Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulation
In this paper a mixed-integer non-linear programming formulation for optimal conductor selection in radial distribution networks is proposed. The objective function in this problem corresponds to the minimization of power losses and costs of investment in conductors. A typical set of constraints cor...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8874
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8874
- Palabra clave:
- Conductors selection
Mixed-integer non-linear programming formulation
Mono-objective optimization
Radial distribution networks
Electric load flow
Integer programming
Ion beams
Voltage regulators
Algebraic modeling
Conductor selections
Distribution systems
Mixed-integer nonlinear programming
Objective functions
Objective optimization
Power flow balance
Radial distribution networks
Nonlinear programming
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_e78595675319d5cd3fc5f79dc6868f28 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8874 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulation |
title |
Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulation |
spellingShingle |
Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulation Conductors selection Mixed-integer non-linear programming formulation Mono-objective optimization Radial distribution networks Electric load flow Integer programming Ion beams Voltage regulators Algebraic modeling Conductor selections Distribution systems Mixed-integer nonlinear programming Objective functions Objective optimization Power flow balance Radial distribution networks Nonlinear programming |
title_short |
Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulation |
title_full |
Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulation |
title_fullStr |
Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulation |
title_full_unstemmed |
Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulation |
title_sort |
Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulation |
dc.subject.keywords.none.fl_str_mv |
Conductors selection Mixed-integer non-linear programming formulation Mono-objective optimization Radial distribution networks Electric load flow Integer programming Ion beams Voltage regulators Algebraic modeling Conductor selections Distribution systems Mixed-integer nonlinear programming Objective functions Objective optimization Power flow balance Radial distribution networks Nonlinear programming |
topic |
Conductors selection Mixed-integer non-linear programming formulation Mono-objective optimization Radial distribution networks Electric load flow Integer programming Ion beams Voltage regulators Algebraic modeling Conductor selections Distribution systems Mixed-integer nonlinear programming Objective functions Objective optimization Power flow balance Radial distribution networks Nonlinear programming |
description |
In this paper a mixed-integer non-linear programming formulation for optimal conductor selection in radial distribution networks is proposed. The objective function in this problem corresponds to the minimization of power losses and costs of investment in conductors. A typical set of constraints corresponding to the operative conditions in distribution systems, as power flow balance, voltage regulation, thermal capacity and telescopic conductors distribution, among others, are employed. Three different demand scenarios are considered to evaluate their impacts in the final conductor selection. The proposed mathematical model is solved using the general algebraic modeling system (GAMS) and DICOPT solver. Two radial distribution networks with 8 and 27 nodes, respectively, are employed to verify the general performance of the mathematical model proposed. © 2003-2012 IEEE. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:32Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:32Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
IEEE Latin America Transactions; Vol. 16, Núm. 8; pp. 2213-2220 |
dc.identifier.issn.none.fl_str_mv |
1548-0992 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8874 |
dc.identifier.doi.none.fl_str_mv |
10.1109/TLA.2018.8528237 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56919564100 36449223500 56786626200 |
identifier_str_mv |
IEEE Latin America Transactions; Vol. 16, Núm. 8; pp. 2213-2220 1548-0992 10.1109/TLA.2018.8528237 Universidad Tecnológica de Bolívar Repositorio UTB 56919564100 36449223500 56786626200 |
url |
https://hdl.handle.net/20.500.12585/8874 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE Computer Society |
publisher.none.fl_str_mv |
IEEE Computer Society |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056570979&doi=10.1109%2fTLA.2018.8528237&partnerID=40&md5=a980a6c2a27eb7b1b6c2819fd93ad908 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8874/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021570888204288 |
spelling |
2020-03-26T16:32:32Z2020-03-26T16:32:32Z2018IEEE Latin America Transactions; Vol. 16, Núm. 8; pp. 2213-22201548-0992https://hdl.handle.net/20.500.12585/887410.1109/TLA.2018.8528237Universidad Tecnológica de BolívarRepositorio UTB569195641003644922350056786626200In this paper a mixed-integer non-linear programming formulation for optimal conductor selection in radial distribution networks is proposed. The objective function in this problem corresponds to the minimization of power losses and costs of investment in conductors. A typical set of constraints corresponding to the operative conditions in distribution systems, as power flow balance, voltage regulation, thermal capacity and telescopic conductors distribution, among others, are employed. Three different demand scenarios are considered to evaluate their impacts in the final conductor selection. The proposed mathematical model is solved using the general algebraic modeling system (GAMS) and DICOPT solver. Two radial distribution networks with 8 and 27 nodes, respectively, are employed to verify the general performance of the mathematical model proposed. © 2003-2012 IEEE.Recurso electrónicoapplication/pdfengIEEE Computer Societyhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85056570979&doi=10.1109%2fTLA.2018.8528237&partnerID=40&md5=a980a6c2a27eb7b1b6c2819fd93ad908Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Conductors selectionMixed-integer non-linear programming formulationMono-objective optimizationRadial distribution networksElectric load flowInteger programmingIon beamsVoltage regulatorsAlgebraic modelingConductor selectionsDistribution systemsMixed-integer nonlinear programmingObjective functionsObjective optimizationPower flow balanceRadial distribution networksNonlinear programmingMontoya O.D.Garces A.Castro C.A.Lavorato, M., Franco, J.F., Rider, M.J., Romero, R., Imposing radiality constraints in distribution system optimization problems (2012) IEEE Transactions on Power Systems, 27 (1), pp. 172-180. , FebWang, Z., Liu, H., Yu, D.C., Wang, X., Song, H., A practical approach to the conductor size selection in planning radial distribution systems (2000) IEEE Transactions on Power Delivery, 15 (1), pp. 350-354. , JanXing, H., Cheng, H., Zhang, Y., Zeng, P., Active distribution network expansion planning integrating dispersed energy storage systems (2016) IET Generation, Transmission & Distribution, 10 (3), pp. 638-644Padua De Benetti, S.G., Sanches Mantovani, J.R., Cossi, A.M., Planning medium-voltage electric power distribution systems through a scatter search algorithm (2015) IEEE Latin America Transactions, 13 (8), pp. 2637-2645. , AugCarnelossi Cunha, V., Sanches Mantovani, J.R., Planning and project of medium voltage electric power distribution systems (2016) IEEE Latin America Transactions, 14 (5), pp. 2298-2308. , MayMontoya, O.D., Grajales, A., Hincapié, R.A., Granada, M., Gallego, R.A., Methodology for optimal distribution system planning considering automatic reclosers to improve reliability indices (2014) 2014 IEEE PES Transmission & Distribution Conference and Exposition - Latin America (PES T & D-LA), pp. 1-6. , MedellinMontoya, O.D., Grajales, A., Hincapié, R.A., Granada, M., A new approach to solve the distribution system planning problem considering automatic reclosers (2017) Ingeniare. Revista Chilena de Ingeniería, 25 (3). , JulFranco, J.F., Rider, M.J., Lavorato, M., Romero, R., Optimal conductor size selection and reconductoring in radial distribution systems using a mixed-integer lp approach (2013) IEEE Transactions on Power Systems, 28 (1), pp. 10-20. , FebWang, Z., Liu, H., Yu, D.C., Wang, X., Song, H., A practical approach to the conductor size selection in planning radial distribution systems (2000) IEEE Transactions on Power Delivery, 15 (1), pp. 350-354. , JanFalaghi, H., Ramezani, M., Haghifam, M.R., Milani, K.R., Optimal selection of conductors in radial distribution systems with time varying load (2005) 18th International Conference and Exhibition Electricity Distribution, , Turin, ItalyCastilho-Neto, J., Cossi, A.M., Alocação de cabos em redes de distribuição de energia elétrica de média tensão (mt) utilizando algoritmo Chu & Beasley (2014) Simpósio Brasileiro de Sistemas Eletricos (SBSE), , Foz do Iguaçu, Brasil. AprMendoza, F., Requena, D., Bemal-Agustin, J.L., Dominguez-Navarro, J.A., Optimal conductor size selection in radial power distribution systems using evolutionary strategies (2006) IEEE/PES Transmission & Distribution Conference and Exposition: Latin America, , Caracas. VenezuelaSivanagaraju, S., Sreenivasulu, N., Vijayakumar, M., Ramana, T., Optimal conductor selection for radial distribution systems (2002) Electric Power Systems Research, 63 (28), pp. 95-103. , SeptKaur, D., Sharma, J., Optimal conductor sizing in radial distribution systems planning (2008) International Journal of Electrical Power & Energy Systems, 30 (4), pp. 261-271. , MayMontoya, O.D., Grajales, A., Hincapié, R.A., Selección óptima de conductores en sistemas de distribución empleando el algoritmo búsqueda tabú (2018) Ingeniare. Rev. Chil. Ing., 26 (2), pp. 283-295. , JunBakkabulindi, G., Hesamzadeh, M.R., Amelin, M., Da Silva, I.P., Models for conductor size selection in Single Wire Earth Return distribution networks (2013) AFRICON, , Port Louis. Mauriciohttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8874/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8874oai:repositorio.utb.edu.co:20.500.12585/88742021-02-02 14:38:16.942Repositorio Institucional UTBrepositorioutb@utb.edu.co |