A Hooke's law-based approach to protein folding rate

Kinetics is a key aspect of the renowned protein folding problem. Here, we propose a comprehensive approach to folding kinetics where a polypeptide chain is assumed to behave as an elastic material described by the Hooke[U+05F3]s law. A novel parameter called elastic-folding constant results from ou...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9020
Acceso en línea:
https://hdl.handle.net/20.500.12585/9020
Palabra clave:
Elastic folding constant
Folding degree
Folding kinetics
PROTDCAL
Polypeptide
DNA
Protein
Energetics
Modeling
Peptide
Protein
Reaction kinetics
Amino acid sequence
Article
Elasticity
Protein folding
Protein structure
Structure analysis
Theoretical model
Chemical model
Chemistry
Computer simulation
Kinetics
Protein secondary structure
Thermodynamics
Computer simulation
DNA
Kinetics
Models, Chemical
Protein folding
Protein Structure, Secondary
Proteins
Thermodynamics
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_e374b1aae8a796efb91cbc34c1931312
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9020
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv A Hooke's law-based approach to protein folding rate
title A Hooke's law-based approach to protein folding rate
spellingShingle A Hooke's law-based approach to protein folding rate
Elastic folding constant
Folding degree
Folding kinetics
PROTDCAL
Polypeptide
DNA
Protein
Energetics
Modeling
Peptide
Protein
Reaction kinetics
Amino acid sequence
Article
Elasticity
Protein folding
Protein structure
Structure analysis
Theoretical model
Chemical model
Chemistry
Computer simulation
Kinetics
Protein secondary structure
Thermodynamics
Computer simulation
DNA
Kinetics
Models, Chemical
Protein folding
Protein Structure, Secondary
Proteins
Thermodynamics
title_short A Hooke's law-based approach to protein folding rate
title_full A Hooke's law-based approach to protein folding rate
title_fullStr A Hooke's law-based approach to protein folding rate
title_full_unstemmed A Hooke's law-based approach to protein folding rate
title_sort A Hooke's law-based approach to protein folding rate
dc.subject.keywords.none.fl_str_mv Elastic folding constant
Folding degree
Folding kinetics
PROTDCAL
Polypeptide
DNA
Protein
Energetics
Modeling
Peptide
Protein
Reaction kinetics
Amino acid sequence
Article
Elasticity
Protein folding
Protein structure
Structure analysis
Theoretical model
Chemical model
Chemistry
Computer simulation
Kinetics
Protein secondary structure
Thermodynamics
Computer simulation
DNA
Kinetics
Models, Chemical
Protein folding
Protein Structure, Secondary
Proteins
Thermodynamics
topic Elastic folding constant
Folding degree
Folding kinetics
PROTDCAL
Polypeptide
DNA
Protein
Energetics
Modeling
Peptide
Protein
Reaction kinetics
Amino acid sequence
Article
Elasticity
Protein folding
Protein structure
Structure analysis
Theoretical model
Chemical model
Chemistry
Computer simulation
Kinetics
Protein secondary structure
Thermodynamics
Computer simulation
DNA
Kinetics
Models, Chemical
Protein folding
Protein Structure, Secondary
Proteins
Thermodynamics
description Kinetics is a key aspect of the renowned protein folding problem. Here, we propose a comprehensive approach to folding kinetics where a polypeptide chain is assumed to behave as an elastic material described by the Hooke[U+05F3]s law. A novel parameter called elastic-folding constant results from our model and is suggested to distinguish between protein with two-state and multi-state folding pathways. A contact-free descriptor, named folding degree, is introduced as a suitable structural feature to study protein-folding kinetics. This approach generalizes the observed correlations between varieties of structural descriptors with the folding rate constant. Additionally several comparisons among structural classes and folding mechanisms were carried out showing the good performance of our model with proteins of different types. The present model constitutes a simple rationale for the structural and energetic factors involved in protein folding kinetics. © 2014 Elsevier Ltd.
publishDate 2015
dc.date.issued.none.fl_str_mv 2015
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:47Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:47Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Journal of Theoretical Biology; Vol. 364, pp. 407-417
dc.identifier.issn.none.fl_str_mv 00225193
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9020
dc.identifier.doi.none.fl_str_mv 10.1016/j.jtbi.2014.09.002
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 36933887400
55665599200
53878266200
7102811634
36945042600
35403074800
identifier_str_mv Journal of Theoretical Biology; Vol. 364, pp. 407-417
00225193
10.1016/j.jtbi.2014.09.002
Universidad Tecnológica de Bolívar
Repositorio UTB
36933887400
55665599200
53878266200
7102811634
36945042600
35403074800
url https://hdl.handle.net/20.500.12585/9020
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Academic Press
publisher.none.fl_str_mv Academic Press
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84910086539&doi=10.1016%2fj.jtbi.2014.09.002&partnerID=40&md5=d32479becf63730a4252ec30e659e982
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9020/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021734240616448
spelling 2020-03-26T16:32:47Z2020-03-26T16:32:47Z2015Journal of Theoretical Biology; Vol. 364, pp. 407-41700225193https://hdl.handle.net/20.500.12585/902010.1016/j.jtbi.2014.09.002Universidad Tecnológica de BolívarRepositorio UTB36933887400556655992005387826620071028116343694504260035403074800Kinetics is a key aspect of the renowned protein folding problem. Here, we propose a comprehensive approach to folding kinetics where a polypeptide chain is assumed to behave as an elastic material described by the Hooke[U+05F3]s law. A novel parameter called elastic-folding constant results from our model and is suggested to distinguish between protein with two-state and multi-state folding pathways. A contact-free descriptor, named folding degree, is introduced as a suitable structural feature to study protein-folding kinetics. This approach generalizes the observed correlations between varieties of structural descriptors with the folding rate constant. Additionally several comparisons among structural classes and folding mechanisms were carried out showing the good performance of our model with proteins of different types. The present model constitutes a simple rationale for the structural and energetic factors involved in protein folding kinetics. © 2014 Elsevier Ltd.DNA, 9007-49-2; protein, 67254-75-5; DNA; ProteinsRecurso electrónicoapplication/pdfengAcademic Presshttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84910086539&doi=10.1016%2fj.jtbi.2014.09.002&partnerID=40&md5=d32479becf63730a4252ec30e659e982A Hooke's law-based approach to protein folding rateinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Elastic folding constantFolding degreeFolding kineticsPROTDCALPolypeptideDNAProteinEnergeticsModelingPeptideProteinReaction kineticsAmino acid sequenceArticleElasticityProtein foldingProtein structureStructure analysisTheoretical modelChemical modelChemistryComputer simulationKineticsProtein secondary structureThermodynamicsComputer simulationDNAKineticsModels, ChemicalProtein foldingProtein Structure, SecondaryProteinsThermodynamicsRuiz-Blanco Y.B.Marrero-Ponce Y.Prieto P.J.Salgado J.García Y.Sotomayor-Torres C.M.Baker, D., A surprising simplicity to protein folding (2000) Nature, 405, pp. 39-42Basilevsky, A., (1994) Statistical Factor Analysis and Related Methods, , Wiley, New YorkBergasa-Caceres, F., Rabitz, H.A., Two-state folding kinetics of small proteins in the sequential collapse model: dependence of the folding rate on contact order and temperature (2003) J. Phys. Chem. B, 107, pp. 12874-12877Bogatyreva, N.S., Osypov, A.A., Ivankov, D.N., KineticDB: a database of protein folding kinetics (2009) Nucleic Acids Res., 37, pp. D342-D346Bryngelson, J.D., Wolynes, P.G., Intermediates and barrier crossing in a random energy model (with applications to protein folding) (1989) J. Phys. Chem., 93, pp. 6902-6915Chen, W., Feng, P.-M., Lin, H., Chou, K.-C., IRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition (2013) Nucleic Acids Res., 41, p. e68Chou, K.-C., Some remarks on protein attribute prediction and pseudo amino acid composition (2011) J. Theor. Biol., 273, pp. 236-247Chou, K.-C., Zhang, C.-T., Prediction of protein structural classes (1995) Crit. Rev. Biochem. Mol. Biol., 30, pp. 275-349Chou, K.C., Identification of low-frequency modes in protein molecules (1983) Biochem. J., 215, pp. 465-469Chou, K.C., Low-frequency vibrations of helical structures in protein molecules (1983) Biochem. J., 209, pp. 573-580Chou, K.C., Low-frequency vibrations of DNA molecules (1984) Biochem. J., 221, pp. 27-31Chou, K.C., Low-frequency motions in protein molecules. Beta-sheet and beta-barrel (1985) Biophys. J., 48, pp. 289-297Chou, K.C., Maggiora, G.M., Mao, B., Quasi-continuum models of twist-like and accordion-like low-frequency motions in DNA (1989) Biophys. J., 56, pp. 295-305Debe, D.A., Goddard, W.A., First principles prediction of protein folding rates (1999) J. Mol. Biol., 294, pp. 619-625Dill, K.A., Bromberg, S., (2003) Polymer Chains can be Modelled as Random Flights. Molecular Driving Forces. Statistical Thermodynamics in Chemistry and Biology, pp. 609-614. , Garland Science, New YorkDill, K.A., Bromberg, S., (2003) Polymeric Material are Often Elastic. Molecular Driving Forces. Statistical Thermodynamics in Chemistry and Biology, , Garland Science, New YorkDill, K.A., Fiebig, K.M., Chan, H.S., Cooperativity in protein-folding kinetics (1993) Proc. Natl. Acad. Sci. USA, 90, pp. 1942-1946Ding, H., Deng, E.-Z., Yuan, L.-F., Liu, L., Lin, H., Chen, W., Chou, K.-C., ICTX-Type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels (2014) BioMed Res. Int., 2014. , Article ID 286419. 10.1155/2014/286419Dinner, A.R., Karplus, M., The thermodynamics and kinetics of protein folding: a lattice model analysis of multiple pathways with intermediates (1999) J. Phys. Chem. B, 103, pp. 7976-7994Dinner, A.R., Karplus, M., The roles of stability and contact order in determining protein folding rates (2001) Nat. Struct. Biol., 8, pp. 21-22Esmaeili, M., Mohabatkar, H., Mohsenzadeh, S., Using the concept of Chou[U+05F3]s pseudo amino acid composition for risk type prediction of human papillomaviruses (2010) J. Theor. Biol., 263, pp. 203-209Fersht, A.R., Transition-state structure as a unifying basis in protein-folding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism (2000) Proc. Natl. Acad. Sci., 97, pp. 1525-1529Fiebig, K.M., Dill, K.A., Protein core assembly processes (1993) J. Chem. Phys., 98, pp. 3475-3487Frank, I.E., Friedman, J.H., A statistical view of some chemometrics regression tools (1993) Technometrics, 35, pp. 109-135Franke, R., (1984) Theoretical Drug Design Methods, , Elsevier, AmsterdamFriedman, M., The use of ranks to avoid the assumption of normality implicit in the analysis of variance (1937) J. Am. Stat. Assoc., 32, pp. 675-701Galzitskaya, O.V., Influence of conformational entropy on the protein folding rate (2010) Entropy, 12, pp. 961-982Galzitskaya, O.V., Estimation of protein folding rate from Monte Carlo simulations and entropy capacity (2010) Curr. Protein Pept. Sci., 11, pp. 523-537Galzitskaya, O.V., Garbuzynskiy, S.O., Ivankov, D.N., Finkelstein, A.V., Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics (2003) PROTEINS: Struct. Funct. Genet., 51, pp. 162-166Georgiou, D.N., Karakasidis, T.E., Nieto, J.J., Torres, A., Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou[U+05F3]s pseudo amino acid composition (2009) J. Theor. Biol., 257, pp. 17-26Ghosh, K., Dill, K.A., Computing protein stabilities from their chain lengths (2009) Proc. Natl. Acad. Sci., 106, pp. 10649-10654Gordon, G., Extrinsic electromagnetic fields, low frequency (phonon) vibrations, and control of cell function: a non-linear resonance system (2008) J. Biomed. Sci. Eng. (JBiSE), 1, pp. 152-156Gordon, G.A., Designed electromagnetic pulsed therapy: clinical applications (2007) J. Cell. Physiol., 212, pp. 579-582Gromiha, M.M., Importance of native-state topology for determining the folding rate of two-state proteins (2003) J. Chem. Inf. Comput. Sci., 43, pp. 1481-1485Gromiha, M.M., A statistical model for predicting protein folding rates from amino acid sequence with structural class information (2005) J. Chem. Inf. Model., 45, pp. 494-501Gromiha, M.M., Multiple contact network is a key determinant to protein folding rates (2009) J. Chem. Inf. Model., 49, pp. 1130-1135Gromiha, M.M., Selvaraj, S., Comparison between long-range interactions and contact order in determining the folding rate of two-state proteins: application of long-range order to folding rate prediction (2001) J. Mol. Biol., 310, pp. 27-32Guo, S.-H., Deng, E.-Z., Xu, L.-Q., Ding, H., Lin, H., Chen, W., Chou, K.-C., INuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition (2014) Bioinformatics, 30, pp. 1522-1529Hodges, J.L., Lehmann, E.L., Ranks methods for combination of independent experiments in analysis of variance (1962) Ann. Math. Stat., 33, pp. 482-497Holm, S., A simple sequentially rejective multiple test procedure (1979) Scand. J. Stat., 6, pp. 65-70Iman, R.L., Davenport, J.M., Approximations of the critical region of the Friedman statistic (1980) Commun. Stat., 9, pp. 571-595Ivankov, D.N., Finkelstein, A.V., Prediction of protein folding rates from the amino acid sequence-predicted secondary structure (2004) Proc. Natl. Acad. Sci., 101, pp. 8942-8944Ivankov, D.N., Garbuzynskiy, S.O., Alm, E., Plaxco, K.W., Baker, D., Finkelstein, A.V., Contact order revisited: influence of protein size on the folding rate (2003) Protein Sci., 12, pp. 2057-2062James, H.M., Guth, E., Theory of the elastic properties of rubber (1943) J. Chem. Phys., 11, pp. 455-482Kim, M.K., Chirikjiana, G.S., Jernigan, R.L., Elastic models of conformational transitions in macromolecules (2002) J. Mol. Graph. Model., 21, pp. 151-160Klimov, D.K., Thirumalai, D., Viscosity dependence of the folding rates of proteins (1997) Phys. Rev. Lett., 79, pp. 317-320Kmiecik, S., Kolinski, A., Characterization of protein-folding pathways by reduced-space modeling (2007) Proc. Natl. Acad. Sci., 104, pp. 12330-12335Lei, H., Duan, Y., Protein folding and unfolding by all-atom molecular dynamics simulations (2008) Molecular Modeling of Proteins, 443, pp. 277-297. , Humana Press, Totowa, NJLevitt, M., A simplified representation of protein conformations for rapid simulation of protein folding (1976) J. Mol. Biol., 104, pp. 59-107Madkan, A., Blank, M., Elson, E., Geddis, M.S., Goodman, R., Steps to the clinic with ELF EMF (2009) Nat. Sci., 1Makarov, D.E., Keller, C.A., Plaxco, K.W., Metiu, H., How the folding rate constant of simple, single-domain proteins depends on the number of native contacts (2002) Proc. Natl. Acad. Sci., 99, pp. 3535-3539Malinowski, E.R., Howery, D.G., (1980) Factor Analysis in Chemistry, , Wiley-Interscience, New YorkMarrero-Ponce, Y., Linear Indices of the ""molecular pseudograph[U+05F3]s atom adjacency matrix"": definition, significance-interpretation, and application to QSAR analysis of flavone derivatives as HIV-1 integrase inhibitors (2004) J. Chem. Inf. Comput. Sci., 44, pp. 2010-2026Maxwell, K.L., Wildes, D., Afsar, A.Z., Rios, M.A.D.L., Brown, A.G., Friel, T., Hedberg, L., Plaxco, K.W., Protein folding: defining a ""standard"" set of experimental conditions and a preliminary kinetic data set of two-state proteins (2005) Protein Sci., 14, pp. 602-616Mi, D., Liu, G.R., Wang, J.-S., Li, Z.R., Relationships between the folding rate constant and the topological parameters of small two-state proteins based on general random walk model (2006) J. Theor. Biol., 241, pp. 152-157Micheletti, C., Prediction of folding rates and transition-state placement from native-state geometry (2003) PROTEINS: Struct. Funct. Genet., 51, pp. 74-84Min, J.-L., Xiao, X., Chou, K.-C., IEzy-Drug: a web server for identifying the interaction between enzymes and drugs in cellular networking (2013) BioMed Res. Int., 2013. , Article ID 701317. 10.1155/2013/701317Muñoz, V., Eaton, W.A., A simple model for calculating the kinetics of protein folding from three-dimensional structures (1999) Proc. Natl. Acad. Sci. USA, 96, pp. 11311-11316Naganathan, A.N., Muñoz, V., Scaling of folding times with protein size (2005) J. Am. Chem. Soc., 127, pp. 480-481Naganathan, A.N., Doshi, U., Muñoz, V., Protein folding kinetics: barrier effects in chemical and thermal denaturation experiments (2007) J. Am. Chem. Soc., 129, pp. 5673-5682Nolting, B., Schalike, W., Hampel, P., Grundig, F., Gantert, S., Sips, N., Bandlow, W., Qi, P.X., Structural determinants of the rate of protein folding (2003) J. Theor. Biol., 223, pp. 299-307Onuchic, J.N., Socci, N.D., Luthey-Schulten, Z., Wolynes, P.G., Protein folding funnels: the nature of the transition state ensemble (1996) Fold. Des., 1, pp. 441-450Ouyang, Z., Liang, J., Predicting protein folding rates from geometric contact and amino acid sequence (2008) Protein Sci., 17, pp. 1256-1263Plaxco, K.W., Simons, K.T., Baker, D., Contact order, transition state placement and the refolding rates of single domain proteins (1998) J. Mol. Biol., 277, pp. 985-994Plaxco, K.W., Simons, K.T., Ruczinski, I., Baker, D., Topology, stability, sequence, and length: defining the determinants of two-state protein folding kinetics (2000) Biochemistry, 39, pp. 11177-11183Punta, M., Rost, B., Protein folding rates estimated from contact predictions (2005) J. Mol. Biol., 348, pp. 507-512Qi, X., Portman, J.J., Excluded volume, local structural cooperativity, and the polymer physics of protein folding rates (2007) Proc. Natl. Acad. Sci., 104, pp. 10841-10846Qiu, W.-R., Xiao, X., Chou, K.-C., IRSpot-TNCPseAAC: identify recombination spots with trinucleotide composition and pseudo amino acid components (2014) Int. J. Mol. Sci., 15, pp. 1746-1766Qiu, W.-R., Xiao, X., Lin, W.-Z., Chou, K.-C., IMethyl-PseAAC: identification of protein methylation sites via a pseudo amino acid composition approach (2014) BioMed Res. Int., 2014. , Article ID 947416. 10.1155/2014/947416Ruiz-Blanco, Y.B., García, Y., Sotomayor-Torres, C.M., Marrero-Ponce, Y., New Set of 2D/3D Thermodynamic Indices for Proteins. A Formalism Based on ""Molten Globule"" Theory (2010) Physics Procedia, 8, pp. 63-72Ruiz-Blanco, Y.B., Marrero-Ponce, Y., Paz, W., García, Y., Salgado, J., Global stability of protein folding from an empirical free energy function (2013) J. Theor. Biol., 321, pp. 44-53Ruiz-Blanco, Y.B., Marrero-Ponce, Y., García, Y., Puris, A., Bello, R., Green, J., Sotomayor-Torres, C.M., A physics-based scoring function for protein structural decoys: Dynamic testing on targets of CASP-ROLL (2014) Chemical Physics Letters, pp. 135-140Sancho, D.D., Doshi, U., Muñoz, V., Protein folding rates and stability: how much is there beyond size? (2009) J. Am. Chem. Soc., 131, pp. 2074-2075Shakhnovich, E.I., Modeling protein folding: the beauty and power of simplicity (1996) Fold. Des., 1, pp. R50-R54Shakhnovich, E.I., Theoretical studies of protein-folding thermodynamics and kinetics (1997) Curr. Opin. Struct. Biol., 7, pp. 29-40Sheskin, D., (2006) Handbook of Parametric and Nonparametric Statistical Procedures, , Chapman and Hall, FloridaShoemaker, B.A., Wang, J., Wolynes, P.G., Structural correlations in protein folding funnels (1997) Proc. Natl. Acad. Sci. USA, 94, pp. 777-782Shoemaker, B.A., Wang, J., Wolynes, P.G., Exploring structures in protein folding funnels with free energy functional: the transition state ensemble (1999) J. Mol. Biol., 287, pp. 657-694Shortle, D., The denatured state (the other half of the folding equation) and its role in protein stability (1996) FASEB J., 10, pp. 27-34Smith, L.J., Fiebig, K.M., Schwalbe, H., Dobson, C.M., The concept of a random coil residual structure in peptides and denatured proteins (1996) Fold. Des., 1, pp. R95-R106Socci, N.D., Onuchic, J.N., Wolynes, P.G., Diffusive dynamics of the reaction coordinate for protein folding funnels (1996) J. Chem. Phys., 104, pp. 5860-5868Statsoft, 2001. STATISTICA version 6.0. TulsaWeikl, T.R., Dill, K.A., Folding rates and low-entropy-loss routes of two-state proteins (2003) J. Mol. Biol., 329, pp. 585-598Wilcoxon, F., Individual comparisons by ranking methods (1945) Biom. Bull., 1, pp. 80-83Zagrovic, B., Snow, C.D., Shirts, M.R., Pande, V.S., Simulation of folding of a small alpha-helical protein in atomistic detail using worldwidedistributed computing (2002) J. Mol. Biol., 323, pp. 927-937Zhou, H., Zhou, Y., Folding rate prediction using total contact distance (2002) Biophys. J., 82, pp. 458-463Zimmermann, O., Hansmann, U.H.E., Understanding protein folding: small proteins in silico (2008) Biochim. Biophys. Acta, 1784, pp. 252-258http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9020/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9020oai:repositorio.utb.edu.co:20.500.12585/90202021-02-02 14:14:19.399Repositorio Institucional UTBrepositorioutb@utb.edu.co