Optimal power flow in direct-current power grids via black hole optimization

This paper addresses the Optimal Power Flow (OPF) problem in DC power microgrids via a combinatorial optimization technique known as Black Hole Optimization (BHO). Such optimization method allows to solve OPF problems via algorithmic strategies trough a master-slave formulation. In the master stage,...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8769
Acceso en línea:
https://hdl.handle.net/20.500.12585/8769
Palabra clave:
Black hole optimization
Direct-current networks
Gauss-seidel numerical method
Metaheuristic optimization
Optimal power flow
Power losses minimization
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_e6592236b05da62060d117b590456ec7
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8769
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Optimal power flow in direct-current power grids via black hole optimization
title Optimal power flow in direct-current power grids via black hole optimization
spellingShingle Optimal power flow in direct-current power grids via black hole optimization
Black hole optimization
Direct-current networks
Gauss-seidel numerical method
Metaheuristic optimization
Optimal power flow
Power losses minimization
title_short Optimal power flow in direct-current power grids via black hole optimization
title_full Optimal power flow in direct-current power grids via black hole optimization
title_fullStr Optimal power flow in direct-current power grids via black hole optimization
title_full_unstemmed Optimal power flow in direct-current power grids via black hole optimization
title_sort Optimal power flow in direct-current power grids via black hole optimization
dc.subject.keywords.none.fl_str_mv Black hole optimization
Direct-current networks
Gauss-seidel numerical method
Metaheuristic optimization
Optimal power flow
Power losses minimization
topic Black hole optimization
Direct-current networks
Gauss-seidel numerical method
Metaheuristic optimization
Optimal power flow
Power losses minimization
description This paper addresses the Optimal Power Flow (OPF) problem in DC power microgrids via a combinatorial optimization technique known as Black Hole Optimization (BHO). Such optimization method allows to solve OPF problems via algorithmic strategies trough a master-slave formulation. In the master stage, the total power generated by each Distributed Generator (DG) is determined by the BHO, while the slave strategy is entrusted with solving the resulting conventional power flow problem via a classical Gauss-Seidel (GS) numerical method. For comparison purposes, this work uses nonlinear optimization methods available in General Algebraic Modeling System (GAMS) as well as continuous metaheuristic optimization techniques. Two test feeders with 21 and 69 nodes were considered for validating the proposed hybrid BHO-GS optimization method, which enables to demonstrate its applicability, robustness and efficiency compared to conventional approaches. The results of all the simulations were obtained via MATLAB 2017a. © 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-06T19:05:22Z
dc.date.available.none.fl_str_mv 2019-11-06T19:05:22Z
dc.date.issued.none.fl_str_mv 2019
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Advances in Electrical and Electronic Engineering; Vol. 17, Núm. 1; pp. 24-32
dc.identifier.issn.none.fl_str_mv 1336-1376
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8769
dc.identifier.doi.none.fl_str_mv 10.15598/aeee.v17i1.3069
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
identifier_str_mv Advances in Electrical and Electronic Engineering; Vol. 17, Núm. 1; pp. 24-32
1336-1376
10.15598/aeee.v17i1.3069
Universidad Tecnológica de Bolívar
Repositorio UTB
url https://hdl.handle.net/20.500.12585/8769
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv VSB-Technical University of Ostrava
publisher.none.fl_str_mv VSB-Technical University of Ostrava
dc.source.none.fl_str_mv https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85067041743&doi=10.15598%2faeee.v17i1.3069&partnerID=40&md5=1e6f665d9ca690ea338902db0546c5d2
Scopus 57209250499
Scopus 56919564100
Scopus 57208126635
Scopus 55791991200
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8769/1/DOI10_15598aeee_v17i1_3069.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/8769/4/DOI10_15598aeee_v17i1_3069.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/8769/5/DOI10_15598aeee_v17i1_3069.pdf.jpg
bitstream.checksum.fl_str_mv db69afc13a7236e020182482ef6b3a44
ab462d1104830891e36acdbbe6b75dbc
4020489b17bb0abcd9aefbb95ca3bdfc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021705273704448
spelling 2019-11-06T19:05:22Z2019-11-06T19:05:22Z2019Advances in Electrical and Electronic Engineering; Vol. 17, Núm. 1; pp. 24-321336-1376https://hdl.handle.net/20.500.12585/876910.15598/aeee.v17i1.3069Universidad Tecnológica de BolívarRepositorio UTBThis paper addresses the Optimal Power Flow (OPF) problem in DC power microgrids via a combinatorial optimization technique known as Black Hole Optimization (BHO). Such optimization method allows to solve OPF problems via algorithmic strategies trough a master-slave formulation. In the master stage, the total power generated by each Distributed Generator (DG) is determined by the BHO, while the slave strategy is entrusted with solving the resulting conventional power flow problem via a classical Gauss-Seidel (GS) numerical method. For comparison purposes, this work uses nonlinear optimization methods available in General Algebraic Modeling System (GAMS) as well as continuous metaheuristic optimization techniques. Two test feeders with 21 and 69 nodes were considered for validating the proposed hybrid BHO-GS optimization method, which enables to demonstrate its applicability, robustness and efficiency compared to conventional approaches. The results of all the simulations were obtained via MATLAB 2017a. © 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING.Universidad Nacional de Colombia, Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS, C2018P020, Department of Science, Information Technology and Innovation, Queensland Government, P17211Recurso electrónicoapplication/pdfengVSB-Technical University of Ostravahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85067041743&doi=10.15598%2faeee.v17i1.3069&partnerID=40&md5=1e6f665d9ca690ea338902db0546c5d2Scopus 57209250499Scopus 56919564100Scopus 57208126635Scopus 55791991200Optimal power flow in direct-current power grids via black hole optimizationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Black hole optimizationDirect-current networksGauss-seidel numerical methodMetaheuristic optimizationOptimal power flowPower losses minimizationVelasquez, O.S.Montoya, O.D.Garrido Arévalo, Víctor ManuelGrisales-Noreña L.F.Montoya, O.D., Gil-Gonzalez, W., Grisales-Norena, L.F., Optimal Power Dispatch of DGs in DC Power Grids: A Hybrid Gauss-Seidel Genetic-Algorithm Methodology for Solving the OPF Problem (2018) WSEAS Transactions on Power Systems, 13 (33), pp. 335-346. , 2224-350XPatterson, M., Macia, N.F., Kannan, A.M., Hybrid Microgrid Model Based on Solar Photovoltaic Battery Fuel Cell System for Intermittent Load Applications (2015) IEEE Transactions on Energy Conversion, 30 (1), pp. 359-366. , ISSN 0885-8969Ellabban, O., Abu-Rub, H., Blaab-Jerg, F., Renewable energy resources: Current status, future prospects and their enabling technology (2014) Renewable Sustainable Energy Reviews, 39, pp. 748-764Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3 (1), pp. 890-925Garces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electric Power Systems Research, 151 (1), pp. 149-153Li, J., Liu, F., Wang, Z., Low, S., Mei, S., Optimal Power Flow in Stand-alone DC Microgrids (2018) IEEE Transactions on Power Systems, 33 (5), pp. 5496-5506. , ISSN 0885-8950Garces, A., On Convergence of Newtons Method in Power Flow Study for DC Microgrids (2018) IEEE Transactions on Power Systems., 33 (5), pp. 5770-5777Simpson-Porco, J.W., Dorfler, F., Bullo, F., On Resistive Networks of Constant-Power Devices (2015) IEEE Transactions on Circuits and Systems II: Express Briefs, 62 (8), pp. 811-815Montoya, O.D., Grisales-Norena, L.F., Gonzalez-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Electric Power Systems Research, 163 (1), pp. 375-381. , 0378-7796Gil-Gonzalez, W., Montoya, O.D., Holguin, E., Garces, A., Grisales-Norena, L.F., Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) Journal of Energy Storage, 21 (1), pp. 1-8Montoya, O.D., Gil-Gonzalez, W., Garces, A., Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation (2018) IEEE Transactions on Circuits and Systems II: Express Briefs, 99 (1), p. 1. , 1549-7747Hasan, Z., El-Hawary, M.E., Optimal Power Flow by Black Hole Optimization Algorithm (2014) IEEE Electrical Power and Energy Conference. Calgary: IEEE, pp. 134-141Gillessen, E.S., Genzel, R., (2009) Tracking Stars Orbiting the Milky Way’s Central Black Hole, 720p. , https://www.youtube.com/watch?v=duoHtJpo4GY, Youtube [online]Bouchekara, H.R.E.H., Optimal power flow using black-hole-based optimization approach (2014) Applied Soft Computing, 24 (1), pp. 879-888Piotrowski, A.P., Napiorkowski, J.J., Rowinski, P.M., How novel is the novel black hole optimization approach? (2014) Information Sciences, 267 (1), pp. 191-200. , ISSN 0020-0255Bouchekara, H.R.E.H., Optimal design of electromagnetic devices using a black-hole-based optimization technique (2013) IEEE Transactions on Magnetics, 49 (12), pp. 5709-5714. , ISSN 0018-9464Grisales-Norena, L.F., Montoya, D.G., Ramos-Paja, C.A., Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques (2018) Energies, 11 (1018), pp. 1-27Montoya, O.D., Solving a Classical Optimization Problem Using GAMS Optimizer Package: Economic Dispatch Problem Implementation (2017) Ingenieria Y Ciencia, 13 (26), pp. 39-63(2019) GAMS Development, , https://www.gams.com/download/, onlineMandal, S., Elephant swarm water search algorithm for global optimization (2018) SADHANA, 43 (2), pp. 1-21. , 0973-7677http://purl.org/coar/resource_type/c_6501ORIGINALDOI10_15598aeee_v17i1_3069.pdfapplication/pdf706740https://repositorio.utb.edu.co/bitstream/20.500.12585/8769/1/DOI10_15598aeee_v17i1_3069.pdfdb69afc13a7236e020182482ef6b3a44MD51TEXTDOI10_15598aeee_v17i1_3069.pdf.txtDOI10_15598aeee_v17i1_3069.pdf.txtExtracted texttext/plain35613https://repositorio.utb.edu.co/bitstream/20.500.12585/8769/4/DOI10_15598aeee_v17i1_3069.pdf.txtab462d1104830891e36acdbbe6b75dbcMD54THUMBNAILDOI10_15598aeee_v17i1_3069.pdf.jpgDOI10_15598aeee_v17i1_3069.pdf.jpgGenerated Thumbnailimage/jpeg91305https://repositorio.utb.edu.co/bitstream/20.500.12585/8769/5/DOI10_15598aeee_v17i1_3069.pdf.jpg4020489b17bb0abcd9aefbb95ca3bdfcMD5520.500.12585/8769oai:repositorio.utb.edu.co:20.500.12585/87692023-05-26 11:06:45.876Repositorio Institucional UTBrepositorioutb@utb.edu.co