Robust adaptive control of a planar 3RRR parallel robot for trajectory-tracking applied to crouch gait cycle in children with cerebral palsy

This paper presents the modelling, control and simulation of a 3RRR planar parallel robot, using a robust adaptive control strategy. The objective of this work is to achieve the control over desired trajectory-tracking of the joint pattern with the end-effector of robot, considering the disturbances...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8984
Acceso en línea:
https://hdl.handle.net/20.500.12585/8984
Palabra clave:
Parallel Robots
Robot Trajectory - Tracking
Robust Adaptive Control
Adaptive control systems
Automation
Controllers
Diseases
End effectors
MATLAB
Process control
Productivity
Trajectories
Children with cerebral palsies
Desired trajectories
Lyapunov's direct method
Matlab/Simulink simulation
Parallel robots
Planar parallel robots
Robot trajectory
Robust-adaptive control
Control theory
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_e4be9e2c27923789d26b1a595cbdb47e
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8984
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Robust adaptive control of a planar 3RRR parallel robot for trajectory-tracking applied to crouch gait cycle in children with cerebral palsy
title Robust adaptive control of a planar 3RRR parallel robot for trajectory-tracking applied to crouch gait cycle in children with cerebral palsy
spellingShingle Robust adaptive control of a planar 3RRR parallel robot for trajectory-tracking applied to crouch gait cycle in children with cerebral palsy
Parallel Robots
Robot Trajectory - Tracking
Robust Adaptive Control
Adaptive control systems
Automation
Controllers
Diseases
End effectors
MATLAB
Process control
Productivity
Trajectories
Children with cerebral palsies
Desired trajectories
Lyapunov's direct method
Matlab/Simulink simulation
Parallel robots
Planar parallel robots
Robot trajectory
Robust-adaptive control
Control theory
title_short Robust adaptive control of a planar 3RRR parallel robot for trajectory-tracking applied to crouch gait cycle in children with cerebral palsy
title_full Robust adaptive control of a planar 3RRR parallel robot for trajectory-tracking applied to crouch gait cycle in children with cerebral palsy
title_fullStr Robust adaptive control of a planar 3RRR parallel robot for trajectory-tracking applied to crouch gait cycle in children with cerebral palsy
title_full_unstemmed Robust adaptive control of a planar 3RRR parallel robot for trajectory-tracking applied to crouch gait cycle in children with cerebral palsy
title_sort Robust adaptive control of a planar 3RRR parallel robot for trajectory-tracking applied to crouch gait cycle in children with cerebral palsy
dc.contributor.editor.none.fl_str_mv Garcia-Tirado J.
Munoz-Durango D.
Alvarez H.
Botero-Castro H.
dc.subject.keywords.none.fl_str_mv Parallel Robots
Robot Trajectory - Tracking
Robust Adaptive Control
Adaptive control systems
Automation
Controllers
Diseases
End effectors
MATLAB
Process control
Productivity
Trajectories
Children with cerebral palsies
Desired trajectories
Lyapunov's direct method
Matlab/Simulink simulation
Parallel robots
Planar parallel robots
Robot trajectory
Robust-adaptive control
Control theory
topic Parallel Robots
Robot Trajectory - Tracking
Robust Adaptive Control
Adaptive control systems
Automation
Controllers
Diseases
End effectors
MATLAB
Process control
Productivity
Trajectories
Children with cerebral palsies
Desired trajectories
Lyapunov's direct method
Matlab/Simulink simulation
Parallel robots
Planar parallel robots
Robot trajectory
Robust-adaptive control
Control theory
description This paper presents the modelling, control and simulation of a 3RRR planar parallel robot, using a robust adaptive control strategy. The objective of this work is to achieve the control over desired trajectory-tracking of the joint pattern with the end-effector of robot, considering the disturbances during the crouch gait activity in children with cerebral palsy. The kinematic analysis is based on the screw theory. A dynamical modelling by Virtual Work formulation approach is developed. The performance of the robust adaptive control law is developed using Lyapunov's Direct Method and Barbalat's lemma. Furthermore, the controller is evaluated in Matlab/Simulink simulation environment with the physic model simulated through Simscape Multibody. The angular position errors, velocity errors and output torques for each motor are calculated. Simulation results show that the proposed controller has good efficiency with stable response of the robot in performing trajectory-tracking. © 2019 IEEE.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:42Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:42Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv 4th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019 - Proceedings
dc.identifier.isbn.none.fl_str_mv 9781538669624
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8984
dc.identifier.doi.none.fl_str_mv 10.1109/CCAC.2019.8921328
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57205662246
57213688119
57205658483
55498635300
22837432800
identifier_str_mv 4th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019 - Proceedings
9781538669624
10.1109/CCAC.2019.8921328
Universidad Tecnológica de Bolívar
Repositorio UTB
57205662246
57213688119
57205658483
55498635300
22837432800
url https://hdl.handle.net/20.500.12585/8984
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 15 October 2019 through 18 October 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077955939&doi=10.1109%2fCCAC.2019.8921328&partnerID=40&md5=63fe2a369a0fea6fd4e6e79e534f4605
Scopus2-s2.0-85077955939
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 4th IEEE Colombian Conference on Automatic Control, CCAC 2019
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8984/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021734209159168
spelling Garcia-Tirado J.Munoz-Durango D.Alvarez H.Botero-Castro H.Rodelo M.Polo S.Duque Pardo, Jorge EliécerVilla Ramírez, José LuisYime E.2020-03-26T16:32:42Z2020-03-26T16:32:42Z20194th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019 - Proceedings9781538669624https://hdl.handle.net/20.500.12585/898410.1109/CCAC.2019.8921328Universidad Tecnológica de BolívarRepositorio UTB5720566224657213688119572056584835549863530022837432800This paper presents the modelling, control and simulation of a 3RRR planar parallel robot, using a robust adaptive control strategy. The objective of this work is to achieve the control over desired trajectory-tracking of the joint pattern with the end-effector of robot, considering the disturbances during the crouch gait activity in children with cerebral palsy. The kinematic analysis is based on the screw theory. A dynamical modelling by Virtual Work formulation approach is developed. The performance of the robust adaptive control law is developed using Lyapunov's Direct Method and Barbalat's lemma. Furthermore, the controller is evaluated in Matlab/Simulink simulation environment with the physic model simulated through Simscape Multibody. The angular position errors, velocity errors and output torques for each motor are calculated. Simulation results show that the proposed controller has good efficiency with stable response of the robot in performing trajectory-tracking. © 2019 IEEE.Colombian Conference on Automatic Control (CCAC);IEEE;IEEE Colombia;IEEE Colombian Chapter (CSS)This project was partially founded by Universidad Tecnologica de Bolivar under project "Dynamic Modeling and Simulation of a 3RRR Parallel Planar Robot in underwater conditions for pediatric rehabilitation of Gait".Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85077955939&doi=10.1109%2fCCAC.2019.8921328&partnerID=40&md5=63fe2a369a0fea6fd4e6e79e534f4605Scopus2-s2.0-850779559394th IEEE Colombian Conference on Automatic Control, CCAC 2019Robust adaptive control of a planar 3RRR parallel robot for trajectory-tracking applied to crouch gait cycle in children with cerebral palsyinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fParallel RobotsRobot Trajectory - TrackingRobust Adaptive ControlAdaptive control systemsAutomationControllersDiseasesEnd effectorsMATLABProcess controlProductivityTrajectoriesChildren with cerebral palsiesDesired trajectoriesLyapunov's direct methodMatlab/Simulink simulationParallel robotsPlanar parallel robotsRobot trajectoryRobust-adaptive controlControl theory15 October 2019 through 18 October 2019Lv, G., Gregg, R.D., Towards total energy shaping control of lowerlimb exoskeletons (2017) 2017 American Control Conference (ACC), pp. 4851-4857. , Seattle, WAAzimi, V., Shu, T., Zhao, H., Ambrose, E., Ames, A.D., Simon, D., Robust control of a powered transfemoral prosthesis device with experimental verification (2017) 2017 American Control Conference (ACC), pp. 517-522. , Seattle, WAMcDaid, A.J., Lakkhananukun, C., Park, J., Paediatric robotic gait trainer for children with cerebral palsy (2015) 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 780-785. , SingaporeAgostini, V., Balestra, G., Knaflitz, M., Segmentation and classification of gait cycles (2014) IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22 (5), pp. 946-952. , SeptBurdea, G.C., Cioi, D., Kale, A., Janes, W.E., Ross, S.A., Engsberg, J.R., Robotics and gaming to improve ankle strength, motor control, and function in children with cerebral palsy: A case study series (2013) IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21 (2), pp. 165-173. , MarchBerdina, O.N., Bairova, T.A., Rychkova, L.V., Sheptunov, S.A., The pediatric robotic-Assisted rehabilitation complex for children and adolescents with cerebral palsy: Background and product design (2017) 2017 International Conference ""Quality Management, Transport and Information Security, Information Technologies, pp. 360-363. , St. PetersburgSwaminathan, S.L., Krebs, H.I., Mit-skywalker: A novel gait neurorehabilitation robot for stroke and cerebral palsy (2016) IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24 (10), pp. 1089-1099. , OctGuess, T.M., Razu, S., Musculoskeletal modeling of crouch gait (2018) 2018 3rd Biennial South African Biomedical Engineering Conference (SAIBMEC), pp. 1-4. , StellenboschLerner, Z.F., Damiano, D.L., Park, H., Gravunder, A.J., Bulea, T.C., A robotic exoskeleton for treatment of crouch gait in children with cerebral palsy: Design and initial application (2017) IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25 (6), pp. 650-659. , JuneArmand, S., Decoulon, G., Bonnefoy-Mazure, A., Gait analysis in children with cerebral palsy (2016) EFORT Open Reviews., pp. 448-460Tsai, L., (1999) Robot Analysis and Design: The Mechanics of Serial and Parallel Manipulators, pp. 125-129. , John Wiley Sons, Inc., New York, NYGosselin, C.M., Sefrioui, J., Polynomial solutions for the direct kinematic problem of planar three-degree-of-freedom parallel manipulators (1991) Advanced Robotics, 1991. 'Robots in Unstructured Environments', 91 ICAR. , Fifth International Conference on, 2, pp. 1124-1129. , Pisa, ItalyCardona Gutierrez, M.N., Dimensional synthesis of 3rrr planar parallel robots for well-conditioned workspace (2015) IEEE Latin America Transactions, 13 (2), pp. 409-415. , FebGallardo, J., (2016) Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory.Farhadmanesh, M., Abedloo, E., Molaei, A., Dynamics formulation and motion control of a planar parallel manipulator (2015) 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), pp. 205-209. , TehranYime, E., Saltaren, R., Garcia, C., Sabater, J.M., Robot based on taskspace dynamical model (2011) IET Control Theory Applications, 5 (8), pp. 2111-2119. , DecemberSlotine, J.E., Li, W.P., (1991) Applied Non Linear Control., , Prentice Hallhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8984/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8984oai:repositorio.utb.edu.co:20.500.12585/89842023-05-26 08:09:49.281Repositorio Institucional UTBrepositorioutb@utb.edu.co