Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM

Different methods of two-dimensional and three-dimensional numerical resolution models have been used to predict the air–water interaction in pipe systems in the early twenty-first century, where reliable and adequate results have been obtained when compared with experimental results. However, the s...

Full description

Autores:
Paternina-Verona, Duban A.
Coronado-Hernández, Oscar E.
Fuertes-Miquel, Vicente S.
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12402
Acceso en línea:
https://hdl.handle.net/20.500.12585/12402
Palabra clave:
Air;
Geysers;
Emptying
LEMB
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UTB2_e478fed93ecd0b2426599aee7b9137b3
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12402
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.es_CO.fl_str_mv Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM
title Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM
spellingShingle Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM
Air;
Geysers;
Emptying
LEMB
title_short Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM
title_full Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM
title_fullStr Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM
title_full_unstemmed Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM
title_sort Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM
dc.creator.fl_str_mv Paternina-Verona, Duban A.
Coronado-Hernández, Oscar E.
Fuertes-Miquel, Vicente S.
dc.contributor.author.none.fl_str_mv Paternina-Verona, Duban A.
Coronado-Hernández, Oscar E.
Fuertes-Miquel, Vicente S.
dc.subject.keywords.es_CO.fl_str_mv Air;
Geysers;
Emptying
topic Air;
Geysers;
Emptying
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Different methods of two-dimensional and three-dimensional numerical resolution models have been used to predict the air–water interaction in pipe systems in the early twenty-first century, where reliable and adequate results have been obtained when compared with experimental results. However, the study of the drainage process in pressurized systems with air admitted through openings has not been studied using this type of model due to the complexity that this represents. In this research, a two-dimensional numerical model is developed in the open-source software OpenFOAM; this model represents the drainage of an irregular pipe with air admitted by an air valve, defined by a structured mesh. A validation of the numerical model related to the air admitted by the variation of the air valve diameter is also performed. © 2022 Informa UK Limited, trading as Taylor & Francis Group.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-21T20:53:43Z
dc.date.available.none.fl_str_mv 2023-07-21T20:53:43Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.es_CO.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.es_CO.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.es_CO.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.es_CO.fl_str_mv Paternina-Verona, D. A., Coronado-Hernández, O. E., & Fuertes-Miquel, V. S. (2022). Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM. Urban Water Journal, 19(6), 569-578.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12402
dc.identifier.doi.none.fl_str_mv Paternina-Verona, D. A., Coronado-Hernández, O. E., & Fuertes-Miquel, V. S. (2022). Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM. Urban Water Journal, 19(6), 569-578.
dc.identifier.instname.es_CO.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.es_CO.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Paternina-Verona, D. A., Coronado-Hernández, O. E., & Fuertes-Miquel, V. S. (2022). Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM. Urban Water Journal, 19(6), 569-578.
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12402
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.es_CO.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.none.fl_str_mv 9 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.place.es_CO.fl_str_mv Cartagena de Indias
dc.source.es_CO.fl_str_mv Urban Water Journal
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12402/1/Scopus%20-%20Document%20details%20-%20Numerical%20modelling%20for%20analysing%20drainage%20in%20irregular%20profile%20pipes%20using%20OpenFOAM.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12402/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12402/3/Scopus%20-%20Document%20details%20-%20Numerical%20modelling%20for%20analysing%20drainage%20in%20irregular%20profile%20pipes%20using%20OpenFOAM.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12402/4/Scopus%20-%20Document%20details%20-%20Numerical%20modelling%20for%20analysing%20drainage%20in%20irregular%20profile%20pipes%20using%20OpenFOAM.pdf.jpg
bitstream.checksum.fl_str_mv a7b5f2b155636341b64d1801844b80d6
e20ad307a1c5f3f25af9304a7a7c86b6
2e48409b8b78d4a8ab7687a0e83ca985
590a1dd196a2e1f6653722ee54b785fc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021784573313024
spelling Paternina-Verona, Duban A.5d7644af-e173-4934-a456-2d7a35e68c77Coronado-Hernández, Oscar E.f7a2fa8b-0bf4-4814-84e5-164c0b4b3c36Fuertes-Miquel, Vicente S.ee591d7a-dc42-4bff-b9db-a19f976e419b2023-07-21T20:53:43Z2023-07-21T20:53:43Z20222023Paternina-Verona, D. A., Coronado-Hernández, O. E., & Fuertes-Miquel, V. S. (2022). Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM. Urban Water Journal, 19(6), 569-578.https://hdl.handle.net/20.500.12585/12402Paternina-Verona, D. A., Coronado-Hernández, O. E., & Fuertes-Miquel, V. S. (2022). Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM. Urban Water Journal, 19(6), 569-578.Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarDifferent methods of two-dimensional and three-dimensional numerical resolution models have been used to predict the air–water interaction in pipe systems in the early twenty-first century, where reliable and adequate results have been obtained when compared with experimental results. However, the study of the drainage process in pressurized systems with air admitted through openings has not been studied using this type of model due to the complexity that this represents. In this research, a two-dimensional numerical model is developed in the open-source software OpenFOAM; this model represents the drainage of an irregular pipe with air admitted by an air valve, defined by a structured mesh. A validation of the numerical model related to the air admitted by the variation of the air valve diameter is also performed. © 2022 Informa UK Limited, trading as Taylor & Francis Group.9 páginasapplication/pdfengUrban Water JournalNumerical modelling for analysing drainage in irregular profile pipes using OpenFOAMinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Air;Geysers;EmptyingLEMBinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cartagena de IndiasAguirre-Mendoza, A.M., Oyuela, S., Espinoza-Román, H.G., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Paternina-Verona, D.A. 2D CFD modeling of rapid water filling with air valves using openFOAM (2021) Water (Switzerland), 13 (21), art. no. 3104. Cited 7 times. https://www.mdpi.com/2073-4441/13/21/3104/pdf doi: 10.3390/w13213104Ali, Z., Tucker, P.G., Shahpar, S. Optimal mesh topology generation for CFD (2017) Computer Methods in Applied Mechanics and Engineering, 317, pp. 431-457. Cited 14 times. http://www.journals.elsevier.com/computer-methods-in-applied-mechanics-and-engineering/http://www.journals.elsevier.com/computer-methods-in-applied-mechanics-and-engineering/ doi: 10.1016/j.cma.2016.12.001Besharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M. Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket (2018) Urban Water Journal, 15 (8), pp. 769-779. Cited 19 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2018.1540711Besharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M. Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage (2020) Journal of Hydraulic Research, 58 (4), pp. 553-565. Cited 16 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2019.1625819Besharat, M., Tarinejad, R., Ramos, H.M. The effect of water hammer on a confined air pocket towards flow energy storage system (2016) Journal of Water Supply: Research and Technology - AQUA, 65 (2), pp. 116-126. Cited 28 times. http://aqua.iwaponline.com/content/ppiwajwsrt/65/2/116.full.pdf doi: 10.2166/aqua.2015.081Blazek, J. Computational Fluid Dynamics: Principles and Applications: Third Edition (2015) Computational Fluid Dynamics: Principles and Applications: Third Edition, pp. 1-447. Cited 431 times. http://www.sciencedirect.com/science/book/9780080999951 ISBN: 978-012801172-0; 978-008099995-1 doi: 10.1016/C2013-0-19038-1Bombardelli, F. Computational multi-phase fluid dynamics to address flows past hydraulic structures (2012) 4th IAHR International Symposium on Hydraulic Structures. Cited 30 times. ISBN: 978-989850901-7Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M. Experimental and numerical analysis of a water emptying pipeline using different air valves (2017) Water (Switzerland), 9 (2), art. no. 98. Cited 36 times. http://www.mdpi.com/journal/water doi: 10.3390/w9020098Espert, V., Cabrera, E., Martínez, E., Pérez, R., Vela, A. Air Vessel Collapse Due to a Thermal Change. A Case Study (1991) Hydraulic Transients with Water Column Separation - 9th and Last Round Table of the IARH Group Valencia, Spain: IAHR, and,. InFuertes-Miquel, V.S., Coronado-Hernández, O.E., Iglesias-Rey, P.L., Mora-Meliá, D. Transient phenomena during the emptying process of a single pipe with water–air interaction (2019) Journal of Hydraulic Research, 57 (3), pp. 318-326. Cited 27 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2018.1492465Fuertes-Miquel, V.S., Coronado-Hernández, O.E., Mora-Meliá, D., Iglesias-Rey, P.L. Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review (2019) Urban Water Journal, 16 (4), pp. 299-311. Cited 27 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2019.1669188Ghorai, S., Nigam, K.D.P. CFD modeling of flow profiles and interfacial phenomena in two-phase flow in pipes (Open Access) (2006) Chemical Engineering and Processing: Process Intensification, 45 (1), pp. 55-65. Cited 97 times. doi: 10.1016/j.cep.2005.05.006Hirt, C.W., Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries (1981) Journal of Computational Physics, 39 (1), pp. 201-225. Cited 12488 times. doi: 10.1016/0021-9991(81)90145-5Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., Tijsseling, A.S., (...), van't Westende, J.M.C. Emptying of large-scale pipeline by pressurized air (2012) Journal of Hydraulic Engineering, 138 (12), pp. 1090-1100. Cited 44 times. doi: 10.1061/(ASCE)HY.1943-7900.0000631Liu, D., Zhou, L., Karney, B., Zhang, Q., Ou, C. Rigid-plug elastic-water model for transient pipe flow with entrapped air pocket (Open Access) (2011) Journal of Hydraulic Research, 49 (6), pp. 799-803. Cited 34 times. doi: 10.1080/00221686.2011.621740Martins, N.M.C., Delgado, J.N., Ramos, H.M., Covas, D.I.C. Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model (2017) Journal of Hydraulic Research, 55 (4), pp. 506-519. Cited 33 times. http://www.tandfonline.com/toc/tjhr20/current doi: 10.1080/00221686.2016.1275046Martins, N.M.C., Soares, A.K., Ramos, H.M., Covas, D.I.C. CFD modeling of transient flow in pressurized pipes (2016) Computers and Fluids, 126, pp. 129-140. Cited 70 times. doi: 10.1016/j.compfluid.2015.12.002Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications (Open Access) (1994) AIAA Journal, 32 (8), pp. 1598-1605. Cited 15816 times. doi: 10.2514/3.12149Muralha, A., Melo, J.F., Ramos, H.M. Assessment of CFD solvers and turbulent models for water free jets in spillways (Open Access) (2020) Fluids, 5 (3), art. no. 100. Cited 7 times. https://www.mdpi.com/2311-5521/5/3/104 doi: 10.3390/fluids5030104 View at PublisherPozos-Estrada, O., Pothof, I., Fuentes-Mariles, O.A., Dominguez-Mora, R., Pedrozo-Acuña, A., Meli, R., Peña, F. Failure of a drainage tunnel caused by an entrapped air pocket (2015) Urban Water Journal, 12 (6), pp. 446-454. Cited 22 times. http://www.tandf.co.uk/journals/titles/1573062X.asp doi: 10.1080/1573062X.2015.1041990Wang, H., Zhou, L., Liu, D., Karney, B., Wang, P., Xia, L., Ma, J., (...), Xu, C. CFD approach for column separation in water pipelines (2016) Journal of Hydraulic Engineering, 142 (10), art. no. 04016036. Cited 32 times. http://ascelibrary.org/journal/jhend8 doi: 10.1061/(ASCE)HY.1943-7900.0001171Wu, G., Duan, X., Zhu, J., Li, X., Tang, X., Gao, H. Investigations of hydraulic transient flows in pressurized pipeline based on 1D traditional and 3D weakly compressible models (Open Access) (2021) Journal of Hydroinformatics, 23 (2), pp. 231-248. Cited 7 times. https://iwaponline.com/jh/article/23/2/231/80219/Investigations-of-hydraulic-transient-flows-in doi: 10.2166/HYDRO.2021.134Zhou, F., Hicks, F.E., Steffler, P.M. Transient flow in a rapidly filling horizontal pipe containing trapped air (Open Access) (2002) Journal of Hydraulic Engineering, 128 (6), pp. 625-634. Cited 200 times. doi: 10.1061/(ASCE)0733-9429(2002)128:6(625)Zhou, L., Liu, D.-Y., Ou, C.-Q. Simulation of flow transients in a water filling pipe containing entrapped air pocket with VOF model (2011) Engineering Applications of Computational Fluid Mechanics, 5 (1), pp. 127-140. Cited 79 times. http://jeacfm.cse.polyu.edu.hk/download/download.php?dirname=vol5no1&act=d&f=vol5no1-10_ZhouL.pdf doi: 10.1080/19942060.2011.11015357http://purl.org/coar/resource_type/c_6501ORIGINALScopus - Document details - Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM.pdfScopus - Document details - Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM.pdfapplication/pdf170967https://repositorio.utb.edu.co/bitstream/20.500.12585/12402/1/Scopus%20-%20Document%20details%20-%20Numerical%20modelling%20for%20analysing%20drainage%20in%20irregular%20profile%20pipes%20using%20OpenFOAM.pdfa7b5f2b155636341b64d1801844b80d6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12402/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXTScopus - Document details - Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM.pdf.txtScopus - Document details - Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM.pdf.txtExtracted texttext/plain2794https://repositorio.utb.edu.co/bitstream/20.500.12585/12402/3/Scopus%20-%20Document%20details%20-%20Numerical%20modelling%20for%20analysing%20drainage%20in%20irregular%20profile%20pipes%20using%20OpenFOAM.pdf.txt2e48409b8b78d4a8ab7687a0e83ca985MD53THUMBNAILScopus - Document details - Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM.pdf.jpgScopus - Document details - Numerical modelling for analysing drainage in irregular profile pipes using OpenFOAM.pdf.jpgGenerated Thumbnailimage/jpeg6783https://repositorio.utb.edu.co/bitstream/20.500.12585/12402/4/Scopus%20-%20Document%20details%20-%20Numerical%20modelling%20for%20analysing%20drainage%20in%20irregular%20profile%20pipes%20using%20OpenFOAM.pdf.jpg590a1dd196a2e1f6653722ee54b785fcMD5420.500.12585/12402oai:repositorio.utb.edu.co:20.500.12585/124022023-07-22 00:18:25.074Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=