The role of energy storage and cross-border interconnections for increasing the flexibility of future power systems : the case of Colombia

The rapid expansion of renewable energy technologies in the electricity sector introduces new significant challenges for power systems due to their high intermittency. Therefore, more flexibility is needed to ensure that the system can operate reliably and cost-effectively with large shares of varia...

Full description

Autores:
Pupo-Roncallo, O.
Campillo, J.
Ingham, D.
Ma, L.
Pourkashanian, M.
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10636
Acceso en línea:
https://hdl.handle.net/20.500.12585/10636
https://doi.org/10.1016/j.segy.2021.100016
Palabra clave:
Electricity energy storage
Interconnections
RES
EnergyPLAN
Colombia
optimisation
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_e4b21d986c5f45b8a7d4618fc5e18058
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10636
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv The role of energy storage and cross-border interconnections for increasing the flexibility of future power systems : the case of Colombia
title The role of energy storage and cross-border interconnections for increasing the flexibility of future power systems : the case of Colombia
spellingShingle The role of energy storage and cross-border interconnections for increasing the flexibility of future power systems : the case of Colombia
Electricity energy storage
Interconnections
RES
EnergyPLAN
Colombia
optimisation
LEMB
title_short The role of energy storage and cross-border interconnections for increasing the flexibility of future power systems : the case of Colombia
title_full The role of energy storage and cross-border interconnections for increasing the flexibility of future power systems : the case of Colombia
title_fullStr The role of energy storage and cross-border interconnections for increasing the flexibility of future power systems : the case of Colombia
title_full_unstemmed The role of energy storage and cross-border interconnections for increasing the flexibility of future power systems : the case of Colombia
title_sort The role of energy storage and cross-border interconnections for increasing the flexibility of future power systems : the case of Colombia
dc.creator.fl_str_mv Pupo-Roncallo, O.
Campillo, J.
Ingham, D.
Ma, L.
Pourkashanian, M.
dc.contributor.author.none.fl_str_mv Pupo-Roncallo, O.
Campillo, J.
Ingham, D.
Ma, L.
Pourkashanian, M.
dc.subject.keywords.spa.fl_str_mv Electricity energy storage
Interconnections
RES
EnergyPLAN
Colombia
optimisation
topic Electricity energy storage
Interconnections
RES
EnergyPLAN
Colombia
optimisation
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The rapid expansion of renewable energy technologies in the electricity sector introduces new significant challenges for power systems due to their high intermittency. Therefore, more flexibility is needed to ensure that the system can operate reliably and cost-effectively with large shares of variable renewable energy sources (RES). Electricity energy storage and cross-border interconnections are considered two key components for allowing further integration of these sources. Therefore, the aim of this study is to analyse the techno-economic effects of grid-scale electricity storage and interconnections in the integration of variable RES by using the power system of Colombia as a case study. The EnergyPLAN tool was used for building the reference system model and future scenarios. Initially, the technical impacts of electricity storage and interconnections in the power system were examined. Successively, a multi-objective evolutionary algorithm (MOEA) was applied to perform a techno-economic optimisation and identify a set of optimal configurations. The results evidenced that increasing levels of storage and interconnections could allow further penetration of variable RES, achieving total annual electricity production levels of approximately 96.8%. Further, significant reductions in both the fuel consumption and CO2 emissions might permit an emission factor of the power sector of approximately 26.5 gCO2e/kWh
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-04-20
dc.date.accessioned.none.fl_str_mv 2022-03-24T15:55:09Z
dc.date.available.none.fl_str_mv 2022-03-24T15:55:09Z
dc.date.submitted.none.fl_str_mv 2022-03-23
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Pupo-Roncallo, O., Campillo, J., Ingham, D., Ma, L., & Pourkashanian, M. (2021). The role of energy storage and cross-border interconnections for increasing the flexibility of future power systems: The case of Colombia. Smart Energy. 2. 100016. 10.1016/j.segy.2021.100016.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10636
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.segy.2021.100016
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Pupo-Roncallo, O., Campillo, J., Ingham, D., Ma, L., & Pourkashanian, M. (2021). The role of energy storage and cross-border interconnections for increasing the flexibility of future power systems: The case of Colombia. Smart Energy. 2. 100016. 10.1016/j.segy.2021.100016.
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10636
https://doi.org/10.1016/j.segy.2021.100016
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 33 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Colombia
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Smart Energy, vol. 2, (2021)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10636/1/1-s2.0-S2666955221000162-main.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10636/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10636/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10636/4/1-s2.0-S2666955221000162-main.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10636/5/1-s2.0-S2666955221000162-main.pdf.jpg
bitstream.checksum.fl_str_mv 69e5da246018a6a984a3eacea44f9290
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
848d91500807c8587bec273b9f582356
6aa56aa7a9f2bc6882569d6be3af0340
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021596189294592
spelling Pupo-Roncallo, O.a36026b1-f122-437a-b94f-5417f5306197Campillo, J.8c4725e9-5e97-40df-b9ae-f67c73617ff3Ingham, D.d33b5dc8-f5e6-449f-86f2-e9fa64809f7eMa, L.b1e9f2f6-6ba8-406d-a5bf-1e8b4733be90Pourkashanian, M.dc2126b0-9e29-4f35-be16-aea520915e33Colombia2022-03-24T15:55:09Z2022-03-24T15:55:09Z2021-04-202022-03-23Pupo-Roncallo, O., Campillo, J., Ingham, D., Ma, L., & Pourkashanian, M. (2021). The role of energy storage and cross-border interconnections for increasing the flexibility of future power systems: The case of Colombia. Smart Energy. 2. 100016. 10.1016/j.segy.2021.100016.https://hdl.handle.net/20.500.12585/10636https://doi.org/10.1016/j.segy.2021.100016Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe rapid expansion of renewable energy technologies in the electricity sector introduces new significant challenges for power systems due to their high intermittency. Therefore, more flexibility is needed to ensure that the system can operate reliably and cost-effectively with large shares of variable renewable energy sources (RES). Electricity energy storage and cross-border interconnections are considered two key components for allowing further integration of these sources. Therefore, the aim of this study is to analyse the techno-economic effects of grid-scale electricity storage and interconnections in the integration of variable RES by using the power system of Colombia as a case study. The EnergyPLAN tool was used for building the reference system model and future scenarios. Initially, the technical impacts of electricity storage and interconnections in the power system were examined. Successively, a multi-objective evolutionary algorithm (MOEA) was applied to perform a techno-economic optimisation and identify a set of optimal configurations. The results evidenced that increasing levels of storage and interconnections could allow further penetration of variable RES, achieving total annual electricity production levels of approximately 96.8%. Further, significant reductions in both the fuel consumption and CO2 emissions might permit an emission factor of the power sector of approximately 26.5 gCO2e/kWh33 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Smart Energy, vol. 2, (2021)The role of energy storage and cross-border interconnections for increasing the flexibility of future power systems : the case of Colombiainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Electricity energy storageInterconnectionsRESEnergyPLANColombiaoptimisationLEMBCartagena de IndiasHaas J, Cebulla F, Cao K, Nowak W, Palma-Behnke R, Rahmann C, et al. Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review. Renew Sustain Energy Rev 2017;80:603–19. https://doi.org/https://doi.org/10.1016/j.rser.2017.05.201.Cebulla F, Haas J, Eichman J, Nowak W, Mancarella P. How much electrical energy storage do we need? A synthesis for the U.S., Europe, and Germany. J Clean Prod 2018;181:449–59. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.01.144.Haas J, Cebulla F, Nowak W, Rahmann C, Palma-Behnke R. A multi-service approach for planning the optimal mix of energy storage technologies in a fully-renewable power supply. Energy Convers Manag 2018;178:355–68. https://doi.org/https://doi.org/10.1016/j.enconman.2018.09.087.Mathiesen BV, Drysdale D, Chozas J, Ridjan I, Conolly D, Lund H. A review of smart energy projects & smart energy state-of-the-art. Aalborg, Denmark: Department of planning, Aalborg university; 2015Lund H, Østergaard PA, Connolly D, Ridjan I, Mathiesen BV, Hvelplund F, et al. Energy Storage and Smart Energy Systems. Int J Sustain Energy Plan Manag 2016;11:3–14. https://doi.org/10.5278/ijsepm.2016.11.2Lund H. Renewable energy systems: A smart energy systems approach to the choice and modeling of 100% renewable solutions. 2nd ed. Amsterdam: Beaverton: Ringgold Inc.; 2014Castillo A, Gayme DF. Grid-scale energy storage applications in renewable energy integration: A survey. Energy Convers Manag 2014;87:885–94. https://doi.org/https://doi.org/10.1016/j.enconman.2014.07.063.Mathiesen B V, Lund H, Connolly D, Wenzel H, Østergaard PA, Möller B, et al. Smart Energy Systems for coherent 100% renewable energy and transport solutions. Appl Energy 2015;145:139–54. https://doi.org/https://doi.org/10.1016/j.apenergy.2015.01.075International Finance Corporation (IFC). Energy Storage Trends and Opportunities in Emerging Markets. Boulder, USA: 2017.Ochoa C, Dyner I, Franco CJ. Simulating power integration in Latin America to assess challenges, opportunities, and threats. Energy Policy 2013;61:267–73. https://doi.org/https://doi.org/10.1016/j.enpol.2013.07.029.Guezgouz M, Jurasz J, Bekkouche B, Ma T, Javed MS, Kies A. Optimal hybrid pumped hydro-battery storage scheme for off-grid renewable energy systems. Energy Convers Manag 2019;199:112046.El-Bidairi KS, Nguyen HD, Mahmoud TS, Jayasinghe SDG, Guerrero JM. Optimal sizing of Battery Energy Storage Systems for dynamic frequency control in an islanded microgrid: A case study of Flinders Island, Australia. Energy 2020;195:117059. https://doi.org/https://doi.org/10.1016/j.energy.2020.117059.Alves M, Segurado R, Costa M. Increasing the penetration of renewable energy sources in isolated islands through the interconnection of their power systems. The case of Pico and Faial islands, Azores. Energy 2019;182:502–10. https://doi.org/https://doi.org/10.1016/j.energy.2019.06.081.Edmunds RK, Cockerill TT, Foxon TJ, Ingham DB, Pourkashanian M. Technical benefits of energy storage and electricity interconnections in future British power systems. Energy 2014;70:577–87. https://doi.org/10.1016/j.energy.2014.04.041.Arciniegas LM, Hittinger E. Tradeoffs between revenue and emissions in energy storage operation. Energy 2018;143:1–11. https://doi.org/https://doi.org/10.1016/j.energy.2017.10.123.Headley AJ, Copp DA. Energy storage sizing for grid compatibility of intermittent renewable resources: A California case study. Energy 2020;198:117310. https://doi.org/https://doi.org/10.1016/j.energy.2020.117310.Bussar C, Stöcker P, Cai Z, Moraes Jr. L, Magnor D, Wiernes P, et al. Large-scale integration of renewable energies and impact on storage demand in a European renewable power system of 2050—Sensitivity study. J Energy Storage 2016;6:1–10. https://doi.org/https://doi.org/10.1016/j.est.2016.02.004Andresen GB, Rodriguez RA, Becker S, Greiner M. The potential for arbitrage of wind and solar surplus power in Denmark. Energy 2014;76:49–58. https://doi.org/https://doi.org/10.1016/j.energy.2014.03.033.Limpens G, Jeanmart H. Electricity storage needs for the energy transition: An EROI based analysis illustrated by the case of Belgium. Energy 2018;152:960–73. https://doi.org/https://doi.org/10.1016/j.energy.2018.03.180.Connolly D, Lund H, Mathiesen B V, Pican E, Leahy M. The technical and economic implications of integrating fluctuating renewable energy using energy storage. Renew Energy 2012;43:47–60. https://doi.org/https://doi.org/10.1016/j.renene.2011.11.003Lopez J. Efecto del almacenamiento de energía en el mercado mayorista eléctrico Colombiano. Universidad Nacional de Colombia, 2013.Ochoa C, van Ackere A. Does size matter? Simulating electricity market coupling between Colombia and Ecuador. Renew Sustain Energy Rev 2015;50:1108–24. https://doi.org/https://doi.org/10.1016/j.rser.2015.05.054Cabrera P, Lund H, Thellufsen JZ, Sorknæs P. The MATLAB Toolbox for EnergyPLAN: A tool to extend energy planning studies. Sci Comput Program 2020;191:102405. https://doi.org/https://doi.org/10.1016/j.scico.2020.102405Batas Bjelić I, Rajaković N. Simulation-based optimization of sustainable national energy systems. Energy 2015;91:1087–98. https://doi.org/https://doi.org/10.1016/j.energy.2015.09.006Prina MG, Cozzini M, Garegnani G, Manzolini G, Moser D, Filippi Oberegger U, et al. Multi-objective optimization algorithm coupled to EnergyPLAN software: The EPLANopt model. Energy 2018;149:213–21. https://doi.org/https://doi.org/10.1016/j.energy.2018.02.050Mahbub MS, Cozzini M, Østergaard PA, Alberti F. Combining multi-objective evolutionary algorithms and descriptive analytical modelling in energy scenario design. Appl Energy 2016;164:140–51. https://doi.org/https://doi.org/10.1016/j.apenergy.2015.11.042Pupo-Roncallo O, Campillo J, Ingham D, Hughes K, Pourkashanian M. Large scale integration of renewable energy sources (RES) in the future Colombian energy system. Energy 2019;186:115805. https://doi.org/10.1016/j.energy.2019.07.135Colombian Electrical Information System (SIEL) 2017. http://www.siel.gov.co/ (accessed July 24, 2018).Garcia-Freites S, Welfle A, Lea-Langton A, Gilbert P, Thornley P. The potential of coffee stems gasification to provide bioenergy for coffee farms: a case study in the Colombian coffee sector. Biomass Convers Biorefinery 2019. https://doi.org/10.1007/s13399-019-00480-8.Gómez-Navarro T, Ribó-Pérez D. Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renew Sustain Energy Rev 2018;90:131–41. https://doi.org/10.1016/J.RSER.2018.03.015Lambertini G. Los Convenios bilaterales que soportan las interconexiones energéticas en América del Sur. ENERLAC Rev Energía Latinoamérica y El Caribe 2018;1:126–45.Pupo-Roncallo O, Campillo J, Ingham D, Hughes K, Pourkashanian M. Renewable energy production and demand dataset for the energy system of Colombia. Data Br 2020:105084. https://doi.org/https://doi.org/10.1016/j.dib.2019.105084.CAF, (CIER) C de IER. Nuevas oportunidades de interconexión eléctrica en América Latina. Bogotá D.C., Colombia: CAF; 2012XM. Portal BI - Gestión Información Inteligente 2020. http://informacioninteligente10.xm.com.co/pages/default.aspx (accessed March 30, 2020)Ringkjøb H-K, Haugan PM, Solbrekke IM. A review of modelling tools for energy and electricity systems with large shares of variable renewables. Renew Sustain Energy Rev 2018;96:440–59. https://doi.org/https://doi.org/10.1016/j.rser.2018.08.002.Lund H, Thellufsen JZ, Østergaard PA, Sorknæs P, Skov IR, Mathiesen BV. EnergyPLAN – Advanced analysis of smart energy systems. Smart Energy 2021;1:100007. https://doi.org/10.1016/j.segy.2021.100007Lund H, Thellufsen JZ. EnergyPLAN - Advanced Energy Systems Analysis Computer Model (Version 15.1) 2020. https://doi.org/10.5281/zenodo.4017214.Connolly D. Finding and Inputting Data into the EnergyPLAN Tool. Aalborg: 2015.Pupo-Roncallo O, Ingham D, Pourkashanian M. Techno-economic benefits of grid-scale energy storage in future energy systems. Energy Reports 2020;6:242–8. https://doi.org/https://doi.org/10.1016/j.egyr.2020.03.030.IPCC. IPCC guidelines for national greenhouse gas inventories, Intergovernmental Panel on Climate Change (IPCC), Task Force on National Greenhouse Gas Inventories (TFI) n.d. https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (accessed September 28, 2018).Gonzalez-Salazar M, Venturini M, Poganietz W-R, Finkenrath M, Acevedo H, Kirsten T. Bioenergy Technology Roadmap for Colombia. 2014. https://doi.org/10.15160/unife/eprintsunife/774.Calderón S, Alvarez A, Loboguerrero A, Arango S, Calvin K, Kober T, et al. Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets. Energy Econ 2016;56:575–86. https://doi.org/https://doi.org/10.1016/j.eneco.2015.05.010.International Renewable Energy Agency (IRENA). Colombia power system flexibility assessment. Abu Dhabi: IRENA; 2018.Mining and Energy Planning Unit (UPME). Actualización y Revisión de los Balances Energéticos Nacionales de Colombia 1975–2009. Tomo I - Balances Energéticos Nacionales. Bogota: UPME; 2011Mining and Energy Planning Unit (UPME). Plan de Expansión de Referencia Generación Transmisión 2017-2031. Bogota: 2017Environment and Sustainable Development Ministry (MADS). Upstream analytical work to support development of policy options for mid- and long-term mitigation objectives in Colombia. Bogota: 2016.Balza L, Gischler C, Janson N, Miller S, Servetti G. Potential for Energy Storage in Combination with Renewable Energy in Latin America and the Caribbean. Washington,Wilson IAG, McGregor PG, Hall PJ. Energy storage in the UK electrical network: Estimation of the scale and review of technology options. Energy Policy 2010;38:4099– 106. https://doi.org/https://doi.org/10.1016/j.enpol.2010.03.036.Aghahosseini A, Bogdanov D, Barbosa LSNS, Breyer C. Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030. Renew Sustain Energy Rev 2019;105:187–205. https://doi.org/10.1016/j.rser.2019.01.046Belderbos A, Virag A, D’haeseleer W, Delarue E. Considerations on the need for electricity storage requirements: Power versus energy. Energy Convers Manag 2017;143:137–49. https://doi.org/https://doi.org/10.1016/j.enconman.2017.03.074Denholm P, Mai T. Timescales of energy storage needed for reducing renewable energy curtailment. Renew Energy 2019;130:388–99. https://doi.org/https://doi.org/10.1016/j.renene.2018.06.079Lund H, Salgi G. The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Convers Manag 2009;50:1172–9. https://doi.org/https://doi.org/10.1016/j.enconman.2009.01.032.Victoria M, Zhu K, Brown T, Andresen GB, Greiner M. The role of storage technologies throughout the decarbonisation of the sector-coupled European energy system. Energy Convers Manag 2019;201:111977. https://doi.org/https://doi.org/10.1016/j.enconman.2019.111977.IRENA. Electricity storage and renewables: Costs and markets to 2030. Abu Dhabi: IRENA; 2017. https://doi.org/ISBN 978-92-9260-038-9 (PDF)Joint Research Centre. Energy Technology Reference Indicator projections for 2010- 2050. Petten, the Netherlands: 2014. https://doi.org/10.2790/057687.Thomson Reuters Point Carbon. The MSR: Impact on market balance and prices. Oslo, Norway: 2014.Pupo-Roncallo O, Ingham D, Pourkashanian M. MOEA Eplan (Multi-objective evolutionary algorithm optimisation for EnergyPLAN) 2020. https://doi.org/10.5281/ZENODO.3770479.The MathWorks Inc. MATLAB, 2017 version 9.2 2017Deb K, Kalyanmoy D. Multi-Objective Optimization Using Evolutionary Algorithms. USA: John Wiley & Sons, Inc.; 2001.http://purl.org/coar/resource_type/c_6501ORIGINAL1-s2.0-S2666955221000162-main.pdf1-s2.0-S2666955221000162-main.pdfapplication/pdf2639823https://repositorio.utb.edu.co/bitstream/20.500.12585/10636/1/1-s2.0-S2666955221000162-main.pdf69e5da246018a6a984a3eacea44f9290MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10636/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10636/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT1-s2.0-S2666955221000162-main.pdf.txt1-s2.0-S2666955221000162-main.pdf.txtExtracted texttext/plain59557https://repositorio.utb.edu.co/bitstream/20.500.12585/10636/4/1-s2.0-S2666955221000162-main.pdf.txt848d91500807c8587bec273b9f582356MD54THUMBNAIL1-s2.0-S2666955221000162-main.pdf.jpg1-s2.0-S2666955221000162-main.pdf.jpgGenerated Thumbnailimage/jpeg107419https://repositorio.utb.edu.co/bitstream/20.500.12585/10636/5/1-s2.0-S2666955221000162-main.pdf.jpg6aa56aa7a9f2bc6882569d6be3af0340MD5520.500.12585/10636oai:repositorio.utb.edu.co:20.500.12585/106362023-04-24 09:42:41.892Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=