Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Method

In this work, the modal and harmonic analysis of orthotropic shear deformable cracked plates using a direct time-domain Boundary Element Method formulation based on the elastostatic fundamental solution of the problem is presented. The Radial Integration Method was used for the treatment of domain i...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9092
Acceso en línea:
https://hdl.handle.net/20.500.12585/9092
Palabra clave:
Boundary element method
Dynamics of cracked plates
Harmonic analysis
Modal analysis
Radial integration method
Shear deformable orthotropic plates
Applied loads
Cracked plate
Domain integrals
Fundamental solutions
Inertial mass
Numerical example
Radial integration method
Time domain
Boundary element method
Harmonic analysis
Modal analysis
Shear deformation
Orthotropic plates
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_e6fb50da7ba4a44bbf27acf9a812d919
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9092
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Method
title Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Method
spellingShingle Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Method
Boundary element method
Dynamics of cracked plates
Harmonic analysis
Modal analysis
Radial integration method
Shear deformable orthotropic plates
Applied loads
Cracked plate
Domain integrals
Fundamental solutions
Inertial mass
Numerical example
Radial integration method
Time domain
Boundary element method
Harmonic analysis
Modal analysis
Shear deformation
Orthotropic plates
title_short Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Method
title_full Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Method
title_fullStr Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Method
title_full_unstemmed Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Method
title_sort Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Method
dc.subject.keywords.none.fl_str_mv Boundary element method
Dynamics of cracked plates
Harmonic analysis
Modal analysis
Radial integration method
Shear deformable orthotropic plates
Applied loads
Cracked plate
Domain integrals
Fundamental solutions
Inertial mass
Numerical example
Radial integration method
Time domain
Boundary element method
Harmonic analysis
Modal analysis
Shear deformation
Orthotropic plates
topic Boundary element method
Dynamics of cracked plates
Harmonic analysis
Modal analysis
Radial integration method
Shear deformable orthotropic plates
Applied loads
Cracked plate
Domain integrals
Fundamental solutions
Inertial mass
Numerical example
Radial integration method
Time domain
Boundary element method
Harmonic analysis
Modal analysis
Shear deformation
Orthotropic plates
description In this work, the modal and harmonic analysis of orthotropic shear deformable cracked plates using a direct time-domain Boundary Element Method formulation based on the elastostatic fundamental solution of the problem is presented. The Radial Integration Method was used for the treatment of domain integrals involving distributed domain applied loads and those related with inertial mass forces. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed formulation. © 2012 Elsevier Ltd. All rights reserved.
publishDate 2012
dc.date.issued.none.fl_str_mv 2012
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:56Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:56Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Engineering Analysis with Boundary Elements; Vol. 36, Núm. 11; pp. 1528-1535
dc.identifier.issn.none.fl_str_mv 09557997
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9092
dc.identifier.doi.none.fl_str_mv 10.1016/j.enganabound.2012.05.002
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 24537991200
7102992846
6602787349
identifier_str_mv Engineering Analysis with Boundary Elements; Vol. 36, Núm. 11; pp. 1528-1535
09557997
10.1016/j.enganabound.2012.05.002
Universidad Tecnológica de Bolívar
Repositorio UTB
24537991200
7102992846
6602787349
url https://hdl.handle.net/20.500.12585/9092
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861608853&doi=10.1016%2fj.enganabound.2012.05.002&partnerID=40&md5=4dd9774d30889b28b395f32e712f69c1
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9092/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021780909588480
spelling 2020-03-26T16:32:56Z2020-03-26T16:32:56Z2012Engineering Analysis with Boundary Elements; Vol. 36, Núm. 11; pp. 1528-153509557997https://hdl.handle.net/20.500.12585/909210.1016/j.enganabound.2012.05.002Universidad Tecnológica de BolívarRepositorio UTB2453799120071029928466602787349In this work, the modal and harmonic analysis of orthotropic shear deformable cracked plates using a direct time-domain Boundary Element Method formulation based on the elastostatic fundamental solution of the problem is presented. The Radial Integration Method was used for the treatment of domain integrals involving distributed domain applied loads and those related with inertial mass forces. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed formulation. © 2012 Elsevier Ltd. All rights reserved.Recurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84861608853&doi=10.1016%2fj.enganabound.2012.05.002&partnerID=40&md5=4dd9774d30889b28b395f32e712f69c1Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Methodinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Boundary element methodDynamics of cracked platesHarmonic analysisModal analysisRadial integration methodShear deformable orthotropic platesApplied loadsCracked plateDomain integralsFundamental solutionsInertial massNumerical exampleRadial integration methodTime domainBoundary element methodHarmonic analysisModal analysisShear deformationOrthotropic platesUseche Vivero, JairoAlbuquerque E.L.Sollero P.Dirgantara, T., (2002) Boundary Element Analysis of Cracks in Shear Deformable Plates and Shells, , WIT Press SouthamptonWrobel, L.C., Aliabadi, M.H., (2002) The Boundary Element Method Volume 2: Applications in Solid and Structures, , Wiley New YorkSollero, P., Aliabadi, M.H., Anisotropic analysis of cracks in composite laminates using the dual boundary element method (1995) Compos Struct, 31, pp. 229-233Sollero, P., Aliabadi, M.H., Fracture mechanics analysis of anisotropic plates by the boundary element method (1993) Int J Fract, 64, pp. 269-284Albuquerque, E.L., Sollero, P., Fedelinski, P., Dual reciprocity boundary element method in Laplace domain applied to anisotropic dynamic crack problems (2003) Comput Struct, 81, pp. 1703-1713Albuquerque, E.L., Sollero, P., Fedelinski, P., Free vibration analysis of anisotropic material structures using the boundary element method (2003) Eng Anal Bound Elem, 27, pp. 977-985Albuquerque, E.L., Sollero, P., Aliabadi, M.H., Dual boundary element method for anisotropic dynamic fracture mechanics (2004) Int J Numer Meth Eng, 59, pp. 1187-1205Albuquerque, E.L., Sollero, P., Venturini, W., Aliabadi, M.H., Boundary element analysis of anisotropic kirchhoff plates (2006) Int J Solids Struct, 43, pp. 4029-4046Albuquerque, E.L., Sollero, P., Portilho De Paiva, W., The radial integration method applied to dynamic problems of anisotropic plates (2007) Commun Num Meth Eng, 23, pp. 805-818Portilho De Paiva, W., Sollero, P., Albuquerque, E.L., Modal analysis of anisotropic plates using the boundary element method (2011) Eng Anal Bound Elem, 35, pp. 1248-1255Wen, P.H., Aliabadi, M.H., Young, A., The boundary element method for dynamic plate bending problems (2000) Int J Solids Struct, 37 (37), pp. 5177-5188Wen, P.H., Aliabadi, M.H., Boundary element frequency domain formulation for dynamic analysis of Mindlin plates (2006) Int J Num Meth Eng, 67 (11), pp. 1617-1640Duddeck, F.M., (2010) Fourier BEM: Generalization of Boundary Element Methods by Fourier Transform, , Springer New YorkWen, P.H., Aliabadi, M.H., Young, A., Transformation of domain integrals to boundary integrals in BEM analysis of shear deformable plate bending problems (1999) J Comput Mech, 24, pp. 304-309Wen, P.H., Aliabadi, M.H., Rooke, D.P., A new method for transformation of domain integrals to the boundary integrals in boundary element method (1998) Commun Num Meth Eng, 14 (11), pp. 1055-1065Partridge, P.W., Brebbia, C.A., Wrobel, L.C., (1992) The Dual Reciprocity Boundary Element Method, , Computational Mechanics Publications SouthamptonRashed, Y., (2000) Boundary Element Formulation for Thick Plates, , WIT Press Southampton, BostonUseche, J., Albuquerque, E.L., Dynamic analysis of shear deformable plates using the dual reciprocity method (2012) Eng Anal Bound Elem, 36, pp. 627-632Wang, J., Boundary element method for orthotropic thick plates (1991) Acta Mech Sinica, 7, pp. 258-266Wen, P.H., Aliabadi, M.H., Displacement discontinuity formulation for modeling crack orthotropic shear deformable plates (2006) Int J Fract, 142, pp. 69-79http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9092/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9092oai:repositorio.utb.edu.co:20.500.12585/90922023-04-24 09:18:55.397Repositorio Institucional UTBrepositorioutb@utb.edu.co