341.B.S. Kumar, G.J. Raju and G.R. Janardhana, Production planning in flexible manufacturing system by considering the multiobjective functions. In: Advances in Materials and Manufacturing Engineering. Lecture Notes in Mechanical Engineering. (ICAMME 2019) Springer, Singapore (2020) 343–352H. Lei, K. Xing, L. Han and Z. Gao, Hybrid heuristic search approach for deadlock-free scheduling of flexible manufacturing systems using Petri nets. Appl. Soft Comput. 55 (2017) 413–423.C. Li, W. Wu, Y. Feng and G. Rong, Scheduling FMS problems with heuristic search function and transition-timed Petri nets. J. Intell. Manuf. 26 (2015) 933–944C. Low and T.H. Wu, Mathematical modelling and heuristic approaches to operation scheduling problems in an FMS environment. Int. Jo. Prod. Res. 39 (2001) 689–708D.R. Mahapatra, S. Panda and S.S. Sana, Multi-choice and stochastic programming for transportation problem involved in supply of foods and medicines to hospitals with consideration of logistic distribution. RAIRO:OR 54 (2020) 1119–1132.S.V. Mehta, Predictable scheduling of a single machine subject to breakdowns. Int. J. Comput. Integr. Manuf. 12 (1999) 15–38.G. Mejia and J. Acevedo, Reactive scheduling in FMS: an integrated approach based on petri nets, genetic algorithms and simulation. In: Third International Conference on Production Research, Americas’ Region (2006)G. Mej´ıa and K. Ni˜no, A new Hybrid Filtered Beam Search algorithm for deadlock-free scheduling of flexible manufacturing systems using Petri Nets. Comput. Ind. Eng. 108 (2017) 165–176U. Mishra, J.Z. Wu and B. Sarkar, A sustainable production-inventory model for a controllable carbon emissions rate under shortages. J. Cleaner Prod. 256 (2020) 120268.P. Moscato and C. Cotta, Una introducci´on a los algoritmos mem´eticos. Intel. Artif. Rev. Iberoamericana Intel. Artif. 7 (2003) 131–148.] T. Murata, Petri nets: properties, analysis and applications. Proc. IEEE 77 (1989) 541–580.H.Z. Nabi and T. Aized, Performance evaluation of a carousel configured multiple products flexible manufacturing system using Petri net. Oper. Manag. Res. 13 (2020) 109–129.K.S. Navarro, J.A. Chedid, G.M. Arquez, W.F. Florez, H.O. Mateus, S.S. Sana and L.E. C´ardenas-Barr´on, An EPQ inventory model considering an imperfect production system with probabilistic demand and collaborative approach. J. Adv. Manage. Res. 17 (2019) 282–304K.S. Navarro, J.A. Chedid, W.F. Florez, H.O. Mateus, L.E. C´ardenas-Barr´on and S.S. Sana, A collaborative EPQ inventory model for a three-echelon supply chain with multiple products considering the effect of marketing effort on demand. J. Ind. Manage. Optim. 16 (2020) 1613–1633.P.S. Pachpor, R. Shrivastava, D. Seth and S. Pokharel, Application of Petri nets towards improved utilization of machines in job shop manufacturing environments. J. Manuf. Technol. Manage. 28 (2017) 169–188.] A.M. Patel and A.Y. Joshi, Modeling and analysis of a manufacturing system with deadlocks to generate the reachability tree using Petri net system. Proc. Eng. 64 (2013) 775–784.M. Pinedo, Scheduling. Springer, Cham (2012)M. Pinedo, Planning and Scheduling in Manufacturing and Services. Springer, New York, NY (2005).S.S. Sana, H. Ospina-Mateus, F.G. Arrieta and J.A. Chedid, Application of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industry. J. Ambient Intell. Humanized Comput. 10 (2019) 2063–2090.] S.S. Sankar, S. Ponnanbalam and C. Rajendran, A multiobjective genetic algorithm for scheduling a flexible manufacturing system. Int. J. Adv. Manuf. Technol. 22 (2003) 229–236S.S. Sankar, S. Ponnambalam and M. Gurumarimuthu, Scheduling flexible manufacturing systems using parallelization of multi-objective evolutionary algorithms. Int. J. Adv. Manuf. Technol. 30 (2006) 279–285.B. Santosa, R. Damayanti and B. Sarkar, Solving multi-product inventory ship routing with a heterogeneous fleet model using a hybrid cross entropy-genetic algorithm: a case study in Indonesia Prod. Manuf. Res. 4 (2016) 90–113N. Saxena, B. Sarkar and S. Singh, Selection of remanufacturing/production cycles with an alternative market: a perspective on waste management. J. Cleaner Prod. 245 (2020) 118935.B.K. Sett, S. Sarkar and B. Sarkar, Optimal buffer inventory and inspection errors in an imperfect production system with preventive maintenance. Int. J. Adv. Manuf. Technol. 90 (2017) 545–560.] M. Souier, M. Dahane and F. Maliki, An NSGA-II-based multiobjective approach for real-time routing selection in a flexible manufacturing system under uncertainty and reliability constraints. Int. J. Adv. Manuf. Technol. 100 (2019) 2813–2829A.A. Taleizadeh, L.E. C´ardenas-Barr´on and B. Mohammadi, A deterministic multi product single machine EPQ model with backordering, scraped products, rework and interruption in manufacturing process. Int. J. Prod. Econ. 150 (2014) 9–27Y. Tanimizu, T. Sakaguchi, K. Iwamura and N. Sugimura, Evolutional reactive scheduling for agile manufacturing systems. Int. J. Prod. Res. 44 (2006) 3727–3742E.S. Tashnizi, S. Farahani and A.F. Nahrekhalaji, Production process optimization in flexible manufacturing system using Petri nets. In: Proceedings of the World Congress on Engineering and Computer Science (2008) 22–24.] M. Tayyab, J. Jemai, H. Lim and B. Sarkar, A sustainable development framework for a cleaner multi-item multi-stage textile production system with a process improvement initiative. J. Cleaner Prod. 246 (2020) 119055.S. Tian, T. Wang, L. Zhang and X. Wu, Real-time shop floor scheduling method based on virtual queue adaptive control: algorithm and experimental results. Measurement 147 (2019) 106689.F. T¨uys¨uz and C. Kahraman, Modeling a flexible manufacturing cell using stochastic Petri nets with fuzzy parameters. Expert Syst. App. 37 (2010) 3910–3920M. Ullah and B. Sarkar, Recovery-channel selection in a hybrid manufacturing-remanufacturing production model with RFID and product quality. Int. J. Prod. Econ. 219 (2020) 360–374G.E. Vieira, J.W. Herrmann and E. Lin, Rescheduling manufacturing systems: a framework of strategies, policies, and methods. J. Schedul. 6 (2003) 39–62.] Z. Zhao, G. Zhang and Z. Bing, Scheduling optimization for FMS based on Petri net modeling and GA. In: IEEE International Conference on Automation and Logistics (ICAL) (2011) 422–427http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALPaper RAIRO ro200107_Holman Ospina Mateus.pdfPaper RAIRO ro200107_Holman Ospina Mateus.pdfapplication/pdf2965991https://repositorio.utb.edu.co/bitstream/20.500.12585/10331/1/Paper%20RAIRO%20ro200107_Holman%20Ospina%20Mateus.pdf23e245a2cf066ceca3b866bb385c4b47MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10331/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10331/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTPaper RAIRO ro200107_Holman Ospina Mateus.pdf.txtPaper RAIRO ro200107_Holman Ospina Mateus.pdf.txtExtracted texttext/plain103059https://repositorio.utb.edu.co/bitstream/20.500.12585/10331/5/Paper%20RAIRO%20ro200107_Holman%20Ospina%20Mateus.pdf.txt88f4e82d77196df4a3d1f7d2d98f8a40MD55THUMBNAILPaper RAIRO ro200107_Holman Ospina Mateus.pdf.jpgPaper RAIRO ro200107_Holman Ospina Mateus.pdf.jpgGenerated Thumbnailimage/jpeg76879https://repositorio.utb.edu.co/bitstream/20.500.12585/10331/4/Paper%20RAIRO%20ro200107_Holman%20Ospina%20Mateus.pdf.jpgf1a66081431e19fc369b5685bfa40df5MD5420.500.12585/10331oai:repositorio.utb.edu.co:20.500.12585/103312023-05-26 11:05:53.567Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=