Hölder continuous maps on the interval with positive metric mean dimension

Fix a compact metric space X with finite topological dimension. Let C0(X) be the space of continuous maps on X and Hα(X) the space of α-Hölder continuous maps on X, for α ∈ (0, 1]. Let H1(X) be the space of Lipschitz continuous maps on X. We have H1(X) ⊂ Hβ(X) ⊂ Hα(X) ⊂ C0(X), where 0 < α < β...

Full description

Autores:
Muentes Acevedo, Jeovanny de Jesus
Romana Ibarra, Sergio Augusto
Arias Cantillo, Raibel de Jesús
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12603
Acceso en línea:
https://hdl.handle.net/20.500.12585/12603
https://doi.org/10.15446/recolma.v57nSupl.112448
Palabra clave:
Metric mean dimension
Topological entropy
Hölder continuous maps
LEMB
Rights
openAccess
License
http://creativecommons.org/publicdomain/zero/1.0/
id UTB2_e5f4de72ddcb52943f4f525a40d6794b
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12603
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Hölder continuous maps on the interval with positive metric mean dimension
dc.title.alternative.spa.fl_str_mv Funciones Hölder continuas en el intervalo con dimensión métrica media positiva
title Hölder continuous maps on the interval with positive metric mean dimension
spellingShingle Hölder continuous maps on the interval with positive metric mean dimension
Metric mean dimension
Topological entropy
Hölder continuous maps
LEMB
title_short Hölder continuous maps on the interval with positive metric mean dimension
title_full Hölder continuous maps on the interval with positive metric mean dimension
title_fullStr Hölder continuous maps on the interval with positive metric mean dimension
title_full_unstemmed Hölder continuous maps on the interval with positive metric mean dimension
title_sort Hölder continuous maps on the interval with positive metric mean dimension
dc.creator.fl_str_mv Muentes Acevedo, Jeovanny de Jesus
Romana Ibarra, Sergio Augusto
Arias Cantillo, Raibel de Jesús
dc.contributor.author.none.fl_str_mv Muentes Acevedo, Jeovanny de Jesus
Romana Ibarra, Sergio Augusto
Arias Cantillo, Raibel de Jesús
dc.subject.keywords.spa.fl_str_mv Metric mean dimension
Topological entropy
Hölder continuous maps
topic Metric mean dimension
Topological entropy
Hölder continuous maps
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Fix a compact metric space X with finite topological dimension. Let C0(X) be the space of continuous maps on X and Hα(X) the space of α-Hölder continuous maps on X, for α ∈ (0, 1]. Let H1(X) be the space of Lipschitz continuous maps on X. We have H1(X) ⊂ Hβ(X) ⊂ Hα(X) ⊂ C0(X), where 0 < α < β < 1. It is well-known that if φ ∈ H1(X), then φ has metric mean dimension equal to zero. On the other hand, if X is a manifold, then C0(X) contains a residual subset whose elements have positive metric mean dimension. In this work we will prove that, for any α ∈ (0, 1), there exists φ ∈ Hα([0, 1]) with positive metric mean dimension.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-11
dc.date.accessioned.none.fl_str_mv 2024-02-01T20:28:36Z
dc.date.available.none.fl_str_mv 2024-02-01T20:28:36Z
dc.date.submitted.none.fl_str_mv 2024-02-01
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Muentes Acevedo, J. de J., Romaña Ibarra, S. A. y Arias Cantillo, R. de J. (2024). Hölder continuous maps on the interval with positive metric mean dimension. Revista Colombiana de Matemáticas, 57(Supl), 57–76. https://doi.org/10.15446/recolma.v57nSupl.112448
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12603
dc.identifier.doi.none.fl_str_mv https://doi.org/10.15446/recolma.v57nSupl.112448
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Muentes Acevedo, J. de J., Romaña Ibarra, S. A. y Arias Cantillo, R. de J. (2024). Hölder continuous maps on the interval with positive metric mean dimension. Revista Colombiana de Matemáticas, 57(Supl), 57–76. https://doi.org/10.15446/recolma.v57nSupl.112448
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12603
https://doi.org/10.15446/recolma.v57nSupl.112448
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv CC0 1.0 Universal
rights_invalid_str_mv http://creativecommons.org/publicdomain/zero/1.0/
CC0 1.0 Universal
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 20 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.source.spa.fl_str_mv Revista Colombiana de Matemáticas
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12603/1/ace-rom-ari.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12603/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12603/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12603/4/ace-rom-ari.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12603/5/ace-rom-ari.pdf.jpg
bitstream.checksum.fl_str_mv 4f0efab8df3e52184e353f64e072b34b
42fd4ad1e89814f5e4a476b409eb708c
e20ad307a1c5f3f25af9304a7a7c86b6
2a82747e97aabd5d44113ba8dece04c2
708497cbf012d7e08063ad7448e1bdb2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021672066351104
spelling Muentes Acevedo, Jeovanny de Jesusec5c0208-d53f-44d4-a347-fdb3d28db2abRomana Ibarra, Sergio Augustod6a5ca18-f706-412b-a6b8-9c0527029c68Arias Cantillo, Raibel de Jesús84adec42-1fd2-44b8-8e80-5f44485619c12024-02-01T20:28:36Z2024-02-01T20:28:36Z2023-112024-02-01Muentes Acevedo, J. de J., Romaña Ibarra, S. A. y Arias Cantillo, R. de J. (2024). Hölder continuous maps on the interval with positive metric mean dimension. Revista Colombiana de Matemáticas, 57(Supl), 57–76. https://doi.org/10.15446/recolma.v57nSupl.112448https://hdl.handle.net/20.500.12585/12603https://doi.org/10.15446/recolma.v57nSupl.112448Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarFix a compact metric space X with finite topological dimension. Let C0(X) be the space of continuous maps on X and Hα(X) the space of α-Hölder continuous maps on X, for α ∈ (0, 1]. Let H1(X) be the space of Lipschitz continuous maps on X. We have H1(X) ⊂ Hβ(X) ⊂ Hα(X) ⊂ C0(X), where 0 < α < β < 1. It is well-known that if φ ∈ H1(X), then φ has metric mean dimension equal to zero. On the other hand, if X is a manifold, then C0(X) contains a residual subset whose elements have positive metric mean dimension. In this work we will prove that, for any α ∈ (0, 1), there exists φ ∈ Hα([0, 1]) with positive metric mean dimension.20 páginasapplication/pdfenghttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccessCC0 1.0 Universalhttp://purl.org/coar/access_right/c_abf2Revista Colombiana de MatemáticasHölder continuous maps on the interval with positive metric mean dimensionFunciones Hölder continuas en el intervalo con dimensión métrica media positivainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Metric mean dimensionTopological entropyHölder continuous mapsLEMBCartagena de IndiasCampus TecnológicoPúblico generalJ. Muentes Acevedo, Genericity of continuous maps with positive metric mean dimension, Results in Mathematics 77 (2022), no. 1, 2.Carvalho, B. Fagner Rodrigues, and P. Varandas, Generic homeomor phisms have full metric mean dimension, Ergodic Theory and Dynamical Systems 42 (2022), no. 1, 40–64.P. Hazard, Maps in dimension one with infinite entropy, Arkiv för Matematik 58 (2020), no. 1, 95–119.A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, vol. 54, Cambridge university press, 1997.S. Kolyada and S. Lubomir, Topological entropy of nonautonomous dynamical systems, Random and computational dynamics 4 (1996), no. 2, 205.E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel Journal of Mathematics 115 (2000), no. 1, 1–24.W. De Melo and S. Van Strien, One-dimensional dynamics, Springer Science & Business Media 25 (2012).M. Misiurewicz, Horseshoes for continuous mappings of an interval, Dynamical systems. Springer, Berlin, Heidelberg, 2010.A. Velozo and R. Velozo, Rate distortion theory, metric mean dimension and measure theoretic entropy, arXiv preprint arXiv:1707.05762, 2017.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALace-rom-ari.pdface-rom-ari.pdfArtículo principalapplication/pdf540224https://repositorio.utb.edu.co/bitstream/20.500.12585/12603/1/ace-rom-ari.pdf4f0efab8df3e52184e353f64e072b34bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.utb.edu.co/bitstream/20.500.12585/12603/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12603/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTace-rom-ari.pdf.txtace-rom-ari.pdf.txtExtracted texttext/plain36767https://repositorio.utb.edu.co/bitstream/20.500.12585/12603/4/ace-rom-ari.pdf.txt2a82747e97aabd5d44113ba8dece04c2MD54THUMBNAILace-rom-ari.pdf.jpgace-rom-ari.pdf.jpgGenerated Thumbnailimage/jpeg4693https://repositorio.utb.edu.co/bitstream/20.500.12585/12603/5/ace-rom-ari.pdf.jpg708497cbf012d7e08063ad7448e1bdb2MD5520.500.12585/12603oai:repositorio.utb.edu.co:20.500.12585/126032024-02-02 00:18:04.784Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=