Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulation

In this paper a mixed-integer non-linear programming formulation for optimal conductor selection in radial distribution networks is proposed. The objective function in this problem corresponds to the minimization of power losses and costs of investment in conductors. A typical set of constraints cor...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8874
Acceso en línea:
https://hdl.handle.net/20.500.12585/8874
Palabra clave:
Conductors selection
Mixed-integer non-linear programming formulation
Mono-objective optimization
Radial distribution networks
Electric load flow
Integer programming
Ion beams
Voltage regulators
Algebraic modeling
Conductor selections
Distribution systems
Mixed-integer nonlinear programming
Objective functions
Objective optimization
Power flow balance
Radial distribution networks
Nonlinear programming
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_e78595675319d5cd3fc5f79dc6868f28
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8874
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulation
title Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulation
spellingShingle Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulation
Conductors selection
Mixed-integer non-linear programming formulation
Mono-objective optimization
Radial distribution networks
Electric load flow
Integer programming
Ion beams
Voltage regulators
Algebraic modeling
Conductor selections
Distribution systems
Mixed-integer nonlinear programming
Objective functions
Objective optimization
Power flow balance
Radial distribution networks
Nonlinear programming
title_short Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulation
title_full Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulation
title_fullStr Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulation
title_full_unstemmed Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulation
title_sort Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulation
dc.subject.keywords.none.fl_str_mv Conductors selection
Mixed-integer non-linear programming formulation
Mono-objective optimization
Radial distribution networks
Electric load flow
Integer programming
Ion beams
Voltage regulators
Algebraic modeling
Conductor selections
Distribution systems
Mixed-integer nonlinear programming
Objective functions
Objective optimization
Power flow balance
Radial distribution networks
Nonlinear programming
topic Conductors selection
Mixed-integer non-linear programming formulation
Mono-objective optimization
Radial distribution networks
Electric load flow
Integer programming
Ion beams
Voltage regulators
Algebraic modeling
Conductor selections
Distribution systems
Mixed-integer nonlinear programming
Objective functions
Objective optimization
Power flow balance
Radial distribution networks
Nonlinear programming
description In this paper a mixed-integer non-linear programming formulation for optimal conductor selection in radial distribution networks is proposed. The objective function in this problem corresponds to the minimization of power losses and costs of investment in conductors. A typical set of constraints corresponding to the operative conditions in distribution systems, as power flow balance, voltage regulation, thermal capacity and telescopic conductors distribution, among others, are employed. Three different demand scenarios are considered to evaluate their impacts in the final conductor selection. The proposed mathematical model is solved using the general algebraic modeling system (GAMS) and DICOPT solver. Two radial distribution networks with 8 and 27 nodes, respectively, are employed to verify the general performance of the mathematical model proposed. © 2003-2012 IEEE.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:32Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:32Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv IEEE Latin America Transactions; Vol. 16, Núm. 8; pp. 2213-2220
dc.identifier.issn.none.fl_str_mv 1548-0992
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8874
dc.identifier.doi.none.fl_str_mv 10.1109/TLA.2018.8528237
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56919564100
36449223500
56786626200
identifier_str_mv IEEE Latin America Transactions; Vol. 16, Núm. 8; pp. 2213-2220
1548-0992
10.1109/TLA.2018.8528237
Universidad Tecnológica de Bolívar
Repositorio UTB
56919564100
36449223500
56786626200
url https://hdl.handle.net/20.500.12585/8874
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE Computer Society
publisher.none.fl_str_mv IEEE Computer Society
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056570979&doi=10.1109%2fTLA.2018.8528237&partnerID=40&md5=a980a6c2a27eb7b1b6c2819fd93ad908
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8874/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021570888204288
spelling 2020-03-26T16:32:32Z2020-03-26T16:32:32Z2018IEEE Latin America Transactions; Vol. 16, Núm. 8; pp. 2213-22201548-0992https://hdl.handle.net/20.500.12585/887410.1109/TLA.2018.8528237Universidad Tecnológica de BolívarRepositorio UTB569195641003644922350056786626200In this paper a mixed-integer non-linear programming formulation for optimal conductor selection in radial distribution networks is proposed. The objective function in this problem corresponds to the minimization of power losses and costs of investment in conductors. A typical set of constraints corresponding to the operative conditions in distribution systems, as power flow balance, voltage regulation, thermal capacity and telescopic conductors distribution, among others, are employed. Three different demand scenarios are considered to evaluate their impacts in the final conductor selection. The proposed mathematical model is solved using the general algebraic modeling system (GAMS) and DICOPT solver. Two radial distribution networks with 8 and 27 nodes, respectively, are employed to verify the general performance of the mathematical model proposed. © 2003-2012 IEEE.Recurso electrónicoapplication/pdfengIEEE Computer Societyhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85056570979&doi=10.1109%2fTLA.2018.8528237&partnerID=40&md5=a980a6c2a27eb7b1b6c2819fd93ad908Optimal conductor size selection in radial distribution networks using a mixed-integer non-linear programming formulationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Conductors selectionMixed-integer non-linear programming formulationMono-objective optimizationRadial distribution networksElectric load flowInteger programmingIon beamsVoltage regulatorsAlgebraic modelingConductor selectionsDistribution systemsMixed-integer nonlinear programmingObjective functionsObjective optimizationPower flow balanceRadial distribution networksNonlinear programmingMontoya O.D.Garces A.Castro C.A.Lavorato, M., Franco, J.F., Rider, M.J., Romero, R., Imposing radiality constraints in distribution system optimization problems (2012) IEEE Transactions on Power Systems, 27 (1), pp. 172-180. , FebWang, Z., Liu, H., Yu, D.C., Wang, X., Song, H., A practical approach to the conductor size selection in planning radial distribution systems (2000) IEEE Transactions on Power Delivery, 15 (1), pp. 350-354. , JanXing, H., Cheng, H., Zhang, Y., Zeng, P., Active distribution network expansion planning integrating dispersed energy storage systems (2016) IET Generation, Transmission & Distribution, 10 (3), pp. 638-644Padua De Benetti, S.G., Sanches Mantovani, J.R., Cossi, A.M., Planning medium-voltage electric power distribution systems through a scatter search algorithm (2015) IEEE Latin America Transactions, 13 (8), pp. 2637-2645. , AugCarnelossi Cunha, V., Sanches Mantovani, J.R., Planning and project of medium voltage electric power distribution systems (2016) IEEE Latin America Transactions, 14 (5), pp. 2298-2308. , MayMontoya, O.D., Grajales, A., Hincapié, R.A., Granada, M., Gallego, R.A., Methodology for optimal distribution system planning considering automatic reclosers to improve reliability indices (2014) 2014 IEEE PES Transmission & Distribution Conference and Exposition - Latin America (PES T & D-LA), pp. 1-6. , MedellinMontoya, O.D., Grajales, A., Hincapié, R.A., Granada, M., A new approach to solve the distribution system planning problem considering automatic reclosers (2017) Ingeniare. Revista Chilena de Ingeniería, 25 (3). , JulFranco, J.F., Rider, M.J., Lavorato, M., Romero, R., Optimal conductor size selection and reconductoring in radial distribution systems using a mixed-integer lp approach (2013) IEEE Transactions on Power Systems, 28 (1), pp. 10-20. , FebWang, Z., Liu, H., Yu, D.C., Wang, X., Song, H., A practical approach to the conductor size selection in planning radial distribution systems (2000) IEEE Transactions on Power Delivery, 15 (1), pp. 350-354. , JanFalaghi, H., Ramezani, M., Haghifam, M.R., Milani, K.R., Optimal selection of conductors in radial distribution systems with time varying load (2005) 18th International Conference and Exhibition Electricity Distribution, , Turin, ItalyCastilho-Neto, J., Cossi, A.M., Alocação de cabos em redes de distribuição de energia elétrica de média tensão (mt) utilizando algoritmo Chu & Beasley (2014) Simpósio Brasileiro de Sistemas Eletricos (SBSE), , Foz do Iguaçu, Brasil. AprMendoza, F., Requena, D., Bemal-Agustin, J.L., Dominguez-Navarro, J.A., Optimal conductor size selection in radial power distribution systems using evolutionary strategies (2006) IEEE/PES Transmission & Distribution Conference and Exposition: Latin America, , Caracas. VenezuelaSivanagaraju, S., Sreenivasulu, N., Vijayakumar, M., Ramana, T., Optimal conductor selection for radial distribution systems (2002) Electric Power Systems Research, 63 (28), pp. 95-103. , SeptKaur, D., Sharma, J., Optimal conductor sizing in radial distribution systems planning (2008) International Journal of Electrical Power & Energy Systems, 30 (4), pp. 261-271. , MayMontoya, O.D., Grajales, A., Hincapié, R.A., Selección óptima de conductores en sistemas de distribución empleando el algoritmo búsqueda tabú (2018) Ingeniare. Rev. Chil. Ing., 26 (2), pp. 283-295. , JunBakkabulindi, G., Hesamzadeh, M.R., Amelin, M., Da Silva, I.P., Models for conductor size selection in Single Wire Earth Return distribution networks (2013) AFRICON, , Port Louis. Mauriciohttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8874/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8874oai:repositorio.utb.edu.co:20.500.12585/88742021-02-02 14:38:16.942Repositorio Institucional UTBrepositorioutb@utb.edu.co