Hölder continuous maps on the interval with positive metric mean dimension
Fix a compact metric space X with finite topological dimension. Let C0(X) be the space of continuous maps on X and Hα(X) the space of α-Hölder continuous maps on X, for α ∈ (0, 1]. Let H1(X) be the space of Lipschitz continuous maps on X. We have H1(X) ⊂ Hβ(X) ⊂ Hα(X) ⊂ C0(X), where 0 < α < β...
- Autores:
-
Muentes Acevedo, Jeovanny de Jesus
Romana Ibarra, Sergio Augusto
Arias Cantillo, Raibel de Jesús
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12603
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12603
https://doi.org/10.15446/recolma.v57nSupl.112448
- Palabra clave:
- Metric mean dimension
Topological entropy
Hölder continuous maps
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/publicdomain/zero/1.0/
Summary: | Fix a compact metric space X with finite topological dimension. Let C0(X) be the space of continuous maps on X and Hα(X) the space of α-Hölder continuous maps on X, for α ∈ (0, 1]. Let H1(X) be the space of Lipschitz continuous maps on X. We have H1(X) ⊂ Hβ(X) ⊂ Hα(X) ⊂ C0(X), where 0 < α < β < 1. It is well-known that if φ ∈ H1(X), then φ has metric mean dimension equal to zero. On the other hand, if X is a manifold, then C0(X) contains a residual subset whose elements have positive metric mean dimension. In this work we will prove that, for any α ∈ (0, 1), there exists φ ∈ Hα([0, 1]) with positive metric mean dimension. |
---|