Robust adaptive control of a planar 3RRR parallel robot for trajectory-tracking applied to crouch gait cycle in children with cerebral palsy
This paper presents the modelling, control and simulation of a 3RRR planar parallel robot, using a robust adaptive control strategy. The objective of this work is to achieve the control over desired trajectory-tracking of the joint pattern with the end-effector of robot, considering the disturbances...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8984
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8984
- Palabra clave:
- Parallel Robots
Robot Trajectory - Tracking
Robust Adaptive Control
Adaptive control systems
Automation
Controllers
Diseases
End effectors
MATLAB
Process control
Productivity
Trajectories
Children with cerebral palsies
Desired trajectories
Lyapunov's direct method
Matlab/Simulink simulation
Parallel robots
Planar parallel robots
Robot trajectory
Robust-adaptive control
Control theory
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_e4be9e2c27923789d26b1a595cbdb47e |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8984 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Robust adaptive control of a planar 3RRR parallel robot for trajectory-tracking applied to crouch gait cycle in children with cerebral palsy |
title |
Robust adaptive control of a planar 3RRR parallel robot for trajectory-tracking applied to crouch gait cycle in children with cerebral palsy |
spellingShingle |
Robust adaptive control of a planar 3RRR parallel robot for trajectory-tracking applied to crouch gait cycle in children with cerebral palsy Parallel Robots Robot Trajectory - Tracking Robust Adaptive Control Adaptive control systems Automation Controllers Diseases End effectors MATLAB Process control Productivity Trajectories Children with cerebral palsies Desired trajectories Lyapunov's direct method Matlab/Simulink simulation Parallel robots Planar parallel robots Robot trajectory Robust-adaptive control Control theory |
title_short |
Robust adaptive control of a planar 3RRR parallel robot for trajectory-tracking applied to crouch gait cycle in children with cerebral palsy |
title_full |
Robust adaptive control of a planar 3RRR parallel robot for trajectory-tracking applied to crouch gait cycle in children with cerebral palsy |
title_fullStr |
Robust adaptive control of a planar 3RRR parallel robot for trajectory-tracking applied to crouch gait cycle in children with cerebral palsy |
title_full_unstemmed |
Robust adaptive control of a planar 3RRR parallel robot for trajectory-tracking applied to crouch gait cycle in children with cerebral palsy |
title_sort |
Robust adaptive control of a planar 3RRR parallel robot for trajectory-tracking applied to crouch gait cycle in children with cerebral palsy |
dc.contributor.editor.none.fl_str_mv |
Garcia-Tirado J. Munoz-Durango D. Alvarez H. Botero-Castro H. |
dc.subject.keywords.none.fl_str_mv |
Parallel Robots Robot Trajectory - Tracking Robust Adaptive Control Adaptive control systems Automation Controllers Diseases End effectors MATLAB Process control Productivity Trajectories Children with cerebral palsies Desired trajectories Lyapunov's direct method Matlab/Simulink simulation Parallel robots Planar parallel robots Robot trajectory Robust-adaptive control Control theory |
topic |
Parallel Robots Robot Trajectory - Tracking Robust Adaptive Control Adaptive control systems Automation Controllers Diseases End effectors MATLAB Process control Productivity Trajectories Children with cerebral palsies Desired trajectories Lyapunov's direct method Matlab/Simulink simulation Parallel robots Planar parallel robots Robot trajectory Robust-adaptive control Control theory |
description |
This paper presents the modelling, control and simulation of a 3RRR planar parallel robot, using a robust adaptive control strategy. The objective of this work is to achieve the control over desired trajectory-tracking of the joint pattern with the end-effector of robot, considering the disturbances during the crouch gait activity in children with cerebral palsy. The kinematic analysis is based on the screw theory. A dynamical modelling by Virtual Work formulation approach is developed. The performance of the robust adaptive control law is developed using Lyapunov's Direct Method and Barbalat's lemma. Furthermore, the controller is evaluated in Matlab/Simulink simulation environment with the physic model simulated through Simscape Multibody. The angular position errors, velocity errors and output torques for each motor are calculated. Simulation results show that the proposed controller has good efficiency with stable response of the robot in performing trajectory-tracking. © 2019 IEEE. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:42Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:42Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
4th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019 - Proceedings |
dc.identifier.isbn.none.fl_str_mv |
9781538669624 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8984 |
dc.identifier.doi.none.fl_str_mv |
10.1109/CCAC.2019.8921328 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57205662246 57213688119 57205658483 55498635300 22837432800 |
identifier_str_mv |
4th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019 - Proceedings 9781538669624 10.1109/CCAC.2019.8921328 Universidad Tecnológica de Bolívar Repositorio UTB 57205662246 57213688119 57205658483 55498635300 22837432800 |
url |
https://hdl.handle.net/20.500.12585/8984 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
15 October 2019 through 18 October 2019 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077955939&doi=10.1109%2fCCAC.2019.8921328&partnerID=40&md5=63fe2a369a0fea6fd4e6e79e534f4605 Scopus2-s2.0-85077955939 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
4th IEEE Colombian Conference on Automatic Control, CCAC 2019 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8984/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021734209159168 |
spelling |
Garcia-Tirado J.Munoz-Durango D.Alvarez H.Botero-Castro H.Rodelo M.Polo S.Duque Pardo, Jorge EliécerVilla Ramírez, José LuisYime E.2020-03-26T16:32:42Z2020-03-26T16:32:42Z20194th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019 - Proceedings9781538669624https://hdl.handle.net/20.500.12585/898410.1109/CCAC.2019.8921328Universidad Tecnológica de BolívarRepositorio UTB5720566224657213688119572056584835549863530022837432800This paper presents the modelling, control and simulation of a 3RRR planar parallel robot, using a robust adaptive control strategy. The objective of this work is to achieve the control over desired trajectory-tracking of the joint pattern with the end-effector of robot, considering the disturbances during the crouch gait activity in children with cerebral palsy. The kinematic analysis is based on the screw theory. A dynamical modelling by Virtual Work formulation approach is developed. The performance of the robust adaptive control law is developed using Lyapunov's Direct Method and Barbalat's lemma. Furthermore, the controller is evaluated in Matlab/Simulink simulation environment with the physic model simulated through Simscape Multibody. The angular position errors, velocity errors and output torques for each motor are calculated. Simulation results show that the proposed controller has good efficiency with stable response of the robot in performing trajectory-tracking. © 2019 IEEE.Colombian Conference on Automatic Control (CCAC);IEEE;IEEE Colombia;IEEE Colombian Chapter (CSS)This project was partially founded by Universidad Tecnologica de Bolivar under project "Dynamic Modeling and Simulation of a 3RRR Parallel Planar Robot in underwater conditions for pediatric rehabilitation of Gait".Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85077955939&doi=10.1109%2fCCAC.2019.8921328&partnerID=40&md5=63fe2a369a0fea6fd4e6e79e534f4605Scopus2-s2.0-850779559394th IEEE Colombian Conference on Automatic Control, CCAC 2019Robust adaptive control of a planar 3RRR parallel robot for trajectory-tracking applied to crouch gait cycle in children with cerebral palsyinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fParallel RobotsRobot Trajectory - TrackingRobust Adaptive ControlAdaptive control systemsAutomationControllersDiseasesEnd effectorsMATLABProcess controlProductivityTrajectoriesChildren with cerebral palsiesDesired trajectoriesLyapunov's direct methodMatlab/Simulink simulationParallel robotsPlanar parallel robotsRobot trajectoryRobust-adaptive controlControl theory15 October 2019 through 18 October 2019Lv, G., Gregg, R.D., Towards total energy shaping control of lowerlimb exoskeletons (2017) 2017 American Control Conference (ACC), pp. 4851-4857. , Seattle, WAAzimi, V., Shu, T., Zhao, H., Ambrose, E., Ames, A.D., Simon, D., Robust control of a powered transfemoral prosthesis device with experimental verification (2017) 2017 American Control Conference (ACC), pp. 517-522. , Seattle, WAMcDaid, A.J., Lakkhananukun, C., Park, J., Paediatric robotic gait trainer for children with cerebral palsy (2015) 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 780-785. , SingaporeAgostini, V., Balestra, G., Knaflitz, M., Segmentation and classification of gait cycles (2014) IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22 (5), pp. 946-952. , SeptBurdea, G.C., Cioi, D., Kale, A., Janes, W.E., Ross, S.A., Engsberg, J.R., Robotics and gaming to improve ankle strength, motor control, and function in children with cerebral palsy: A case study series (2013) IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21 (2), pp. 165-173. , MarchBerdina, O.N., Bairova, T.A., Rychkova, L.V., Sheptunov, S.A., The pediatric robotic-Assisted rehabilitation complex for children and adolescents with cerebral palsy: Background and product design (2017) 2017 International Conference ""Quality Management, Transport and Information Security, Information Technologies, pp. 360-363. , St. PetersburgSwaminathan, S.L., Krebs, H.I., Mit-skywalker: A novel gait neurorehabilitation robot for stroke and cerebral palsy (2016) IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24 (10), pp. 1089-1099. , OctGuess, T.M., Razu, S., Musculoskeletal modeling of crouch gait (2018) 2018 3rd Biennial South African Biomedical Engineering Conference (SAIBMEC), pp. 1-4. , StellenboschLerner, Z.F., Damiano, D.L., Park, H., Gravunder, A.J., Bulea, T.C., A robotic exoskeleton for treatment of crouch gait in children with cerebral palsy: Design and initial application (2017) IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25 (6), pp. 650-659. , JuneArmand, S., Decoulon, G., Bonnefoy-Mazure, A., Gait analysis in children with cerebral palsy (2016) EFORT Open Reviews., pp. 448-460Tsai, L., (1999) Robot Analysis and Design: The Mechanics of Serial and Parallel Manipulators, pp. 125-129. , John Wiley Sons, Inc., New York, NYGosselin, C.M., Sefrioui, J., Polynomial solutions for the direct kinematic problem of planar three-degree-of-freedom parallel manipulators (1991) Advanced Robotics, 1991. 'Robots in Unstructured Environments', 91 ICAR. , Fifth International Conference on, 2, pp. 1124-1129. , Pisa, ItalyCardona Gutierrez, M.N., Dimensional synthesis of 3rrr planar parallel robots for well-conditioned workspace (2015) IEEE Latin America Transactions, 13 (2), pp. 409-415. , FebGallardo, J., (2016) Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory.Farhadmanesh, M., Abedloo, E., Molaei, A., Dynamics formulation and motion control of a planar parallel manipulator (2015) 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), pp. 205-209. , TehranYime, E., Saltaren, R., Garcia, C., Sabater, J.M., Robot based on taskspace dynamical model (2011) IET Control Theory Applications, 5 (8), pp. 2111-2119. , DecemberSlotine, J.E., Li, W.P., (1991) Applied Non Linear Control., , Prentice Hallhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8984/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8984oai:repositorio.utb.edu.co:20.500.12585/89842023-05-26 08:09:49.281Repositorio Institucional UTBrepositorioutb@utb.edu.co |