Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Method
In this work, the modal and harmonic analysis of orthotropic shear deformable cracked plates using a direct time-domain Boundary Element Method formulation based on the elastostatic fundamental solution of the problem is presented. The Radial Integration Method was used for the treatment of domain i...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2012
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9092
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9092
- Palabra clave:
- Boundary element method
Dynamics of cracked plates
Harmonic analysis
Modal analysis
Radial integration method
Shear deformable orthotropic plates
Applied loads
Cracked plate
Domain integrals
Fundamental solutions
Inertial mass
Numerical example
Radial integration method
Time domain
Boundary element method
Harmonic analysis
Modal analysis
Shear deformation
Orthotropic plates
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_e6fb50da7ba4a44bbf27acf9a812d919 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9092 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Method |
title |
Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Method |
spellingShingle |
Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Method Boundary element method Dynamics of cracked plates Harmonic analysis Modal analysis Radial integration method Shear deformable orthotropic plates Applied loads Cracked plate Domain integrals Fundamental solutions Inertial mass Numerical example Radial integration method Time domain Boundary element method Harmonic analysis Modal analysis Shear deformation Orthotropic plates |
title_short |
Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Method |
title_full |
Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Method |
title_fullStr |
Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Method |
title_full_unstemmed |
Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Method |
title_sort |
Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Method |
dc.subject.keywords.none.fl_str_mv |
Boundary element method Dynamics of cracked plates Harmonic analysis Modal analysis Radial integration method Shear deformable orthotropic plates Applied loads Cracked plate Domain integrals Fundamental solutions Inertial mass Numerical example Radial integration method Time domain Boundary element method Harmonic analysis Modal analysis Shear deformation Orthotropic plates |
topic |
Boundary element method Dynamics of cracked plates Harmonic analysis Modal analysis Radial integration method Shear deformable orthotropic plates Applied loads Cracked plate Domain integrals Fundamental solutions Inertial mass Numerical example Radial integration method Time domain Boundary element method Harmonic analysis Modal analysis Shear deformation Orthotropic plates |
description |
In this work, the modal and harmonic analysis of orthotropic shear deformable cracked plates using a direct time-domain Boundary Element Method formulation based on the elastostatic fundamental solution of the problem is presented. The Radial Integration Method was used for the treatment of domain integrals involving distributed domain applied loads and those related with inertial mass forces. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed formulation. © 2012 Elsevier Ltd. All rights reserved. |
publishDate |
2012 |
dc.date.issued.none.fl_str_mv |
2012 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:56Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:56Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Engineering Analysis with Boundary Elements; Vol. 36, Núm. 11; pp. 1528-1535 |
dc.identifier.issn.none.fl_str_mv |
09557997 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9092 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.enganabound.2012.05.002 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
24537991200 7102992846 6602787349 |
identifier_str_mv |
Engineering Analysis with Boundary Elements; Vol. 36, Núm. 11; pp. 1528-1535 09557997 10.1016/j.enganabound.2012.05.002 Universidad Tecnológica de Bolívar Repositorio UTB 24537991200 7102992846 6602787349 |
url |
https://hdl.handle.net/20.500.12585/9092 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861608853&doi=10.1016%2fj.enganabound.2012.05.002&partnerID=40&md5=4dd9774d30889b28b395f32e712f69c1 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9092/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021780909588480 |
spelling |
2020-03-26T16:32:56Z2020-03-26T16:32:56Z2012Engineering Analysis with Boundary Elements; Vol. 36, Núm. 11; pp. 1528-153509557997https://hdl.handle.net/20.500.12585/909210.1016/j.enganabound.2012.05.002Universidad Tecnológica de BolívarRepositorio UTB2453799120071029928466602787349In this work, the modal and harmonic analysis of orthotropic shear deformable cracked plates using a direct time-domain Boundary Element Method formulation based on the elastostatic fundamental solution of the problem is presented. The Radial Integration Method was used for the treatment of domain integrals involving distributed domain applied loads and those related with inertial mass forces. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed formulation. © 2012 Elsevier Ltd. All rights reserved.Recurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84861608853&doi=10.1016%2fj.enganabound.2012.05.002&partnerID=40&md5=4dd9774d30889b28b395f32e712f69c1Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Methodinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Boundary element methodDynamics of cracked platesHarmonic analysisModal analysisRadial integration methodShear deformable orthotropic platesApplied loadsCracked plateDomain integralsFundamental solutionsInertial massNumerical exampleRadial integration methodTime domainBoundary element methodHarmonic analysisModal analysisShear deformationOrthotropic platesUseche Vivero, JairoAlbuquerque E.L.Sollero P.Dirgantara, T., (2002) Boundary Element Analysis of Cracks in Shear Deformable Plates and Shells, , WIT Press SouthamptonWrobel, L.C., Aliabadi, M.H., (2002) The Boundary Element Method Volume 2: Applications in Solid and Structures, , Wiley New YorkSollero, P., Aliabadi, M.H., Anisotropic analysis of cracks in composite laminates using the dual boundary element method (1995) Compos Struct, 31, pp. 229-233Sollero, P., Aliabadi, M.H., Fracture mechanics analysis of anisotropic plates by the boundary element method (1993) Int J Fract, 64, pp. 269-284Albuquerque, E.L., Sollero, P., Fedelinski, P., Dual reciprocity boundary element method in Laplace domain applied to anisotropic dynamic crack problems (2003) Comput Struct, 81, pp. 1703-1713Albuquerque, E.L., Sollero, P., Fedelinski, P., Free vibration analysis of anisotropic material structures using the boundary element method (2003) Eng Anal Bound Elem, 27, pp. 977-985Albuquerque, E.L., Sollero, P., Aliabadi, M.H., Dual boundary element method for anisotropic dynamic fracture mechanics (2004) Int J Numer Meth Eng, 59, pp. 1187-1205Albuquerque, E.L., Sollero, P., Venturini, W., Aliabadi, M.H., Boundary element analysis of anisotropic kirchhoff plates (2006) Int J Solids Struct, 43, pp. 4029-4046Albuquerque, E.L., Sollero, P., Portilho De Paiva, W., The radial integration method applied to dynamic problems of anisotropic plates (2007) Commun Num Meth Eng, 23, pp. 805-818Portilho De Paiva, W., Sollero, P., Albuquerque, E.L., Modal analysis of anisotropic plates using the boundary element method (2011) Eng Anal Bound Elem, 35, pp. 1248-1255Wen, P.H., Aliabadi, M.H., Young, A., The boundary element method for dynamic plate bending problems (2000) Int J Solids Struct, 37 (37), pp. 5177-5188Wen, P.H., Aliabadi, M.H., Boundary element frequency domain formulation for dynamic analysis of Mindlin plates (2006) Int J Num Meth Eng, 67 (11), pp. 1617-1640Duddeck, F.M., (2010) Fourier BEM: Generalization of Boundary Element Methods by Fourier Transform, , Springer New YorkWen, P.H., Aliabadi, M.H., Young, A., Transformation of domain integrals to boundary integrals in BEM analysis of shear deformable plate bending problems (1999) J Comput Mech, 24, pp. 304-309Wen, P.H., Aliabadi, M.H., Rooke, D.P., A new method for transformation of domain integrals to the boundary integrals in boundary element method (1998) Commun Num Meth Eng, 14 (11), pp. 1055-1065Partridge, P.W., Brebbia, C.A., Wrobel, L.C., (1992) The Dual Reciprocity Boundary Element Method, , Computational Mechanics Publications SouthamptonRashed, Y., (2000) Boundary Element Formulation for Thick Plates, , WIT Press Southampton, BostonUseche, J., Albuquerque, E.L., Dynamic analysis of shear deformable plates using the dual reciprocity method (2012) Eng Anal Bound Elem, 36, pp. 627-632Wang, J., Boundary element method for orthotropic thick plates (1991) Acta Mech Sinica, 7, pp. 258-266Wen, P.H., Aliabadi, M.H., Displacement discontinuity formulation for modeling crack orthotropic shear deformable plates (2006) Int J Fract, 142, pp. 69-79http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9092/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9092oai:repositorio.utb.edu.co:20.500.12585/90922023-04-24 09:18:55.397Repositorio Institucional UTBrepositorioutb@utb.edu.co |